aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/RangeConstraintManager.cpp
blob: 1017dff2b0f34aaf5b339e37b0b407cd20cbfc64 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines RangeConstraintManager, a class that tracks simple
//  equality and inequality constraints on symbolic values of ProgramState.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/JsonSupport.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <iterator>
#include <optional>

using namespace clang;
using namespace ento;

// This class can be extended with other tables which will help to reason
// about ranges more precisely.
class OperatorRelationsTable {
  static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
                    BO_GE < BO_EQ && BO_EQ < BO_NE,
                "This class relies on operators order. Rework it otherwise.");

public:
  enum TriStateKind {
    False = 0,
    True,
    Unknown,
  };

private:
  // CmpOpTable holds states which represent the corresponding range for
  // branching an exploded graph. We can reason about the branch if there is
  // a previously known fact of the existence of a comparison expression with
  // operands used in the current expression.
  // E.g. assuming (x < y) is true that means (x != y) is surely true.
  // if (x previous_operation y)  // <    | !=      | >
  //   if (x operation y)         // !=   | >       | <
  //     tristate                 // True | Unknown | False
  //
  // CmpOpTable represents next:
  // __|< |> |<=|>=|==|!=|UnknownX2|
  // < |1 |0 |* |0 |0 |* |1        |
  // > |0 |1 |0 |* |0 |* |1        |
  // <=|1 |0 |1 |* |1 |* |0        |
  // >=|0 |1 |* |1 |1 |* |0        |
  // ==|0 |0 |* |* |1 |0 |1        |
  // !=|1 |1 |* |* |0 |1 |0        |
  //
  // Columns stands for a previous operator.
  // Rows stands for a current operator.
  // Each row has exactly two `Unknown` cases.
  // UnknownX2 means that both `Unknown` previous operators are met in code,
  // and there is a special column for that, for example:
  // if (x >= y)
  //   if (x != y)
  //     if (x <= y)
  //       False only
  static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
  const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
      // <      >      <=     >=     ==     !=    UnknownX2
      {True, False, Unknown, False, False, Unknown, True}, // <
      {False, True, False, Unknown, False, Unknown, True}, // >
      {True, False, True, Unknown, True, Unknown, False},  // <=
      {False, True, Unknown, True, True, Unknown, False},  // >=
      {False, False, Unknown, Unknown, True, False, True}, // ==
      {True, True, Unknown, Unknown, False, True, False},  // !=
  };

  static size_t getIndexFromOp(BinaryOperatorKind OP) {
    return static_cast<size_t>(OP - BO_LT);
  }

public:
  constexpr size_t getCmpOpCount() const { return CmpOpCount; }

  static BinaryOperatorKind getOpFromIndex(size_t Index) {
    return static_cast<BinaryOperatorKind>(Index + BO_LT);
  }

  TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
                             BinaryOperatorKind QueriedOP) const {
    return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
  }

  TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
    return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
  }
};

//===----------------------------------------------------------------------===//
//                           RangeSet implementation
//===----------------------------------------------------------------------===//

RangeSet::ContainerType RangeSet::Factory::EmptySet{};

RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) {
  ContainerType Result;
  Result.reserve(LHS.size() + RHS.size());
  std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(),
             std::back_inserter(Result));
  return makePersistent(std::move(Result));
}

RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) {
  ContainerType Result;
  Result.reserve(Original.size() + 1);

  const_iterator Lower = llvm::lower_bound(Original, Element);
  Result.insert(Result.end(), Original.begin(), Lower);
  Result.push_back(Element);
  Result.insert(Result.end(), Lower, Original.end());

  return makePersistent(std::move(Result));
}

RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) {
  return add(Original, Range(Point));
}

RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) {
  ContainerType Result = unite(*LHS.Impl, *RHS.Impl);
  return makePersistent(std::move(Result));
}

RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) {
  ContainerType Result;
  Result.push_back(R);
  Result = unite(*Original.Impl, Result);
  return makePersistent(std::move(Result));
}

RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) {
  return unite(Original, Range(ValueFactory.getValue(Point)));
}

RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From,
                                  llvm::APSInt To) {
  return unite(Original,
               Range(ValueFactory.getValue(From), ValueFactory.getValue(To)));
}

template <typename T>
void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) {
  std::swap(First, Second);
  std::swap(FirstEnd, SecondEnd);
}

RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS,
                                                 const ContainerType &RHS) {
  if (LHS.empty())
    return RHS;
  if (RHS.empty())
    return LHS;

  using llvm::APSInt;
  using iterator = ContainerType::const_iterator;

  iterator First = LHS.begin();
  iterator FirstEnd = LHS.end();
  iterator Second = RHS.begin();
  iterator SecondEnd = RHS.end();
  APSIntType Ty = APSIntType(First->From());
  const APSInt Min = Ty.getMinValue();

  // Handle a corner case first when both range sets start from MIN.
  // This helps to avoid complicated conditions below. Specifically, this
  // particular check for `MIN` is not needed in the loop below every time
  // when we do `Second->From() - One` operation.
  if (Min == First->From() && Min == Second->From()) {
    if (First->To() > Second->To()) {
      //    [ First    ]--->
      //    [ Second ]----->
      // MIN^
      // The Second range is entirely inside the First one.

      // Check if Second is the last in its RangeSet.
      if (++Second == SecondEnd)
        //    [ First     ]--[ First + 1 ]--->
        //    [ Second ]--------------------->
        // MIN^
        // The Union is equal to First's RangeSet.
        return LHS;
    } else {
      // case 1: [ First ]----->
      // case 2: [ First   ]--->
      //         [ Second  ]--->
      //      MIN^
      // The First range is entirely inside or equal to the Second one.

      // Check if First is the last in its RangeSet.
      if (++First == FirstEnd)
        //    [ First ]----------------------->
        //    [ Second  ]--[ Second + 1 ]---->
        // MIN^
        // The Union is equal to Second's RangeSet.
        return RHS;
    }
  }

  const APSInt One = Ty.getValue(1);
  ContainerType Result;

  // This is called when there are no ranges left in one of the ranges.
  // Append the rest of the ranges from another range set to the Result
  // and return with that.
  const auto AppendTheRest = [&Result](iterator I, iterator E) {
    Result.append(I, E);
    return Result;
  };

  while (true) {
    // We want to keep the following invariant at all times:
    // ---[ First ------>
    // -----[ Second --->
    if (First->From() > Second->From())
      swapIterators(First, FirstEnd, Second, SecondEnd);

    // The Union definitely starts with First->From().
    // ----------[ First ------>
    // ------------[ Second --->
    // ----------[ Union ------>
    // UnionStart^
    const llvm::APSInt &UnionStart = First->From();

    // Loop where the invariant holds.
    while (true) {
      // Skip all enclosed ranges.
      // ---[                  First                     ]--->
      // -----[ Second ]--[ Second + 1 ]--[ Second + N ]----->
      while (First->To() >= Second->To()) {
        // Check if Second is the last in its RangeSet.
        if (++Second == SecondEnd) {
          // Append the Union.
          // ---[ Union      ]--->
          // -----[ Second ]----->
          // --------[ First ]--->
          //         UnionEnd^
          Result.emplace_back(UnionStart, First->To());
          // ---[ Union ]----------------->
          // --------------[ First + 1]--->
          // Append all remaining ranges from the First's RangeSet.
          return AppendTheRest(++First, FirstEnd);
        }
      }

      // Check if First and Second are disjoint. It means that we find
      // the end of the Union. Exit the loop and append the Union.
      // ---[ First ]=------------->
      // ------------=[ Second ]--->
      // ----MinusOne^
      if (First->To() < Second->From() - One)
        break;

      // First is entirely inside the Union. Go next.
      // ---[ Union ----------->
      // ---- [ First ]-------->
      // -------[ Second ]----->
      // Check if First is the last in its RangeSet.
      if (++First == FirstEnd) {
        // Append the Union.
        // ---[ Union       ]--->
        // -----[ First ]------->
        // --------[ Second ]--->
        //          UnionEnd^
        Result.emplace_back(UnionStart, Second->To());
        // ---[ Union ]------------------>
        // --------------[ Second + 1]--->
        // Append all remaining ranges from the Second's RangeSet.
        return AppendTheRest(++Second, SecondEnd);
      }

      // We know that we are at one of the two cases:
      // case 1: --[ First ]--------->
      // case 2: ----[ First ]------->
      // --------[ Second ]---------->
      // In both cases First starts after Second->From().
      // Make sure that the loop invariant holds.
      swapIterators(First, FirstEnd, Second, SecondEnd);
    }

    // Here First and Second are disjoint.
    // Append the Union.
    // ---[ Union    ]--------------->
    // -----------------[ Second ]--->
    // ------[ First ]--------------->
    //       UnionEnd^
    Result.emplace_back(UnionStart, First->To());

    // Check if First is the last in its RangeSet.
    if (++First == FirstEnd)
      // ---[ Union ]--------------->
      // --------------[ Second ]--->
      // Append all remaining ranges from the Second's RangeSet.
      return AppendTheRest(Second, SecondEnd);
  }

  llvm_unreachable("Normally, we should not reach here");
}

RangeSet RangeSet::Factory::getRangeSet(Range From) {
  ContainerType Result;
  Result.push_back(From);
  return makePersistent(std::move(Result));
}

RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) {
  llvm::FoldingSetNodeID ID;
  void *InsertPos;

  From.Profile(ID);
  ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos);

  if (!Result) {
    // It is cheaper to fully construct the resulting range on stack
    // and move it to the freshly allocated buffer if we don't have
    // a set like this already.
    Result = construct(std::move(From));
    Cache.InsertNode(Result, InsertPos);
  }

  return Result;
}

RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) {
  void *Buffer = Arena.Allocate();
  return new (Buffer) ContainerType(std::move(From));
}

const llvm::APSInt &RangeSet::getMinValue() const {
  assert(!isEmpty());
  return begin()->From();
}

const llvm::APSInt &RangeSet::getMaxValue() const {
  assert(!isEmpty());
  return std::prev(end())->To();
}

bool clang::ento::RangeSet::isUnsigned() const {
  assert(!isEmpty());
  return begin()->From().isUnsigned();
}

uint32_t clang::ento::RangeSet::getBitWidth() const {
  assert(!isEmpty());
  return begin()->From().getBitWidth();
}

APSIntType clang::ento::RangeSet::getAPSIntType() const {
  assert(!isEmpty());
  return APSIntType(begin()->From());
}

bool RangeSet::containsImpl(llvm::APSInt &Point) const {
  if (isEmpty() || !pin(Point))
    return false;

  Range Dummy(Point);
  const_iterator It = llvm::upper_bound(*this, Dummy);
  if (It == begin())
    return false;

  return std::prev(It)->Includes(Point);
}

bool RangeSet::pin(llvm::APSInt &Point) const {
  APSIntType Type(getMinValue());
  if (Type.testInRange(Point, true) != APSIntType::RTR_Within)
    return false;

  Type.apply(Point);
  return true;
}

bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
  // This function has nine cases, the cartesian product of range-testing
  // both the upper and lower bounds against the symbol's type.
  // Each case requires a different pinning operation.
  // The function returns false if the described range is entirely outside
  // the range of values for the associated symbol.
  APSIntType Type(getMinValue());
  APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
  APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);

  switch (LowerTest) {
  case APSIntType::RTR_Below:
    switch (UpperTest) {
    case APSIntType::RTR_Below:
      // The entire range is outside the symbol's set of possible values.
      // If this is a conventionally-ordered range, the state is infeasible.
      if (Lower <= Upper)
        return false;

      // However, if the range wraps around, it spans all possible values.
      Lower = Type.getMinValue();
      Upper = Type.getMaxValue();
      break;
    case APSIntType::RTR_Within:
      // The range starts below what's possible but ends within it. Pin.
      Lower = Type.getMinValue();
      Type.apply(Upper);
      break;
    case APSIntType::RTR_Above:
      // The range spans all possible values for the symbol. Pin.
      Lower = Type.getMinValue();
      Upper = Type.getMaxValue();
      break;
    }
    break;
  case APSIntType::RTR_Within:
    switch (UpperTest) {
    case APSIntType::RTR_Below:
      // The range wraps around, but all lower values are not possible.
      Type.apply(Lower);
      Upper = Type.getMaxValue();
      break;
    case APSIntType::RTR_Within:
      // The range may or may not wrap around, but both limits are valid.
      Type.apply(Lower);
      Type.apply(Upper);
      break;
    case APSIntType::RTR_Above:
      // The range starts within what's possible but ends above it. Pin.
      Type.apply(Lower);
      Upper = Type.getMaxValue();
      break;
    }
    break;
  case APSIntType::RTR_Above:
    switch (UpperTest) {
    case APSIntType::RTR_Below:
      // The range wraps but is outside the symbol's set of possible values.
      return false;
    case APSIntType::RTR_Within:
      // The range starts above what's possible but ends within it (wrap).
      Lower = Type.getMinValue();
      Type.apply(Upper);
      break;
    case APSIntType::RTR_Above:
      // The entire range is outside the symbol's set of possible values.
      // If this is a conventionally-ordered range, the state is infeasible.
      if (Lower <= Upper)
        return false;

