aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/utils/TableGen/MveEmitter.cpp
blob: 496cb10d14f2de5db6e329af241c93504790ba8c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
//===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This set of linked tablegen backends is responsible for emitting the bits
// and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
// and provides a set of types and functions for (more or less) direct access
// to the MVE instruction set, including the scalar shifts as well as the
// vector instructions.
//
// MVE's standard intrinsic functions are unusual in that they have a system of
// polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
// vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
// arguments you give it.
//
// This constrains the implementation strategies. The usual approach to making
// the user-facing functions polymorphic would be to either use
// __attribute__((overloadable)) to make a set of vaddq() functions that are
// all inline wrappers on the underlying clang builtins, or to define a single
// vaddq() macro which expands to an instance of _Generic.
//
// The inline-wrappers approach would work fine for most intrinsics, except for
// the ones that take an argument required to be a compile-time constant,
// because if you wrap an inline function around a call to a builtin, the
// constant nature of the argument is not passed through.
//
// The _Generic approach can be made to work with enough effort, but it takes a
// lot of machinery, because of the design feature of _Generic that even the
// untaken branches are required to pass all front-end validity checks such as
// type-correctness. You can work around that by nesting further _Generics all
// over the place to coerce things to the right type in untaken branches, but
// what you get out is complicated, hard to guarantee its correctness, and
// worst of all, gives _completely unreadable_ error messages if the user gets
// the types wrong for an intrinsic call.
//
// Therefore, my strategy is to introduce a new __attribute__ that allows a
// function to be mapped to a clang builtin even though it doesn't have the
// same name, and then declare all the user-facing MVE function names with that
// attribute, mapping each one directly to the clang builtin. And the
// polymorphic ones have __attribute__((overloadable)) as well. So once the
// compiler has resolved the overload, it knows the internal builtin ID of the
// selected function, and can check the immediate arguments against that; and
// if the user gets the types wrong in a call to a polymorphic intrinsic, they
// get a completely clear error message showing all the declarations of that
// function in the header file and explaining why each one doesn't fit their
// call.
//
// The downside of this is that if every clang builtin has to correspond
// exactly to a user-facing ACLE intrinsic, then you can't save work in the
// frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
// job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
// description for an MVE intrinsic has to contain a full description of the
// sequence of IRBuilder calls that clang will need to make.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

using namespace llvm;

namespace {

class EmitterBase;
class Result;

// -----------------------------------------------------------------------------
// A system of classes to represent all the types we'll need to deal with in
// the prototypes of intrinsics.
//
// Query methods include finding out the C name of a type; the "LLVM name" in
// the sense of a C++ code snippet that can be used in the codegen function;
// the suffix that represents the type in the ACLE intrinsic naming scheme
// (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
// type is floating-point related (hence should be under #ifdef in the MVE
// header so that it isn't included in integer-only MVE mode); and the type's
// size in bits. Not all subtypes support all these queries.

class Type {
public:
  enum class TypeKind {
    // Void appears as a return type (for store intrinsics, which are pure
    // side-effect). It's also used as the parameter type in the Tablegen
    // when an intrinsic doesn't need to come in various suffixed forms like
    // vfooq_s8,vfooq_u16,vfooq_f32.
    Void,

    // Scalar is used for ordinary int and float types of all sizes.
    Scalar,

    // Vector is used for anything that occupies exactly one MVE vector
    // register, i.e. {uint,int,float}NxM_t.
    Vector,

    // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
    // interleaving load/store intrinsics v{ld,st}{2,4}q.
    MultiVector,

    // Predicate is used by all the predicated intrinsics. Its C
    // representation is mve_pred16_t (which is just an alias for uint16_t).
    // But we give more detail here, by indicating that a given predicate
    // instruction is logically regarded as a vector of i1 containing the
    // same number of lanes as the input vector type. So our Predicate type
    // comes with a lane count, which we use to decide which kind of <n x i1>
    // we'll invoke the pred_i2v IR intrinsic to translate it into.
    Predicate,

    // Pointer is used for pointer types (obviously), and comes with a flag
    // indicating whether it's a pointer to a const or mutable instance of
    // the pointee type.
    Pointer,
  };

private:
  const TypeKind TKind;

protected:
  Type(TypeKind K) : TKind(K) {}

public:
  TypeKind typeKind() const { return TKind; }
  virtual ~Type() = default;
  virtual bool requiresFloat() const = 0;
  virtual bool requiresMVE() const = 0;
  virtual unsigned sizeInBits() const = 0;
  virtual std::string cName() const = 0;
  virtual std::string llvmName() const {
    PrintFatalError("no LLVM type name available for type " + cName());
  }
  virtual std::string acleSuffix(std::string) const {
    PrintFatalError("no ACLE suffix available for this type");
  }
};

enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
inline std::string toLetter(ScalarTypeKind kind) {
  switch (kind) {
  case ScalarTypeKind::SignedInt:
    return "s";
  case ScalarTypeKind::UnsignedInt:
    return "u";
  case ScalarTypeKind::Float:
    return "f";
  }
  llvm_unreachable("Unhandled ScalarTypeKind enum");
}
inline std::string toCPrefix(ScalarTypeKind kind) {
  switch (kind) {
  case ScalarTypeKind::SignedInt:
    return "int";
  case ScalarTypeKind::UnsignedInt:
    return "uint";
  case ScalarTypeKind::Float:
    return "float";
  }
  llvm_unreachable("Unhandled ScalarTypeKind enum");
}

class VoidType : public Type {
public:
  VoidType() : Type(TypeKind::Void) {}
  unsigned sizeInBits() const override { return 0; }
  bool requiresFloat() const override { return false; }
  bool requiresMVE() const override { return false; }
  std::string cName() const override { return "void"; }

  static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
  std::string acleSuffix(std::string) const override { return ""; }
};

class PointerType : public Type {
  const Type *Pointee;
  bool Const;

public:
  PointerType(const Type *Pointee, bool Const)
      : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
  unsigned sizeInBits() const override { return 32; }
  bool requiresFloat() const override { return Pointee->requiresFloat(); }
  bool requiresMVE() const override { return Pointee->requiresMVE(); }
  std::string cName() const override {
    std::string Name = Pointee->cName();

    // The syntax for a pointer in C is different when the pointee is
    // itself a pointer. The MVE intrinsics don't contain any double
    // pointers, so we don't need to worry about that wrinkle.
    assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");

    if (Const)
      Name = "