      // However, if the range wraps around, it spans all possible values.
      Lower = Type.getMinValue();
      Upper = Type.getMaxValue();
      break;
    }
    break;
  }

  return true;
}

RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower,
                                      llvm::APSInt Upper) {
  if (What.isEmpty() || !What.pin(Lower, Upper))
    return getEmptySet();

  ContainerType DummyContainer;

  if (Lower <= Upper) {
    // [Lower, Upper] is a regular range.
    //
    // Shortcut: check that there is even a possibility of the intersection
    //           by checking the two following situations:
    //
    //               <---[  What  ]---[------]------>
    //                              Lower  Upper
    //                            -or-
    //               <----[------]----[  What  ]---->
    //                  Lower  Upper
    if (What.getMaxValue() < Lower || Upper < What.getMinValue())
      return getEmptySet();

    DummyContainer.push_back(
        Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper)));
  } else {
    // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX]
    //
    // Shortcut: check that there is even a possibility of the intersection
    //           by checking the following situation:
    //
    //               <------]---[  What  ]---[------>
    //                    Upper             Lower
    if (What.getMaxValue() < Lower && Upper < What.getMinValue())
      return getEmptySet();

    DummyContainer.push_back(
        Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper)));
    DummyContainer.push_back(
        Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower)));
  }

  return intersect(*What.Impl, DummyContainer);
}

RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS,
                                      const RangeSet::ContainerType &RHS) {
  ContainerType Result;
  Result.reserve(std::max(LHS.size(), RHS.size()));

  const_iterator First = LHS.begin(), Second = RHS.begin(),
                 FirstEnd = LHS.end(), SecondEnd = RHS.end();

  // If we ran out of ranges in one set, but not in the other,
  // it means that those elements are definitely not in the
  // intersection.
  while (First != FirstEnd && Second != SecondEnd) {
    // We want to keep the following invariant at all times:
    //
    //    ----[ First ---------------------->
    //    --------[ Second ----------------->
    if (Second->From() < First->From())
      swapIterators(First, FirstEnd, Second, SecondEnd);

    // Loop where the invariant holds:
    do {
      // Check for the following situation:
      //
      //    ----[ First ]--------------------->
      //    ---------------[ Second ]--------->
      //
      // which means that...
      if (Second->From() > First->To()) {
        // ...First is not in the intersection.
        //
        // We should move on to the next range after First and break out of the
        // loop because the invariant might not be true.
        ++First;
        break;
      }

      // We have a guaranteed intersection at this point!
      // And this is the current situation:
      //
      //    ----[   First   ]----------------->
      //    -------[ Second ------------------>
      //
      // Additionally, it definitely starts with Second->From().
      const llvm::APSInt &IntersectionStart = Second->From();

      // It is important to know which of the two ranges' ends
      // is greater.  That "longer" range might have some other
      // intersections, while the "shorter" range might not.
      if (Second->To() > First->To()) {
        // Here we make a decision to keep First as the "longer"
        // range.
        swapIterators(First, FirstEnd, Second, SecondEnd);
      }

      // At this point, we have the following situation:
      //
      //    ---- First      ]-------------------->
      //    ---- Second ]--[  Second+1 ---------->
      //
      // We don't know the relationship between First->From and
      // Second->From and we don't know whether Second+1 intersects
      // with First.
      //
      // However, we know that [IntersectionStart, Second->To] is
      // a part of the intersection...
      Result.push_back(Range(IntersectionStart, Second->To()));
      ++Second;
      // ...and that the invariant will hold for a valid Second+1
      // because First->From <= Second->To < (Second+1)->From.
    } while (Second != SecondEnd);
  }

  if (Result.empty())
    return getEmptySet();

  return makePersistent(std::move(Result));
}

RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) {
  // Shortcut: let's see if the intersection is even possible.
  if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() ||
      RHS.getMaxValue() < LHS.getMinValue())
    return getEmptySet();

  return intersect(*LHS.Impl, *RHS.Impl);
}

RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) {
  if (LHS.containsImpl(Point))
    return getRangeSet(ValueFactory.getValue(Point));

  return getEmptySet();
}

RangeSet RangeSet::Factory::negate(RangeSet What) {
  if (What.isEmpty())
    return getEmptySet();

  const llvm::APSInt SampleValue = What.getMinValue();
  const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue);
  const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue);

  ContainerType Result;
  Result.reserve(What.size() + (SampleValue == MIN));

  // Handle a special case for MIN value.
  const_iterator It = What.begin();
  const_iterator End = What.end();

  const llvm::APSInt &From = It->From();
  const llvm::APSInt &To = It->To();

  if (From == MIN) {
    // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX].
    if (To == MAX) {
      return What;
    }

    const_iterator Last = std::prev(End);

    // Try to find and unite the following ranges:
    // [MIN, MIN] & [MIN + 1, N] => [MIN, N].
    if (Last->To() == MAX) {
      // It means that in the original range we have ranges
      //   [MIN, A], ... , [B, MAX]
      // And the result should be [MIN, -B], ..., [-A, MAX]
      Result.emplace_back(MIN, ValueFactory.getValue(-Last->From()));
      // We already negated Last, so we can skip it.
      End = Last;
    } else {
      // Add a separate range for the lowest value.
      Result.emplace_back(MIN, MIN);
    }

    // Skip adding the second range in case when [From, To] are [MIN, MIN].
    if (To != MIN) {
      Result.emplace_back(ValueFactory.getValue(-To), MAX);
    }

    // Skip the first range in the loop.
    ++It;
  }

  // Negate all other ranges.
  for (; It != End; ++It) {
    // Negate int values.
    const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To());
    const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From());

    // Add a negated range.
    Result.emplace_back(NewFrom, NewTo);
  }

  llvm::sort(Result);
  return makePersistent(std::move(Result));
}

// Convert range set to the given integral type using truncation and promotion.
// This works similar to APSIntType::apply function but for the range set.
RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) {
  // Set is empty or NOOP (aka cast to the same type).
  if (What.isEmpty() || What.getAPSIntType() == Ty)
    return What;

  const bool IsConversion = What.isUnsigned() != Ty.isUnsigned();
  const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth();
  const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth();

  if (IsTruncation)
    return makePersistent(truncateTo(What, Ty));

  // Here we handle 2 cases:
  // - IsConversion && !IsPromotion.
  //   In this case we handle changing a sign with same bitwidth: char -> uchar,
  //   uint -> int. Here we convert negatives to positives and positives which
  //   is out of range to negatives. We use convertTo function for that.
  // - IsConversion && IsPromotion && !What.isUnsigned().
  //   In this case we handle changing a sign from signeds to unsigneds with
  //   higher bitwidth: char -> uint, int-> uint64. The point is that we also
  //   need convert negatives to positives and use convertTo function as well.
  //   For example, we don't need such a convertion when converting unsigned to
  //   signed with higher bitwidth, because all the values of unsigned is valid
  //   for the such signed.
  if (IsConversion && (!IsPromotion || !What.isUnsigned()))
    return makePersistent(convertTo(What, Ty));

  assert(IsPromotion && "Only promotion operation from unsigneds left.");
  return makePersistent(promoteTo(What, Ty));
}

RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) {
  assert(T->isIntegralOrEnumerationType() && "T shall be an integral type.");
  return castTo(What, ValueFactory.getAPSIntType(T));
}

RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What,
                                                      APSIntType Ty) {
  using llvm::APInt;
  using llvm::APSInt;
  ContainerType Result;
  ContainerType Dummy;
  // CastRangeSize is an amount of all possible values of cast type.
  // Example: `char` has 256 values; `short` has 65536 values.
  // But in fact we use `amount of values` - 1, because
  // we can't keep `amount of values of UINT64` inside uint64_t.
  // E.g. 256 is an amount of all possible values of `char` and we can't keep
  // it inside `char`.
  // And it's OK, it's enough to do correct calculations.
  uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue();
  for (const Range &R : What) {
    // Get bounds of the given range.
    APSInt FromInt = R.From();
    APSInt ToInt = R.To();
    // CurrentRangeSize is an amount of all possible values of the current
    // range minus one.
    uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue();
    // This is an optimization for a specific case when this Range covers
    // the whole range of the target type.
    Dummy.clear();
    if (CurrentRangeSize >= CastRangeSize) {
      Dummy.emplace_back(ValueFactory.getMinValue(Ty),
                         ValueFactory.getMaxValue(Ty));
      Result = std::move(Dummy);
      break;
    }
    // Cast the bounds.
    Ty.apply(FromInt);
    Ty.apply(ToInt);
    const APSInt &PersistentFrom = ValueFactory.getValue(FromInt);
    const APSInt &PersistentTo = ValueFactory.getValue(ToInt);
    if (FromInt > ToInt) {
      Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo);
      Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty));
    } else
      Dummy.emplace_back(PersistentFrom, PersistentTo);
    // Every range retrieved after truncation potentialy has garbage values.
    // So, we have to unite every next range with the previouses.
    Result = unite(Result, Dummy);
  }

  return Result;
}

// Divide the convertion into two phases (presented as loops here).
// First phase(loop) works when casted values go in ascending order.
// E.g. char{1,3,5,127} -> uint{1,3,5,127}
// Interrupt the first phase and go to second one when casted values start
// go in descending order. That means that we crossed over the middle of
// the type value set (aka 0 for signeds and MAX/2+1 for unsigneds).
// For instance:
// 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1}
//    Here we put {1,3,5} to one array and {-128, -1} to another
// 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3}
//    Here we put {128,129,255} to one array and {0,1,3} to another.
// After that we unite both arrays.
// NOTE: We don't just concatenate the arrays, because they may have
// adjacent ranges, e.g.:
// 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) ->
//    unite -> uchar(0, 255)
// 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) ->
//    unite -> uchar(-2, 1)
RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What,
                                                     APSIntType Ty) {
  using llvm::APInt;
  using llvm::APSInt;
  using Bounds = std::pair<const APSInt &, const APSInt &>;
  ContainerType AscendArray;
  ContainerType DescendArray;
  auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds {
    // Get bounds of the given range.
    APSInt FromInt = R.From();
    APSInt ToInt = R.To();
    // Cast the bounds.
    Ty.apply(FromInt);
    Ty.apply(ToInt);
    return {VF.getValue(FromInt), VF.getValue(ToInt)};
  };
  // Phase 1. Fill the first array.
  APSInt LastConvertedInt = Ty.getMinValue();
  const auto *It = What.begin();
  const auto *E = What.end();
  while (It != E) {
    Bounds NewBounds = CastRange(*(It++));
    // If values stop going acsending order, go to the second phase(loop).
    if (NewBounds.first < LastConvertedInt) {
      DescendArray.emplace_back(NewBounds.first, NewBounds.second);
      break;
    }
    // If the range contains a midpoint, then split the range.
    // E.g. char(-5, 5) -> uchar(251, 5)
    // Here we shall add a range (251, 255) to the first array and (0, 5) to the
    // second one.
    if (NewBounds.first > NewBounds.second) {
      DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second);
      AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty));
    } else
      // Values are going acsending order.
      AscendArray.emplace_back(NewBounds.first, NewBounds.second);
    LastConvertedInt = NewBounds.first;
  }
  // Phase 2. Fill the second array.
  while (It != E) {
    Bounds NewBounds = CastRange(*(It++));
    DescendArray.emplace_back(NewBounds.first, NewBounds.second);
  }
  // Unite both arrays.
  return unite(AscendArray, DescendArray);
}

/// Promotion from unsigneds to signeds/unsigneds left.
RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What,
                                                     APSIntType Ty) {
  ContainerType Result;
  // We definitely know the size of the result set.
  Result.reserve(What.size());

  // Each unsigned value fits every larger type without any changes,
  // whether the larger type is signed or unsigned. So just promote and push
  // back each range one by one.
  for (const Range &R : What) {
    // Get bounds of the given range.
    llvm::APSInt FromInt = R.From();
    llvm::APSInt ToInt = R.To();
    // Cast the bounds.
    Ty.apply(FromInt);
    Ty.apply(ToInt);
    Result.emplace_back(ValueFactory.getValue(FromInt),
                        ValueFactory.getValue(ToInt));
  }
  return Result;
}

RangeSet RangeSet::Factory::deletePoint(RangeSet From,
                                        const llvm::APSInt &Point) {
  if (!From.contains(Point))
    return From;

  llvm::APSInt Upper = Point;
  llvm::APSInt Lower = Point;

  ++Upper;
  --Lower;

  // Notice that the lower bound is greater than the upper bound.
  return intersect(From, Upper, Lower);
}

LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const {
  OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']';
}
LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); }

LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const {
  OS << "{ ";
  llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); });
  OS << " }";
}
LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); }

REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef)

namespace {
class EquivalenceClass;
} // end anonymous namespace

REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass)
REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet)
REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet)

REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass)
REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet)

namespace {
/// This class encapsulates a set of symbols equal to each other.
///
/// The main idea of the approach requiring such classes is in narrowing
/// and sharing constraints between symbols within the class.  Also we can
/// conclude that there is no practical need in storing constraints for
/// every member of the class separately.
///
/// Main terminology:
///
///   * "Equivalence class" is an object of this class, which can be efficiently
///     compared to other classes.  It represents the whole class without
///     storing the actual in it.  The members of the class however can be
///     retrieved from the state.
///
///   * "Class members" are the symbols corresponding to the class.  This means
///     that A == B for every member symbols A and B from the class.  Members of
///     each class are stored in the state.
///
///   * "Trivial class" is a class that has and ever had only one same symbol.
///
///   * "Merge operation" merges two classes into one.  It is the main operation
///     to produce non-trivial classes.
///     If, at some point, we can assume that two symbols from two distinct
///     classes are equal, we can merge these classes.
class EquivalenceClass : public llvm::FoldingSetNode {
public:
  /// Find equivalence class for the given symbol in the given state.
  [[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State,
                                                    SymbolRef Sym);

  /// Merge classes for the given symbols and return a new state.
  [[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F,
                                                    ProgramStateRef State,
                                                    SymbolRef First,
                                                    SymbolRef Second);
  // Merge this class with the given class and return a new state.
  [[nodiscard]] inline ProgramStateRef
  merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other);

  /// Return a set of class members for the given state.
  [[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const;

  /// Return true if the current class is trivial in the given state.
  /// A class is trivial if and only if there is not any member relations stored
  /// to it in State/ClassMembers.
  /// An equivalence class with one member might seem as it does not hold any
  /// meaningful information, i.e. that is a tautology. However, during the
  /// removal of dead symbols we do not remove classes with one member for
  /// resource and performance reasons. Consequently, a class with one member is
  /// not necessarily trivial. It could happen that we have a class with two
  /// members and then during the removal of dead symbols we remove one of its
  /// members. In this case, the class is still non-trivial (it still has the
  /// mappings in ClassMembers), even though it has only one member.
  [[nodiscard]] inline bool isTrivial(ProgramStateRef State) const;

  /// Return true if the current class is trivial and its only member is dead.
  [[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State,
                                            SymbolReaper &Reaper) const;

  [[nodiscard]] static inline ProgramStateRef
  markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First,
               SymbolRef Second);
  [[nodiscard]] static inline ProgramStateRef
  markDisequal(RangeSet::Factory &F, ProgramStateRef State,
               EquivalenceClass First, EquivalenceClass Second);
  [[nodiscard]] inline ProgramStateRef
  markDisequal(RangeSet::Factory &F, ProgramStateRef State,
               EquivalenceClass Other) const;
  [[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State,
                                                          SymbolRef Sym);
  [[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const;
  [[nodiscard]] inline ClassSet
  getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const;

  [[nodiscard]] static inline std::optional<bool>
  areEqual(ProgramStateRef State, EquivalenceClass First,
           EquivalenceClass Second);
  [[nodiscard]] static inline std::optional<bool>
  areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second);

  /// Remove one member from the class.
  [[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State,
                                             const SymbolRef Old);

  /// Iterate over all symbols and try to simplify them.
  [[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB,
                                                       RangeSet::Factory &F,
                                                       ProgramStateRef State,
                                                       EquivalenceClass Class);

  void dumpToStream(ProgramStateRef State, raw_ostream &os) const;
  LLVM_DUMP_METHOD void dump(ProgramStateRef State) const {
    dumpToStream(State, llvm::errs());
  }

  /// Check equivalence data for consistency.
  [[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool
  isClassDataConsistent(ProgramStateRef State);

  [[nodiscard]] QualType getType() const {
    return getRepresentativeSymbol()->getType();
  }

  EquivalenceClass() = delete;
  EquivalenceClass(const EquivalenceClass &) = default;
  EquivalenceClass &operator=(const EquivalenceClass &) = delete;
  EquivalenceClass(EquivalenceClass &&) = default;
  EquivalenceClass &operator=(EquivalenceClass &&) = delete;

  bool operator==(const EquivalenceClass &Other) const {
    return ID == Other.ID;
  }
  bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; }
  bool operator!=(const EquivalenceClass &Other) const {
    return !operator==(Other);
  }

  static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) {
    ID.AddInteger(CID);
  }

  void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); }

private:
  /* implicit */ EquivalenceClass(SymbolRef Sym)
      : ID(reinterpret_cast<uintptr_t>(Sym)) {}

  /// This function is intended to be used ONLY within the class.
  /// The fact that ID is a pointer to a symbol is an implementation detail
  /// and should stay that way.
  /// In the current implementation, we use it to retrieve the only member
  /// of the trivial class.
  SymbolRef getRepresentativeSymbol() const {
    return reinterpret_cast<SymbolRef>(ID);
  }
  static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State);

  inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State,
                                   SymbolSet Members, EquivalenceClass Other,
                                   SymbolSet OtherMembers);

  static inline bool
  addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
                       RangeSet::Factory &F, ProgramStateRef State,
                       EquivalenceClass First, EquivalenceClass Second);

  /// This is a unique identifier of the class.
  uintptr_t ID;
};

//===----------------------------------------------------------------------===//
//                             Constraint functions
//===----------------------------------------------------------------------===//

[[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool
areFeasible(ConstraintRangeTy Constraints) {
  return llvm::none_of(
      Constraints,
      [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) {
        return ClassConstraint.second.isEmpty();
      });
}

[[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State,
                                                   EquivalenceClass Class) {
  return State->get<ConstraintRange>(Class);
}

[[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State,
                                                   SymbolRef Sym) {
  return getConstraint(State, EquivalenceClass::find(State, Sym));
}

[[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State,
                                            EquivalenceClass Class,
                                            RangeSet Constraint) {
  return State->set<ConstraintRange>(Class, Constraint);
}

[[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State,
                                             ConstraintRangeTy Constraints) {
  return State->set<ConstraintRange>(Constraints);
}

//===----------------------------------------------------------------------===//
//                       Equality/diseqiality abstraction
//===----------------------------------------------------------------------===//

/// A small helper function for detecting symbolic (dis)equality.
///
/// Equality check can have different forms (like a == b or a - b) and this
/// class encapsulates those away if the only thing the user wants to check -
/// whether it's equality/diseqiality or not.
///
/// \returns true if assuming this Sym to be true means equality of operands
///          false if it means disequality of operands
///          None otherwise
std::optional<bool> meansEquality(const SymSymExpr *Sym) {
  switch (Sym->getOpcode()) {
  case BO_Sub:
    // This case is: A - B != 0 -> disequality check.
    return false;
  case BO_EQ:
    // This case is: A == B != 0 -> equality check.
    return true;
  case BO_NE:
    // This case is: A != B != 0 -> diseqiality check.
    return false;
  default:
    return std::nullopt;
  }
}

//===----------------------------------------------------------------------===//
//                            Intersection functions
//===----------------------------------------------------------------------===//

template <class SecondTy, class... RestTy>
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
                                        SecondTy Second, RestTy... Tail);

template <class... RangeTy> struct IntersectionTraits;

template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> {
  // Found RangeSet, no need to check any further
  using Type = RangeSet;
};

template <> struct IntersectionTraits<> {
  // We ran out of types, and we didn't find any RangeSet, so the result should
  // be optional.
  using Type = std::optional<RangeSet>;
};

template <class OptionalOrPointer, class... TailTy>
struct IntersectionTraits<OptionalOrPointer, TailTy...> {
  // If current type is Optional or a raw pointer, we should keep looking.
  using Type = typename IntersectionTraits<TailTy...>::Type;
};

template <class EndTy>
[[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) {
  // If the list contains only RangeSet or std::optional<RangeSet>, simply
  // return that range set.
  return End;
}

[[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline std::optional<RangeSet>
intersect(RangeSet::Factory &F, const RangeSet *End) {
  // This is an extraneous conversion from a raw pointer into
  // std::optional<RangeSet>
  if (End) {
    return *End;
  }
  return std::nullopt;
}

template <class... RestTy>
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
                                        RangeSet Second, RestTy... Tail) {
  // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version
  // of the function and can be sure that the result is RangeSet.
  return intersect(F, F.intersect(Head, Second), Tail...);
}

template <class SecondTy, class... RestTy>
[[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head,
                                        SecondTy Second, RestTy... Tail) {
  if (Second) {
    // Here we call the <RangeSet,RangeSet,...> version of the function...
    return intersect(F, Head, *Second, Tail...);
  }
  // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which
  // means that the result is definitely RangeSet.
  return intersect(F, Head, Tail...);
}

/// Main generic intersect function.
/// It intersects all of the given range sets.  If some of the given arguments
/// don't hold a range set (nullptr or std::nullopt), the function will skip
/// them.
///
/// Available representations for the arguments are:
///   * RangeSet
///   * std::optional<RangeSet>
///   * RangeSet *
/// Pointer to a RangeSet is automatically assumed to be nullable and will get
/// checked as well as the optional version.  If this behaviour is undesired,
/// please dereference the pointer in the call.
///
/// Return type depends on the arguments' types.  If we can be sure in compile
/// time that there will be a range set as a result, the returning type is
/// simply RangeSet, in other cases we have to back off to
/// std::optional<RangeSet>.
///
/// Please, prefer optional range sets to raw pointers.  If the last argument is
/// a raw pointer and all previous arguments are std::nullopt, it will cost one
/// additional check to convert RangeSet * into std::optional<RangeSet>.
template <class HeadTy, class SecondTy, class... RestTy>
[[nodiscard]] inline
    typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type
    intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second,
              RestTy... Tail) {
  if (Head) {
    return intersect(F, *Head, Second, Tail...);
  }
  return intersect(F, Second, Tail...);
}

//===----------------------------------------------------------------------===//
//                           Symbolic reasoning logic
//===----------------------------------------------------------------------===//

/// A little component aggregating all of the reasoning we have about
/// the ranges of symbolic expressions.
///
/// Even when we don't know the exact values of the operands, we still
/// can get a pretty good estimate of the result's range.
class SymbolicRangeInferrer
    : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
public:
  template <class SourceType>
  static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State,
                             SourceType Origin) {
    SymbolicRangeInferrer Inferrer(F, State);
    return Inferrer.infer(Origin);
  }

  RangeSet VisitSymExpr(SymbolRef Sym) {
    if (std::optional<RangeSet> RS = getRangeForNegatedSym(Sym))
      return *RS;
    // If we've reached this line, the actual type of the symbolic
    // expression is not supported for advanced inference.
    // In this case, we simply backoff to the default "let's simply
    // infer the range from the expression's type".
    return infer(Sym->getType());
  }

  RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) {
    if (std::optional<RangeSet> RS = getRangeForNegatedUnarySym(USE))
      return *RS;
    return infer(USE->getType());
  }

  RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
    return VisitBinaryOperator(Sym);
  }

  RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
    return VisitBinaryOperator(Sym);
  }

  RangeSet VisitSymSymExpr(const SymSymExpr *SSE) {
    return intersect(
        RangeFactory,
        // If Sym is a difference of symbols A - B, then maybe we have range
        // set stored for B - A.
        //
        // If we have range set stored for both A - B and B - A then
        // calculate the effective range set by intersecting the range set
        // for A - B and the negated range set of B - A.
        getRangeForNegatedSymSym(SSE),
        // If Sym is a comparison expression (except <=>),
        // find any other comparisons with the same operands.
        // See function description.
        getRangeForComparisonSymbol(SSE),
        // If Sym is (dis)equality, we might have some information
        // on that in our equality classes data structure.
        getRangeForEqualities(SSE),
        // And we should always check what we can get from the operands.
        VisitBinaryOperator(SSE));
  }

private:
  SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S)
      : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {}

  /// Infer range information from the given integer constant.
  ///
  /// It's not a real "inference", but is here for operating with
  /// sub-expressions in a more polymorphic manner.
  RangeSet inferAs(const llvm::APSInt &Val, QualType) {
    return {RangeFactory, Val};
  }

  /// Infer range information from symbol in the context of the given type.
  RangeSet inferAs(SymbolRef Sym, QualType DestType) {
    QualType ActualType = Sym->getType();
    // Check that we can reason about the symbol at all.
    if (ActualType->isIntegralOrEnumerationType() ||
        Loc::isLocType(ActualType)) {
      return infer(Sym);
    }
    // Otherwise, let's simply infer from the destination type.
    // We couldn't figure out nothing else about that expression.
    return infer(DestType);
  }

  RangeSet infer(SymbolRef Sym) {
    return intersect(RangeFactory,
                     // Of course, we should take the constraint directly
                     // associated with this symbol into consideration.
                     getConstraint(State, Sym),
                     // Apart from the Sym itself, we can infer quite a lot if
                     // we look into subexpressions of Sym.
                     Visit(Sym));
  }

  RangeSet infer(EquivalenceClass Class) {
    if (const RangeSet *AssociatedConstraint = getConstraint(State, Class))
      return *AssociatedConstraint;

    return infer(Class.getType());
  }

  /// Infer range information solely from the type.
  RangeSet infer(QualType T) {
    // Lazily generate a new RangeSet representing all possible values for the
    // given symbol type.
    RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
                    ValueFactory.getMaxValue(T));

    // References are known to be non-zero.
    if (T->isReferenceType())
      return assumeNonZero(Result, T);

    return Result;
  }

  template <class BinarySymExprTy>
  RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
    // TODO #1: VisitBinaryOperator implementation might not make a good
    // use of the inferred ranges.  In this case, we might be calculating
    // everything for nothing.  This being said, we should introduce some
    // sort of laziness mechanism here.
    //
    // TODO #2: We didn't go into the nested expressions before, so it
    // might cause us spending much more time doing the inference.
    // This can be a problem for deeply nested expressions that are
    // involved in conditions and get tested continuously.  We definitely
    // need to address this issue and introduce some sort of caching
    // in here.
    QualType ResultType = Sym->getType();
    return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
                               Sym->getOpcode(),
                               inferAs(Sym->getRHS(), ResultType), ResultType);
  }

  RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
                               RangeSet RHS, QualType T);

  //===----------------------------------------------------------------------===//
  //                         Ranges and operators
  //===----------------------------------------------------------------------===//

  /// Return a rough approximation of the given range set.
  ///
  /// For the range set:
  ///   { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
  /// it will return the range [x_0, y_N].
  static Range fillGaps(RangeSet Origin) {
    assert(!Origin.isEmpty());
    return {Origin.getMinValue(), Origin.getMaxValue()};
  }

  /// Try to convert given range into the given type.
  ///
  /// It will return std::nullopt only when the trivial conversion is possible.
  std::optional<Range> convert(const Range &Origin, APSIntType To) {
    if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
        To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
      return std::nullopt;
    }
    return Range(ValueFactory.Convert(To, Origin.From()),
                 ValueFactory.Convert(To, Origin.To()));
  }

  template <BinaryOperator::Opcode Op>
  RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
    assert(!LHS.isEmpty() && !RHS.isEmpty());

    Range CoarseLHS = fillGaps(LHS);
    Range CoarseRHS = fillGaps(RHS);

    APSIntType ResultType = ValueFactory.getAPSIntType(T);

    // We need to convert ranges to the resulting type, so we can compare values
    // and combine them in a meaningful (in terms of the given operation) way.
    auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
    auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);

    // It is hard to reason about ranges when conversion changes
    // borders of the ranges.
    if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
      return infer(T);
    }

    return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
  }

  template <BinaryOperator::Opcode Op>
  RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
    return infer(T);
  }

  /// Return a symmetrical range for the given range and type.
  ///
  /// If T is signed, return the smallest range [-x..x] that covers the original
  /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
  /// exist due to original range covering min(T)).
  ///
  /// If T is unsigned, return the smallest range [0..x] that covers the
  /// original range.
  Range getSymmetricalRange(Range Origin, QualType T) {
    APSIntType RangeType = ValueFactory.getAPSIntType(T);

    if (RangeType.isUnsigned()) {
      return Range(ValueFactory.getMinValue(RangeType), Origin.To());
    }

    if (Origin.From().isMinSignedValue()) {
      // If mini is a minimal signed value, absolute value of it is greater
      // than the maximal signed value.  In order to avoid these
      // complications, we simply return the whole range.
      return {ValueFactory.getMinValue(RangeType),
              ValueFactory.getMaxValue(RangeType)};
    }

    // At this point, we are sure that the type is signed and we can safely
    // use unary - operator.
    //
    // While calculating absolute maximum, we can use the following formula
    // because of these reasons:
    //   * If From >= 0 then To >= From and To >= -From.
    //     AbsMax == To == max(To, -From)
    //   * If To <= 0 then -From >= -To and -From >= From.
    //     AbsMax == -From == max(-From, To)
    //   * Otherwise, From <= 0, To >= 0, and
    //     AbsMax == max(abs(From), abs(To))
    llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());

    // Intersection is guaranteed to be non-empty.
    return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
  }

  /// Return a range set subtracting zero from \p Domain.
  RangeSet assumeNonZero(RangeSet Domain, QualType T) {
    APSIntType IntType = ValueFactory.getAPSIntType(T);
    return RangeFactory.deletePoint(Domain, IntType.getZeroValue());
  }

  template <typename ProduceNegatedSymFunc>
  std::optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F,
                                                 QualType T) {
    // Do not negate if the type cannot be meaningfully negated.
    if (!T->isUnsignedIntegerOrEnumerationType() &&
        !T->isSignedIntegerOrEnumerationType())
      return std::nullopt;

    if (SymbolRef NegatedSym = F())
      if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym))
        return RangeFactory.negate(*NegatedRange);

    return std::nullopt;
  }

  std::optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) {
    // Just get the operand when we negate a symbol that is already negated.
    // -(-a) == a
    return getRangeForNegatedExpr(
        [USE]() -> SymbolRef {
          if (USE->getOpcode() == UO_Minus)
            return USE->getOperand();
          return nullptr;
        },
        USE->getType());
  }

  std::optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) {
    return getRangeForNegatedExpr(
        [SSE, State = this->State]() -> SymbolRef {
          if (SSE->getOpcode() == BO_Sub)
            return State->getSymbolManager().getSymSymExpr(
                SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType());
          return nullptr;
        },
        SSE->getType());
  }

  std::optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) {
    return getRangeForNegatedExpr(
        [Sym, State = this->State]() {
          return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus,
                                                           Sym->getType());
        },
        Sym->getType());
  }

  // Returns ranges only for binary comparison operators (except <=>)
  // when left and right operands are symbolic values.
  // Finds any other comparisons with the same operands.
  // Then do logical calculations and refuse impossible branches.
  // E.g. (x < y) and (x > y) at the same time are impossible.
  // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
  // E.g. (x == y) and (y == x) are just reversed but the same.
  // It covers all possible combinations (see CmpOpTable description).
  // Note that `x` and `y` can also stand for subexpressions,
  // not only for actual symbols.
  std::optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) {
    const BinaryOperatorKind CurrentOP = SSE->getOpcode();

    // We currently do not support <=> (C++20).
    if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
      return std::nullopt;

    static const OperatorRelationsTable CmpOpTable{};

    const SymExpr *LHS = SSE->getLHS();
    const SymExpr *RHS = SSE->getRHS();
    QualType T = SSE->getType();

    SymbolManager &SymMgr = State->getSymbolManager();

    // We use this variable to store the last queried operator (`QueriedOP`)
    // for which the `getCmpOpState` returned with `Unknown`. If there are two
    // different OPs that returned `Unknown` then we have to query the special
    // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)`
    // never returns `Unknown`, so `CurrentOP` is a good initial value.
    BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP;

    // Loop goes through all of the columns exept the last one ('UnknownX2').
    // We treat `UnknownX2` column separately at the end of the loop body.
    for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {

      // Let's find an expression e.g. (x < y).
      BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
      const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
      const RangeSet *QueriedRangeSet = getConstraint(State, SymSym);

      // If ranges were not previously found,
      // try to find a reversed expression (y > x).
      if (!QueriedRangeSet) {
        const BinaryOperatorKind ROP =
            BinaryOperator::reverseComparisonOp(QueriedOP);
        SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
        QueriedRangeSet = getConstraint(State, SymSym);
      }

      if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
        continue;

      const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
      const bool isInFalseBranch =
          ConcreteValue ? (*ConcreteValue == 0) : false;

      // If it is a false branch, we shall be guided by opposite operator,
      // because the table is made assuming we are in the true branch.
      // E.g. when (x <= y) is false, then (x > y) is true.
      if (isInFalseBranch)
        QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);

      OperatorRelationsTable::TriStateKind BranchState =
          CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);

      if (BranchState == OperatorRelationsTable::Unknown) {
        if (LastQueriedOpToUnknown != CurrentOP &&
            LastQueriedOpToUnknown != QueriedOP) {
          // If we got the Unknown state for both different operators.
          // if (x <= y)    // assume true
          //   if (x != y)  // assume true
          //     if (x < y) // would be also true
          // Get a state from `UnknownX2` column.
          BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
        } else {
          LastQueriedOpToUnknown = QueriedOP;
          continue;
        }
      }

      return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T)
                                                           : getFalseRange(T);
    }

    return std::nullopt;
  }

  std::optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) {
    std::optional<bool> Equality = meansEquality(Sym);

    if (!Equality)
      return std::nullopt;

    if (std::optional<bool> AreEqual =
            EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) {
      // Here we cover two cases at once:
      //   * if Sym is equality and its operands are known to be equal -> true
      //   * if Sym is disequality and its operands are disequal -> true
      if (*AreEqual == *Equality) {
        return getTrueRange(Sym->getType());
      }
      // Opposite combinations result in false.
      return getFalseRange(Sym->getType());
    }

    return std::nullopt;
  }

  RangeSet getTrueRange(QualType T) {
    RangeSet TypeRange = infer(T);
    return assumeNonZero(TypeRange, T);
  }

  RangeSet getFalseRange(QualType T) {
    const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
    return RangeSet(RangeFactory, Zero);
  }

  BasicValueFactory &ValueFactory;
  RangeSet::Factory &RangeFactory;
  ProgramStateRef State;
};

//===----------------------------------------------------------------------===//
//               Range-based reasoning about symbolic operations
//===----------------------------------------------------------------------===//

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_NE>(RangeSet LHS,
                                                           RangeSet RHS,
                                                           QualType T) {
  assert(!LHS.isEmpty() && !RHS.isEmpty());

  if (LHS.getAPSIntType() == RHS.getAPSIntType()) {
    if (intersect(RangeFactory, LHS, RHS).isEmpty())
      return getTrueRange(T);

  } else {
    // We can only lose information if we are casting smaller signed type to
    // bigger unsigned type. For e.g.,
    //    LHS (unsigned short): [2, USHRT_MAX]
    //    RHS   (signed short): [SHRT_MIN, 0]
    //
    // Casting RHS to LHS type will leave us with overlapping values
    //    CastedRHS : [0, 0] U [SHRT_MAX + 1, USHRT_MAX]
    //
    // We can avoid this by checking if signed type's maximum value is lesser
    // than unsigned type's minimum value.

    // If both have different signs then only we can get more information.
    if (LHS.isUnsigned() != RHS.isUnsigned()) {
      if (LHS.isUnsigned() && (LHS.getBitWidth() >= RHS.getBitWidth())) {
        if (RHS.getMaxValue().isNegative() ||
            LHS.getAPSIntType().convert(RHS.getMaxValue()) < LHS.getMinValue())
          return getTrueRange(T);

      } else if (RHS.isUnsigned() && (LHS.getBitWidth() <= RHS.getBitWidth())) {
        if (LHS.getMaxValue().isNegative() ||
            RHS.getAPSIntType().convert(LHS.getMaxValue()) < RHS.getMinValue())
          return getTrueRange(T);
      }
    }

    // Both RangeSets should be casted to bigger unsigned type.
    APSIntType CastingType(std::max(LHS.getBitWidth(), RHS.getBitWidth()),
                           LHS.isUnsigned() || RHS.isUnsigned());

    RangeSet CastedLHS = RangeFactory.castTo(LHS, CastingType);
    RangeSet CastedRHS = RangeFactory.castTo(RHS, CastingType);

    if (intersect(RangeFactory, CastedLHS, CastedRHS).isEmpty())
      return getTrueRange(T);
  }

  // In all other cases, the resulting range cannot be deduced.
  return infer(T);
}

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
                                                           QualType T) {
  APSIntType ResultType = ValueFactory.getAPSIntType(T);
  llvm::APSInt Zero = ResultType.getZeroValue();

  bool IsLHSPositiveOrZero = LHS.From() >= Zero;
  bool IsRHSPositiveOrZero = RHS.From() >= Zero;

  bool IsLHSNegative = LHS.To() < Zero;
  bool IsRHSNegative = RHS.To() < Zero;

  // Check if both ranges have the same sign.
  if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
      (IsLHSNegative && IsRHSNegative)) {
    // The result is definitely greater or equal than any of the operands.
    const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());

    // We estimate maximal value for positives as the maximal value for the
    // given type.  For negatives, we estimate it with -1 (e.g. 0x11111111).
    //
    // TODO: We basically, limit the resulting range from below, but don't do
    //       anything with the upper bound.
    //
    //       For positive operands, it can be done as follows: for the upper
    //       bound of LHS and RHS we calculate the most significant bit set.
    //       Let's call it the N-th bit.  Then we can estimate the maximal
    //       number to be 2^(N+1)-1, i.e. the number with all the bits up to
    //       the N-th bit set.
    const llvm::APSInt &Max = IsLHSNegative
                                  ? ValueFactory.getValue(--Zero)
                                  : ValueFactory.getMaxValue(ResultType);

    return {RangeFactory, ValueFactory.getValue(Min), Max};
  }

  // Otherwise, let's check if at least one of the operands is negative.
  if (IsLHSNegative || IsRHSNegative) {
    // This means that the result is definitely negative as well.
    return {RangeFactory, ValueFactory.getMinValue(ResultType),
            ValueFactory.getValue(--Zero)};
  }

  RangeSet DefaultRange = infer(T);

  // It is pretty hard to reason about operands with different signs
  // (and especially with possibly different signs).  We simply check if it
  // can be zero.  In order to conclude that the result could not be zero,
  // at least one of the operands should be definitely not zero itself.
  if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
    return assumeNonZero(DefaultRange, T);
  }

  // Nothing much else to do here.
  return DefaultRange;
}

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
                                                            Range RHS,
                                                            QualType T) {
  APSIntType ResultType = ValueFactory.getAPSIntType(T);
  llvm::APSInt Zero = ResultType.getZeroValue();

  bool IsLHSPositiveOrZero = LHS.From() >= Zero;
  bool IsRHSPositiveOrZero = RHS.From() >= Zero;

  bool IsLHSNegative = LHS.To() < Zero;
  bool IsRHSNegative = RHS.To() < Zero;

  // Check if both ranges have the same sign.
  if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
      (IsLHSNegative && IsRHSNegative)) {
    // The result is definitely less or equal than any of the operands.
    const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());

    // We conservatively estimate lower bound to be the smallest positive
    // or negative value corresponding to the sign of the operands.
    const llvm::APSInt &Min = IsLHSNegative
                                  ? ValueFactory.getMinValue(ResultType)
                                  : ValueFactory.getValue(Zero);

    return {RangeFactory, Min, Max};
  }

  // Otherwise, let's check if at least one of the operands is positive.
  if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
    // This makes result definitely positive.
    //
    // We can also reason about a maximal value by finding the maximal
    // value of the positive operand.
    const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();

    // The minimal value on the other hand is much harder to reason about.
    // The only thing we know for sure is that the result is positive.
    return {RangeFactory, ValueFactory.getValue(Zero),
            ValueFactory.getValue(Max)};
  }

  // Nothing much else to do here.
  return infer(T);
}

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
                                                            Range RHS,
                                                            QualType T) {
  llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();

  Range ConservativeRange = getSymmetricalRange(RHS, T);

  llvm::APSInt Max = ConservativeRange.To();
  llvm::APSInt Min = ConservativeRange.From();

  if (Max == Zero) {
    // It's an undefined behaviour to divide by 0 and it seems like we know
    // for sure that RHS is 0.  Let's say that the resulting range is
    // simply infeasible for that matter.
    return RangeFactory.getEmptySet();
  }

  // At this point, our conservative range is closed.  The result, however,
  // couldn't be greater than the RHS' maximal absolute value.  Because of
  // this reason, we turn the range into open (or half-open in case of
  // unsigned integers).
  //
  // While we operate on integer values, an open interval (a, b) can be easily
  // represented by the closed interval [a + 1, b - 1].  And this is exactly
  // what we do next.
  //
  // If we are dealing with unsigned case, we shouldn't move the lower bound.
  if (Min.isSigned()) {
    ++Min;
  }
  --Max;

  bool IsLHSPositiveOrZero = LHS.From() >= Zero;
  bool IsRHSPositiveOrZero = RHS.From() >= Zero;

  // Remainder operator results with negative operands is implementation
  // defined.  Positive cases are much easier to reason about though.
  if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
    // If maximal value of LHS is less than maximal value of RHS,
    // the result won't get greater than LHS.To().
    Max = std::min(LHS.To(), Max);
    // We want to check if it is a situation similar to the following:
    //
    // <------------|---[  LHS  ]--------[  RHS  ]----->
    //  -INF        0                              +INF
    //
    // In this situation, we can conclude that (LHS / RHS) == 0 and
    // (LHS % RHS) == LHS.
    Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
  }

  // Nevertheless, the symmetrical range for RHS is a conservative estimate
  // for any sign of either LHS, or RHS.
  return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
}

RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS,
                                                    BinaryOperator::Opcode Op,
                                                    RangeSet RHS, QualType T) {
  // We should propagate information about unfeasbility of one of the
  // operands to the resulting range.
  if (LHS.isEmpty() || RHS.isEmpty()) {
    return RangeFactory.getEmptySet();
  }

  switch (Op) {
  case BO_NE:
    return VisitBinaryOperator<BO_NE>(LHS, RHS, T);
  case BO_Or:
    return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
  case BO_And:
    return VisitBinaryOperator<BO_And>(LHS, RHS, T);
  case BO_Rem:
    return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
  default:
    return infer(T);
  }
}

//===----------------------------------------------------------------------===//
//                  Constraint manager implementation details
//===----------------------------------------------------------------------===//

class RangeConstraintManager : public RangedConstraintManager {
public:
  RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
      : RangedConstraintManager(EE, SVB), F(getBasicVals()) {}

  //===------------------------------------------------------------------===//
  // Implementation for interface from ConstraintManager.
  //===------------------------------------------------------------------===//

  bool haveEqualConstraints(ProgramStateRef S1,
                            ProgramStateRef S2) const override {
    // NOTE: ClassMembers are as simple as back pointers for ClassMap,
    //       so comparing constraint ranges and class maps should be
    //       sufficient.
    return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() &&
           S1->get<ClassMap>() == S2->get<ClassMap>();
  }

  bool canReasonAbout(SVal X) const override;

  ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;

  const llvm::APSInt *getSymVal(ProgramStateRef State,
                                SymbolRef Sym) const override;

  ProgramStateRef removeDeadBindings(ProgramStateRef State,
                                     SymbolReaper &SymReaper) override;

  void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
                 unsigned int Space = 0, bool IsDot = false) const override;
  void printValue(raw_ostream &Out, ProgramStateRef State,
                  SymbolRef Sym) override;
  void printConstraints(raw_ostream &Out, ProgramStateRef State,
                        const char *NL = "\n", unsigned int Space = 0,
                        bool IsDot = false) const;
  void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State,
                               const char *NL = "\n", unsigned int Space = 0,
                               bool IsDot = false) const;
  void printDisequalities(raw_ostream &Out, ProgramStateRef State,
                          const char *NL = "\n", unsigned int Space = 0,
                          bool IsDot = false) const;

  //===------------------------------------------------------------------===//
  // Implementation for interface from RangedConstraintManager.
  //===------------------------------------------------------------------===//

  ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymWithinInclusiveRange(
      ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
      const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymOutsideInclusiveRange(
      ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
      const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;

private:
  RangeSet::Factory F;

  RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
  RangeSet getRange(ProgramStateRef State, EquivalenceClass Class);
  ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym,
                           RangeSet Range);
  ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class,
                           RangeSet Range);

  RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
};

//===----------------------------------------------------------------------===//
//                         Constraint assignment logic
//===----------------------------------------------------------------------===//

/// ConstraintAssignorBase is a small utility class that unifies visitor
/// for ranges with a visitor for constraints (rangeset/range/constant).
///
/// It is designed to have one derived class, but generally it can have more.
/// Derived class can control which types we handle by defining methods of the
/// following form:
///
///   bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym,
///                                       CONSTRAINT Constraint);
///
/// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.)
///       CONSTRAINT is the type of constraint (RangeSet/Range/Const)
///       return value signifies whether we should try other handle methods
///          (i.e. false would mean to stop right after calling this method)
template <class Derived> class ConstraintAssignorBase {
public:
  using Const = const llvm::APSInt &;

#define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint)

#define ASSIGN(CLASS, TO, SYM, CONSTRAINT)                                     \
  if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT))   \
  return false

  void assign(SymbolRef Sym, RangeSet Constraint) {
    assignImpl(Sym, Constraint);
  }

  bool assignImpl(SymbolRef Sym, RangeSet Constraint) {
    switch (Sym->getKind()) {
#define SYMBOL(Id, Parent)                                                     \
  case SymExpr::Id##Kind:                                                      \
    DISPATCH(Id);
#include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"
    }
    llvm_unreachable("Unknown SymExpr kind!");
  }

#define DEFAULT_ASSIGN(Id)                                                     \
  bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) {          \
    return true;                                                               \
  }                                                                            \
  bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \
  bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; }

  // When we dispatch for constraint types, we first try to check
  // if the new constraint is the constant and try the corresponding
  // assignor methods.  If it didn't interrupt, we can proceed to the
  // range, and finally to the range set.
#define CONSTRAINT_DISPATCH(Id)                                                \
  if (const llvm::APSInt *Const = Constraint.getConcreteValue()) {             \
    ASSIGN(Id, Const, Sym, *Const);                                            \
  }                                                                            \
  if (Constraint.size() == 1) {                                                \
    ASSIGN(Id, Range, Sym, *Constraint.begin());                               \
  }                                                                            \
  ASSIGN(Id, RangeSet, Sym, Constraint)

  // Our internal assign method first tries to call assignor methods for all
  // constraint types that apply.  And if not interrupted, continues with its
  // parent class.
#define SYMBOL(Id, Parent)                                                     \
  bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) {                  \
    CONSTRAINT_DISPATCH(Id);                                                   \
    DISPATCH(Parent);                                                          \
  }                                                                            \
  DEFAULT_ASSIGN(Id)
#define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent)
#include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def"

  // Default implementations for the top class that doesn't have parents.
  bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) {
    CONSTRAINT_DISPATCH(SymExpr);
    return true;
  }
  DEFAULT_ASSIGN(SymExpr);

#undef DISPATCH
#undef CONSTRAINT_DISPATCH
#undef DEFAULT_ASSIGN
#undef ASSIGN
};

/// A little component aggregating all of the reasoning we have about
/// assigning new constraints to symbols.
///
/// The main purpose of this class is to associate constraints to symbols,
/// and impose additional constraints on other symbols, when we can imply
/// them.
///
/// It has a nice symmetry with SymbolicRangeInferrer.  When the latter
/// can provide more precise ranges by looking into the operands of the
/// expression in question, ConstraintAssignor looks into the operands
/// to see if we can imply more from the new constraint.
class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> {
public:
  template <class ClassOrSymbol>
  [[nodiscard]] static ProgramStateRef
  assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F,
         ClassOrSymbol CoS, RangeSet NewConstraint) {
    if (!State || NewConstraint.isEmpty())
      return nullptr;

    ConstraintAssignor Assignor{State, Builder, F};
    return Assignor.assign(CoS, NewConstraint);
  }

  /// Handle expressions like: a % b != 0.
  template <typename SymT>
  bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) {
    if (Sym->getOpcode() != BO_Rem)
      return true;
    // a % b != 0 implies that a != 0.
    if (!Constraint.containsZero()) {
      SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS());
      if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) {
        State = State->assume(*NonLocSymSVal, true);
        if (!State)
          return false;
      }
    }
    return true;
  }

  inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint);
  inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym,
                                         RangeSet Constraint) {
    return handleRemainderOp(Sym, Constraint);
  }
  inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym,
                                         RangeSet Constraint);

private:
  ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder,
                     RangeSet::Factory &F)
      : State(State), Builder(Builder), RangeFactory(F) {}
  using Base = ConstraintAssignorBase<ConstraintAssignor>;

  /// Base method for handling new constraints for symbols.
  [[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) {
    // All constraints are actually associated with equivalence classes, and
    // that's what we are going to do first.
    State = assign(EquivalenceClass::find(State, Sym), NewConstraint);
    if (!State)
      return nullptr;

    // And after that we can check what other things we can get from this
    // constraint.
    Base::assign(Sym, NewConstraint);
    return State;
  }

  /// Base method for handling new constraints for classes.
  [[nodiscard]] ProgramStateRef assign(EquivalenceClass Class,
                                       RangeSet NewConstraint) {
    // There is a chance that we might need to update constraints for the
    // classes that are known to be disequal to Class.
    //
    // In order for this to be even possible, the new constraint should
    // be simply a constant because we can't reason about range disequalities.
    if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) {

      ConstraintRangeTy Constraints = State->get<ConstraintRange>();
      ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>();

      // Add new constraint.
      Constraints = CF.add(Constraints, Class, NewConstraint);

      for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) {
        RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange(
            RangeFactory, State, DisequalClass);

        UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point);

        // If we end up with at least one of the disequal classes to be
        // constrained with an empty range-set, the state is infeasible.
        if (UpdatedConstraint.isEmpty())
          return nullptr;

        Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint);
      }
      assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
                                         "a state with infeasible constraints");

      return setConstraints(State, Constraints);
    }

    return setConstraint(State, Class, NewConstraint);
  }

  ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS,
                                   SymbolRef RHS) {
    return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS);
  }

  ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS,
                                SymbolRef RHS) {
    return EquivalenceClass::merge(RangeFactory, State, LHS, RHS);
  }

  [[nodiscard]] std::optional<bool> interpreteAsBool(RangeSet Constraint) {
    assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here");

    if (Constraint.getConcreteValue())
      return !Constraint.getConcreteValue()->isZero();

    if (!Constraint.containsZero())
      return true;

    return std::nullopt;
  }

  ProgramStateRef State;
  SValBuilder &Builder;
  RangeSet::Factory &RangeFactory;
};

bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym,
                                              const llvm::APSInt &Constraint) {
  llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses;
  // Iterate over all equivalence classes and try to simplify them.
  ClassMembersTy Members = State->get<ClassMembers>();
  for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) {
    EquivalenceClass Class = ClassToSymbolSet.first;
    State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
    if (!State)
      return false;
    SimplifiedClasses.insert(Class);
  }

  // Trivial equivalence classes (those that have only one symbol member) are
  // not stored in the State. Thus, we must skim through the constraints as
  // well. And we try to simplify symbols in the constraints.
  ConstraintRangeTy Constraints = State->get<ConstraintRange>();
  for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
    EquivalenceClass Class = ClassConstraint.first;
    if (SimplifiedClasses.count(Class)) // Already simplified.
      continue;
    State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
    if (!State)
      return false;
  }

  // We may have trivial equivalence classes in the disequality info as
  // well, and we need to simplify them.
  DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
  for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry :
       DisequalityInfo) {
    EquivalenceClass Class = DisequalityEntry.first;
    ClassSet DisequalClasses = DisequalityEntry.second;
    State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class);
    if (!State)
      return false;
  }

  return true;
}

bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym,
                                                    RangeSet Constraint) {
  if (!handleRemainderOp(Sym, Constraint))
    return false;

  std::optional<bool> ConstraintAsBool = interpreteAsBool(Constraint);

  if (!ConstraintAsBool)
    return true;

  if (std::optional<bool> Equality = meansEquality(Sym)) {
    // Here we cover two cases:
    //   * if Sym is equality and the new constraint is true -> Sym's operands
    //     should be marked as equal
    //   * if Sym is disequality and the new constraint is false -> Sym's
    //     operands should be also marked as equal
    if (*Equality == *ConstraintAsBool) {
      State = trackEquality(State, Sym->getLHS(), Sym->getRHS());
    } else {
      // Other combinations leave as with disequal operands.
      State = trackDisequality(State, Sym->getLHS(), Sym->getRHS());
    }

    if (!State)
      return false;
  }

  return true;
}

} // end anonymous namespace

std::unique_ptr<ConstraintManager>
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
                                   ExprEngine *Eng) {
  return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
}

ConstraintMap ento::getConstraintMap(ProgramStateRef State) {
  ConstraintMap::Factory &F = State->get_context<ConstraintMap>();
  ConstraintMap Result = F.getEmptyMap();

  ConstraintRangeTy Constraints = State->get<ConstraintRange>();
  for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) {
    EquivalenceClass Class = ClassConstraint.first;
    SymbolSet ClassMembers = Class.getClassMembers(State);
    assert(!ClassMembers.isEmpty() &&
           "Class must always have at least one member!");

    SymbolRef Representative = *ClassMembers.begin();
    Result = F.add(Result, Representative, ClassConstraint.second);
  }

  return Result;
}

//===----------------------------------------------------------------------===//
//                     EqualityClass implementation details
//===----------------------------------------------------------------------===//

LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State,
                                                     raw_ostream &os) const {
  SymbolSet ClassMembers = getClassMembers(State);
  for (const SymbolRef &MemberSym : ClassMembers) {
    MemberSym->dump();
    os << "\n";
  }
}

inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State,
                                               SymbolRef Sym) {
  assert(State && "State should not be null");
  assert(Sym && "Symbol should not be null");
  // We store far from all Symbol -> Class mappings
  if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym))
    return *NontrivialClass;

  // This is a trivial class of Sym.
  return Sym;
}

inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
                                               ProgramStateRef State,
                                               SymbolRef First,
                                               SymbolRef Second) {
  EquivalenceClass FirstClass = find(State, First);
  EquivalenceClass SecondClass = find(State, Second);

  return FirstClass.merge(F, State, SecondClass);
}

inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F,
                                               ProgramStateRef State,
                                               EquivalenceClass Other) {
  // It is already the same class.
  if (*this == Other)
    return State;

  // FIXME: As of now, we support only equivalence classes of the same type.
  //        This limitation is connected to the lack of explicit casts in
  //        our symbolic expression model.
  //
  //        That means that for `int x` and `char y` we don't distinguish
  //        between these two very different cases:
  //          * `x == y`
  //          * `(char)x == y`
  //
  //        The moment we introduce symbolic casts, this restriction can be
  //        lifted.
  if (getType() != Other.getType())
    return State;

  SymbolSet Members = getClassMembers(State);
  SymbolSet OtherMembers = Other.getClassMembers(State);

  // We estimate the size of the class by the height of tree containing
  // its members.  Merging is not a trivial operation, so it's easier to
  // merge the smaller class into the bigger one.
  if (Members.getHeight() >= OtherMembers.getHeight()) {
    return mergeImpl(F, State, Members, Other, OtherMembers);
  } else {
    return Other.mergeImpl(F, State, OtherMembers, *this, Members);
  }
}

inline ProgramStateRef
EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory,
                            ProgramStateRef State, SymbolSet MyMembers,
                            EquivalenceClass Other, SymbolSet OtherMembers) {
  // Essentially what we try to recreate here is some kind of union-find
  // data structure.  It does have certain limitations due to persistence
  // and the need to remove elements from classes.
  //
  // In this setting, EquialityClass object is the representative of the class
  // or the parent element.  ClassMap is a mapping of class members to their
  // parent. Unlike the union-find structure, they all point directly to the
  // class representative because we don't have an opportunity to actually do
  // path compression when dealing with immutability.  This means that we
  // compress paths every time we do merges.  It also means that we lose
  // the main amortized complexity benefit from the original data structure.
  ConstraintRangeTy Constraints = State->get<ConstraintRange>();
  ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();

  // 1. If the merged classes have any constraints associated with them, we
  //    need to transfer them to the class we have left.
  //
  // Intersection here makes perfect sense because both of these constraints
  // must hold for the whole new class.
  if (std::optional<RangeSet> NewClassConstraint =
          intersect(RangeFactory, getConstraint(State, *this),
                    getConstraint(State, Other))) {
    // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because
    //       range inferrer shouldn't generate ranges incompatible with
    //       equivalence classes. However, at the moment, due to imperfections
    //       in the solver, it is possible and the merge function can also
    //       return infeasible states aka null states.
    if (NewClassConstraint->isEmpty())
      // Infeasible state
      return nullptr;

    // No need in tracking constraints of a now-dissolved class.
    Constraints = CRF.remove(Constraints, Other);
    // Assign new constraints for this class.
    Constraints = CRF.add(Constraints, *this, *NewClassConstraint);

    assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
                                       "a state with infeasible constraints");

    State = State->set<ConstraintRange>(Constraints);
  }

  // 2. Get ALL equivalence-related maps
  ClassMapTy Classes = State->get<ClassMap>();
  ClassMapTy::Factory &CMF = State->get_context<ClassMap>();

  ClassMembersTy Members = State->get<ClassMembers>();
  ClassMembersTy::Factory &MF = State->get_context<ClassMembers>();

  DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
  DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>();

  ClassSet::Factory &CF = State->get_context<ClassSet>();
  SymbolSet::Factory &F = getMembersFactory(State);

  // 2. Merge members of the Other class into the current class.
  SymbolSet NewClassMembers = MyMembers;
  for (SymbolRef Sym : OtherMembers) {
    NewClassMembers = F.add(NewClassMembers, Sym);
    // *this is now the class for all these new symbols.
    Classes = CMF.add(Classes, Sym, *this);
  }

  // 3. Adjust member mapping.
  //
  // No need in tracking members of a now-dissolved class.
  Members = MF.remove(Members, Other);
  // Now only the current class is mapped to all the symbols.
  Members = MF.add(Members, *this, NewClassMembers);

  // 4. Update disequality relations
  ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF);
  // We are about to merge two classes but they are already known to be
  // non-equal. This is a contradiction.
  if (DisequalToOther.contains(*this))
    return nullptr;

  if (!DisequalToOther.isEmpty()) {
    ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF);
    DisequalityInfo = DF.remove(DisequalityInfo, Other);

    for (EquivalenceClass DisequalClass : DisequalToOther) {
      DisequalToThis = CF.add(DisequalToThis, DisequalClass);

      // Disequality is a symmetric relation meaning that if
      // DisequalToOther not null then the set for DisequalClass is not
      // empty and has at least Other.
      ClassSet OriginalSetLinkedToOther =
          *DisequalityInfo.lookup(DisequalClass);

      // Other will be eliminated and we should replace it with the bigger
      // united class.
      ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other);
      NewSet = CF.add(NewSet, *this);

      DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet);
    }

    DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis);
    State = State->set<DisequalityMap>(DisequalityInfo);
  }

  // 5. Update the state
  State = State->set<ClassMap>(Classes);
  State = State->set<ClassMembers>(Members);

  return State;
}

inline SymbolSet::Factory &
EquivalenceClass::getMembersFactory(ProgramStateRef State) {
  return State->get_context<SymbolSet>();
}

SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const {
  if (const SymbolSet *Members = State->get<ClassMembers>(*this))
    return *Members;

  // This class is trivial, so we need to construct a set
  // with just that one symbol from the class.
  SymbolSet::Factory &F = getMembersFactory(State);
  return F.add(F.getEmptySet(), getRepresentativeSymbol());
}

bool EquivalenceClass::isTrivial(ProgramStateRef State) const {
  return State->get<ClassMembers>(*this) == nullptr;
}

bool EquivalenceClass::isTriviallyDead(ProgramStateRef State,
                                       SymbolReaper &Reaper) const {
  return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol());
}

inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
                                                      ProgramStateRef State,
                                                      SymbolRef First,
                                                      SymbolRef Second) {
  return markDisequal(RF, State, find(State, First), find(State, Second));
}

inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF,
                                                      ProgramStateRef State,
                                                      EquivalenceClass First,
                                                      EquivalenceClass Second) {
  return First.markDisequal(RF, State, Second);
}

inline ProgramStateRef
EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State,
                               EquivalenceClass Other) const {
  // If we know that two classes are equal, we can only produce an infeasible
  // state.
  if (*this == Other) {
    return nullptr;
  }

  DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>();
  ConstraintRangeTy Constraints = State->get<ConstraintRange>();

  // Disequality is a symmetric relation, so if we mark A as disequal to B,
  // we should also mark B as disequalt to A.
  if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this,
                            Other) ||
      !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other,
                            *this))
    return nullptr;

  assert(areFeasible(Constraints) && "Constraint manager shouldn't produce "
                                     "a state with infeasible constraints");

  State = State->set<DisequalityMap>(DisequalityInfo);
  State = State->set<ConstraintRange>(Constraints);

  return State;
}

inline bool EquivalenceClass::addToDisequalityInfo(
    DisequalityMapTy &Info, ConstraintRangeTy &Constraints,
    RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First,
    EquivalenceClass Second) {

  // 1. Get all of the required factories.
  DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>();
  ClassSet::Factory &CF = State->get_context<ClassSet>();
  ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>();

  // 2. Add Second to the set of classes disequal to First.
  const ClassSet *CurrentSet = Info.lookup(First);
  ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet();
  NewSet = CF.add(NewSet, Second);

  Info = F.add(Info, First, NewSet);

  // 3. If Second is known to be a constant, we can delete this point
  //    from the constraint asociated with First.
  //
  //    So, if Second == 10, it means that First != 10.
  //    At the same time, the same logic does not apply to ranges.
  if (const RangeSet *SecondConstraint = Constraints.lookup(Second))
    if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) {

      RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange(
          RF, State, First.getRepresentativeSymbol());

      FirstConstraint = RF.deletePoint(FirstConstraint, *Point);

      // If the First class is about to be constrained with an empty
      // range-set, the state is infeasible.
      if (FirstConstraint.isEmpty())
        return false;

      Constraints = CRF.add(Constraints, First, FirstConstraint);
    }

  return true;
}

inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
                                                      SymbolRef FirstSym,
                                                      SymbolRef SecondSym) {
  return EquivalenceClass::areEqual(State, find(State, FirstSym),
                                    find(State, SecondSym));
}

inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State,
                                                      EquivalenceClass First,
                                                      EquivalenceClass Second) {
  // The same equivalence class => symbols are equal.
  if (First == Second)
    return true;

  // Let's check if we know anything about these two classes being not equal to
  // each other.
  ClassSet DisequalToFirst = First.getDisequalClasses(State);
  if (DisequalToFirst.contains(Second))
    return false;

  // It is not clear.
  return std::nullopt;
}

[[nodiscard]] ProgramStateRef
EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) {

  SymbolSet ClsMembers = getClassMembers(State);
  assert(ClsMembers.contains(Old));

  // Remove `Old`'s Class->Sym relation.
  SymbolSet::Factory &F = getMembersFactory(State);
  ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
  ClsMembers = F.remove(ClsMembers, Old);
  // Ensure another precondition of the removeMember function (we can check
  // this only with isEmpty, thus we have to do the remove first).
  assert(!ClsMembers.isEmpty() &&
         "Class should have had at least two members before member removal");
  // Overwrite the existing members assigned to this class.
  ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
  ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers);
  State = State->set<ClassMembers>(ClassMembersMap);

  // Remove `Old`'s Sym->Class relation.
  ClassMapTy Classes = State->get<ClassMap>();
  ClassMapTy::Factory &CMF = State->get_context<ClassMap>();
  Classes = CMF.remove(Classes, Old);
  State = State->set<ClassMap>(Classes);

  return State;
}

// Re-evaluate an SVal with top-level `State->assume` logic.
[[nodiscard]] ProgramStateRef
reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) {
  if (!Constraint)
    return State;

  const auto DefinedVal = TheValue.castAs<DefinedSVal>();

  // If the SVal is 0, we can simply interpret that as `false`.
  if (Constraint->encodesFalseRange())
    return State->assume(DefinedVal, false);

  // If the constraint does not encode 0 then we can interpret that as `true`
  // AND as a Range(Set).
  if (Constraint->encodesTrueRange()) {
    State = State->assume(DefinedVal, true);
    if (!State)
      return nullptr;
    // Fall through, re-assume based on the range values as well.
  }
  // Overestimate the individual Ranges with the RangeSet' lowest and
  // highest values.
  return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(),
                                     Constraint->getMaxValue(), true);
}

// Iterate over all symbols and try to simplify them. Once a symbol is
// simplified then we check if we can merge the simplified symbol's equivalence
// class to this class. This way, we simplify not just the symbols but the
// classes as well: we strive to keep the number of the classes to be the
// absolute minimum.
[[nodiscard]] ProgramStateRef
EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F,
                           ProgramStateRef State, EquivalenceClass Class) {
  SymbolSet ClassMembers = Class.getClassMembers(State);
  for (const SymbolRef &MemberSym : ClassMembers) {

    const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym);
    const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol();

    // The symbol is collapsed to a constant, check if the current State is
    // still feasible.
    if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) {
      const llvm::APSInt &SV = CI->getValue();
      const RangeSet *ClassConstraint = getConstraint(State, Class);
      // We have found a contradiction.
      if (ClassConstraint && !ClassConstraint->contains(SV))
        return nullptr;
    }

    if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) {
      // The simplified symbol should be the member of the original Class,
      // however, it might be in another existing class at the moment. We
      // have to merge these classes.
      ProgramStateRef OldState = State;
      State = merge(F, State, MemberSym, SimplifiedMemberSym);
      if (!State)
        return nullptr;
      // No state change, no merge happened actually.
      if (OldState == State)
        continue;

      assert(find(State, MemberSym) == find(State, SimplifiedMemberSym));
      // Remove the old and more complex symbol.
      State = find(State, MemberSym).removeMember(State, MemberSym);

      // Query the class constraint again b/c that may have changed during the
      // merge above.
      const RangeSet *ClassConstraint = getConstraint(State, Class);

      // Re-evaluate an SVal with top-level `State->assume`, this ignites
      // a RECURSIVE algorithm that will reach a FIXPOINT.
      //
      // About performance and complexity: Let us assume that in a State we
      // have N non-trivial equivalence classes and that all constraints and
      // disequality info is related to non-trivial classes. In the worst case,
      // we can simplify only one symbol of one class in each iteration. The
      // number of symbols in one class cannot grow b/c we replace the old
      // symbol with the simplified one. Also, the number of the equivalence
      // classes can decrease only, b/c the algorithm does a merge operation
      // optionally. We need N iterations in this case to reach the fixpoint.
      // Thus, the steps needed to be done in the worst case is proportional to
      // N*N.
      //
      // This worst case scenario can be extended to that case when we have
      // trivial classes in the constraints and in the disequality map. This
      // case can be reduced to the case with a State where there are only
      // non-trivial classes. This is because a merge operation on two trivial
      // classes results in one non-trivial class.
      State = reAssume(State, ClassConstraint, SimplifiedMemberVal);
      if (!State)
        return nullptr;
    }
  }
  return State;
}

inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State,
                                                     SymbolRef Sym) {
  return find(State, Sym).getDisequalClasses(State);
}

inline ClassSet
EquivalenceClass::getDisequalClasses(ProgramStateRef State) const {
  return getDisequalClasses(State->get<DisequalityMap>(),
                            State->get_context<ClassSet>());
}

inline ClassSet
EquivalenceClass::getDisequalClasses(DisequalityMapTy Map,
                                     ClassSet::Factory &Factory) const {
  if (const ClassSet *DisequalClasses = Map.lookup(*this))
    return *DisequalClasses;

  return Factory.getEmptySet();
}

bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) {
  ClassMembersTy Members = State->get<ClassMembers>();

  for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) {
    for (SymbolRef Member : ClassMembersPair.second) {
      // Every member of the class should have a mapping back to the class.
      if (find(State, Member) == ClassMembersPair.first) {
        continue;
      }

      return false;
    }
  }

  DisequalityMapTy Disequalities = State->get<DisequalityMap>();
  for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) {
    EquivalenceClass Class = DisequalityInfo.first;
    ClassSet DisequalClasses = DisequalityInfo.second;

    // There is no use in keeping empty sets in the map.
    if (DisequalClasses.isEmpty())
      return false;

    // Disequality is symmetrical, i.e. for every Class A and B that A != B,
    // B != A should also be true.
    for (EquivalenceClass DisequalClass : DisequalClasses) {
      const ClassSet *DisequalToDisequalClasses =
          Disequalities.lookup(DisequalClass);

      // It should be a set of at least one element: Class
      if (!DisequalToDisequalClasses ||
          !DisequalToDisequalClasses->contains(Class))
        return false;
    }
  }

  return true;
}

//===----------------------------------------------------------------------===//
//                    RangeConstraintManager implementation
//===----------------------------------------------------------------------===//

bool RangeConstraintManager::canReasonAbout(SVal X) const {
  std::optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
  if (SymVal && SymVal->isExpression()) {
    const SymExpr *SE = SymVal->getSymbol();

    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
      switch (SIE->getOpcode()) {
      // We don't reason yet about bitwise-constraints on symbolic values.
      case BO_And:
      case BO_Or:
      case BO_Xor:
        return false;
      // We don't reason yet about these arithmetic constraints on
      // symbolic values.
      case BO_Mul:
      case BO_Div:
      case BO_Rem:
      case BO_Shl:
      case BO_Shr:
        return false;
      // All other cases.
      default:
        return true;
      }
    }

    if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
      // FIXME: Handle <=> here.
      if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
          BinaryOperator::isRelationalOp(SSE->getOpcode())) {
        // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
        // We've recently started producing Loc <> NonLoc comparisons (that
        // result from casts of one of the operands between eg. intptr_t and
        // void *), but we can't reason about them yet.
        if (Loc::isLocType(SSE->getLHS()->getType())) {
          return Loc::isLocType(SSE->getRHS()->getType());
        }
      }
    }

    return false;
  }

  return true;
}

ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
                                                    SymbolRef Sym) {
  const RangeSet *Ranges = getConstraint(State, Sym);

  // If we don't have any information about this symbol, it's underconstrained.
  if (!Ranges)
    return ConditionTruthVal();

  // If we have a concrete value, see if it's zero.
  if (const llvm::APSInt *Value = Ranges->getConcreteValue())
    return *Value == 0;

  BasicValueFactory &BV = getBasicVals();
  APSIntType IntType = BV.getAPSIntType(Sym->getType());
  llvm::APSInt Zero = IntType.getZeroValue();

  // Check if zero is in the set of possible values.
  if (!Ranges->contains(Zero))
    return false;

  // Zero is a possible value, but it is not the /only/ possible value.
  return ConditionTruthVal();
}

const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
                                                      SymbolRef Sym) const {
  const RangeSet *T = getConstraint(St, Sym);
  return T ? T->getConcreteValue() : nullptr;
}

//===----------------------------------------------------------------------===//
//                Remove dead symbols from existing constraints
//===----------------------------------------------------------------------===//

/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
                                           SymbolReaper &SymReaper) {
  ClassMembersTy ClassMembersMap = State->get<ClassMembers>();
  ClassMembersTy NewClassMembersMap = ClassMembersMap;
  ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>();
  SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>();

  ConstraintRangeTy Constraints = State->get<ConstraintRange>();
  ConstraintRangeTy NewConstraints = Constraints;
  ConstraintRangeTy::Factory &ConstraintFactory =
      State->get_context<ConstraintRange>();

  ClassMapTy Map = State->get<ClassMap>();
  ClassMapTy NewMap = Map;
  ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>();

  DisequalityMapTy Disequalities = State->get<DisequalityMap>();
  DisequalityMapTy::Factory &DisequalityFactory =
      State->get_context<DisequalityMap>();
  ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>();

  bool ClassMapChanged = false;
  bool MembersMapChanged = false;
  bool ConstraintMapChanged = false;
  bool DisequalitiesChanged = false;

  auto removeDeadClass = [&](EquivalenceClass Class) {
    // Remove associated constraint ranges.
    Constraints = ConstraintFactory.remove(Constraints, Class);
    ConstraintMapChanged = true;

    // Update disequality information to not hold any information on the
    // removed class.
    ClassSet DisequalClasses =
        Class.getDisequalClasses(Disequalities, ClassSetFactory);
    if (!DisequalClasses.isEmpty()) {
      for (EquivalenceClass DisequalClass : DisequalClasses) {
        ClassSet DisequalToDisequalSet =
            DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory);
        // DisequalToDisequalSet is guaranteed to be non-empty for consistent
        // disequality info.
        assert(!DisequalToDisequalSet.isEmpty());
        ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class);

        // No need in keeping an empty set.
        if (NewSet.isEmpty()) {
          Disequalities =
              DisequalityFactory.remove(Disequalities, DisequalClass);
        } else {
          Disequalities =
              DisequalityFactory.add(Disequalities, DisequalClass, NewSet);
        }
      }
      // Remove the data for the class
      Disequalities = DisequalityFactory.remove(Disequalities, Class);
      DisequalitiesChanged = true;
    }
  };

  // 1. Let's see if dead symbols are trivial and have associated constraints.
  for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair :
       Constraints) {
    EquivalenceClass Class = ClassConstraintPair.first;
    if (Class.isTriviallyDead(State, SymReaper)) {
      // If this class is trivial, we can remove its constraints right away.
      removeDeadClass(Class);
    }
  }

  // 2. We don't need to track classes for dead symbols.
  for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) {
    SymbolRef Sym = SymbolClassPair.first;

    if (SymReaper.isDead(Sym)) {
      ClassMapChanged = true;
      NewMap = ClassFactory.remove(NewMap, Sym);
    }
  }

  // 3. Remove dead members from classes and remove dead non-trivial classes
  //    and their constraints.
  for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair :
       ClassMembersMap) {
    EquivalenceClass Class = ClassMembersPair.first;
    SymbolSet LiveMembers = ClassMembersPair.second;
    bool MembersChanged = false;

    for (SymbolRef Member : ClassMembersPair.second) {
      if (SymReaper.isDead(Member)) {
        MembersChanged = true;
        LiveMembers = SetFactory.remove(LiveMembers, Member);
      }
    }

    // Check if the class changed.
    if (!MembersChanged)
      continue;

    MembersMapChanged = true;

    if (LiveMembers.isEmpty()) {
      // The class is dead now, we need to wipe it out of the members map...
      NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class);

      // ...and remove all of its constraints.
      removeDeadClass(Class);
    } else {
      // We need to change the members associated with the class.
      NewClassMembersMap =
          EMFactory.add(NewClassMembersMap, Class, LiveMembers);
    }
  }

  // 4. Update the state with new maps.
  //
  // Here we try to be humble and update a map only if it really changed.
  if (ClassMapChanged)
    State = State->set<ClassMap>(NewMap);

  if (MembersMapChanged)
    State = State->set<ClassMembers>(NewClassMembersMap);

  if (ConstraintMapChanged)
    State = State->set<ConstraintRange>(Constraints);

  if (DisequalitiesChanged)
    State = State->set<DisequalityMap>(Disequalities);

  assert(EquivalenceClass::isClassDataConsistent(State));

  return State;
}

RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
                                          SymbolRef Sym) {
  return SymbolicRangeInferrer::inferRange(F, State, Sym);
}

ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State,
                                                 SymbolRef Sym,
                                                 RangeSet Range) {
  return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range);
}

//===------------------------------------------------------------------------===
// assumeSymX methods: protected interface for RangeConstraintManager.
//===------------------------------------------------------------------------===/

// The syntax for ranges below is mathematical, using [x, y] for closed ranges
// and (x, y) for open ranges. These ranges are modular, corresponding with
// a common treatment of C integer overflow. This means that these methods
// do not have to worry about overflow; RangeSet::Intersect can handle such a
// "wraparound" range.
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
// UINT_MAX, 0, 1, and 2.

ProgramStateRef
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    return St;

  llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment;
  RangeSet New = getRange(St, Sym);
  New = F.deletePoint(New, Point);

  return setRange(St, Sym, New);
}

ProgramStateRef
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    return nullptr;

  // [Int-Adjustment, Int-Adjustment]
  llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
  RangeSet New = getRange(St, Sym);
  New = F.intersect(New, AdjInt);

  return setRange(St, Sym, New);
}

RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return F.getEmptySet();
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return getRange(St, Sym);
  }

  // Special case for Int == Min. This is always false.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (ComparisonVal == Min)
    return F.getEmptySet();

  llvm::APSInt Lower = Min - Adjustment;
  llvm::APSInt Upper = ComparisonVal - Adjustment;
  --Upper;

  RangeSet Result = getRange(St, Sym);
  return F.intersect(Result, Lower, Upper);
}

ProgramStateRef
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
  return setRange(St, Sym, New);
}

RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return getRange(St, Sym);
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return F.getEmptySet();
  }

  // Special case for Int == Max. This is always false.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (ComparisonVal == Max)
    return F.getEmptySet();

  llvm::APSInt Lower = ComparisonVal - Adjustment;
  llvm::APSInt Upper = Max - Adjustment;
  ++Lower;

  RangeSet SymRange = getRange(St, Sym);
  return F.intersect(SymRange, Lower, Upper);
}

ProgramStateRef
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
  return setRange(St, Sym, New);
}

RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return getRange(St, Sym);
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return F.getEmptySet();
  }

  // Special case for Int == Min. This is always feasible.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (ComparisonVal == Min)
    return getRange(St, Sym);

  llvm::APSInt Max = AdjustmentType.getMaxValue();
  llvm::APSInt Lower = ComparisonVal - Adjustment;
  llvm::APSInt Upper = Max - Adjustment;

  RangeSet SymRange = getRange(St, Sym);
  return F.intersect(SymRange, Lower, Upper);
}

ProgramStateRef
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
  return setRange(St, Sym, New);
}

RangeSet
RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS,
                                      const llvm::APSInt &Int,
                                      const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return F.getEmptySet();
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return RS();
  }

  // Special case for Int == Max. This is always feasible.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (ComparisonVal == Max)
    return RS();

  llvm::APSInt Min = AdjustmentType.getMinValue();
  llvm::APSInt Lower = Min - Adjustment;
  llvm::APSInt Upper = ComparisonVal - Adjustment;

  RangeSet Default = RS();
  return F.intersect(Default, Lower, Upper);
}

RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
}

ProgramStateRef
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
  return setRange(St, Sym, New);
}

ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
    const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
  RangeSet New = getSymGERange(State, Sym, From, Adjustment);
  if (New.isEmpty())
    return nullptr;
  RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
  return setRange(State, Sym, Out);
}

ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
    const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
  RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
  RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
  RangeSet New(F.add(RangeLT, RangeGT));
  return setRange(State, Sym, New);
}

//===----------------------------------------------------------------------===//
// Pretty-printing.
//===----------------------------------------------------------------------===//

void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
                                       const char *NL, unsigned int Space,
                                       bool IsDot) const {
  printConstraints(Out, State, NL, Space, IsDot);
  printEquivalenceClasses(Out, State, NL, Space, IsDot);
  printDisequalities(Out, State, NL, Space, IsDot);
}

void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State,
                                        SymbolRef Sym) {
  const RangeSet RS = getRange(State, Sym);
  Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:");
  RS.dump(Out);
}

static std::string toString(const SymbolRef &Sym) {
  std::string S;
  llvm::raw_string_ostream O(S);
  Sym->dumpToStream(O);
  return O.str();
}

void RangeConstraintManager::printConstraints(raw_ostream &Out,
                                              ProgramStateRef State,
                                              const char *NL,
                                              unsigned int Space,
                                              bool IsDot) const {
  ConstraintRangeTy Constraints = State->get<ConstraintRange>();

  Indent(Out, Space, IsDot) << "\"constraints\": ";
  if (Constraints.isEmpty()) {
    Out << "null," << NL;
    return;
  }

  std::map<std::string, RangeSet> OrderedConstraints;
  for (std::pair<EquivalenceClass, RangeSet> P : Constraints) {
    SymbolSet ClassMembers = P.first.getClassMembers(State);
    for (const SymbolRef &ClassMember : ClassMembers) {
      bool insertion_took_place;
      std::tie(std::ignore, insertion_took_place) =
          OrderedConstraints.insert({toString(ClassMember), P.second});
      assert(insertion_took_place &&
             "two symbols should not have the same dump");
    }
  }

  ++Space;
  Out << '[' << NL;
  bool First = true;
  for (std::pair<std::string, RangeSet> P : OrderedConstraints) {
    if (First) {
      First = false;
    } else {
      Out << ',';
      Out << NL;
    }
    Indent(Out, Space, IsDot)
        << "{ \"symbol\": \"" << P.first << "\", \"range\": \"";
    P.second.dump(Out);
    Out << "\" }";
  }
  Out << NL;

  --Space;
  Indent(Out, Space, IsDot) << "]," << NL;
}

static std::string toString(ProgramStateRef State, EquivalenceClass Class) {
  SymbolSet ClassMembers = Class.getClassMembers(State);
  llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(),
                                                     ClassMembers.end());
  llvm::sort(ClassMembersSorted,
             [](const SymbolRef &LHS, const SymbolRef &RHS) {
               return toString(LHS) < toString(RHS);
             });

  bool FirstMember = true;

  std::string Str;
  llvm::raw_string_ostream Out(Str);
  Out << "[ ";
  for (SymbolRef ClassMember : ClassMembersSorted) {
    if (FirstMember)
      FirstMember = false;
    else
      Out << ", ";
    Out << "\"" << ClassMember << "\"";
  }
  Out << " ]";
  return Out.str();
}

void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out,
                                                     ProgramStateRef State,
                                                     const char *NL,
                                                     unsigned int Space,
                                                     bool IsDot) const {
  ClassMembersTy Members = State->get<ClassMembers>();

  Indent(Out, Space, IsDot) << "\"equivalence_classes\": ";
  if (Members.isEmpty()) {
    Out << "null," << NL;
    return;
  }

  std::set<std::string> MembersStr;
  for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members)
    MembersStr.insert(toString(State, ClassToSymbolSet.first));

  ++Space;
  Out << '[' << NL;
  bool FirstClass = true;
  for (const std::string &Str : MembersStr) {
    if (FirstClass) {
      FirstClass = false;
    } else {
      Out << ',';
      Out << NL;
    }
    Indent(Out, Space, IsDot);
    Out << Str;
  }
  Out << NL;

  --Space;
  Indent(Out, Space, IsDot) << "]," << NL;
}

void RangeConstraintManager::printDisequalities(raw_ostream &Out,
                                                ProgramStateRef State,
                                                const char *NL,
                                                unsigned int Space,
                                                bool IsDot) const {
  DisequalityMapTy Disequalities = State->get<DisequalityMap>();

  Indent(Out, Space, IsDot) << "\"disequality_info\": ";
  if (Disequalities.isEmpty()) {
    Out << "null," << NL;
    return;
  }

  // Transform the disequality info to an ordered map of
  // [string -> (ordered set of strings)]
  using EqClassesStrTy = std::set<std::string>;
  using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>;
  DisequalityInfoStrTy DisequalityInfoStr;
  for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) {
    EquivalenceClass Class = ClassToDisEqSet.first;
    ClassSet DisequalClasses = ClassToDisEqSet.second;
    EqClassesStrTy MembersStr;
    for (EquivalenceClass DisEqClass : DisequalClasses)
      MembersStr.insert(toString(State, DisEqClass));
    DisequalityInfoStr.insert({toString(State, Class), MembersStr});
  }

  ++Space;
  Out << '[' << NL;
  bool FirstClass = true;
  for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet :
       DisequalityInfoStr) {
    const std::string &Class = ClassToDisEqSet.first;
    if (FirstClass) {
      FirstClass = false;
    } else {
      Out << ',';
      Out << NL;
    }
    Indent(Out, Space, IsDot) << "{" << NL;
    unsigned int DisEqSpace = Space + 1;
    Indent(Out, DisEqSpace, IsDot) << "\"class\": ";
    Out << Class;
    const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second;
    if (!DisequalClasses.empty()) {
      Out << "," << NL;
      Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL;
      unsigned int DisEqClassSpace = DisEqSpace + 1;
      Indent(Out, DisEqClassSpace, IsDot);
      bool FirstDisEqClass = true;
      for (const std::string &DisEqClass : DisequalClasses) {
        if (FirstDisEqClass) {
          FirstDisEqClass = false;
        } else {
          Out << ',' << NL;
          Indent(Out, DisEqClassSpace, IsDot);
        }
        Out << DisEqClass;
      }
      Out << "]" << NL;
    }
    Indent(Out, Space, IsDot) << "}";
  }
  Out << NL;

  --Space;
  Indent(Out, Space, IsDot) << "]," << NL;
}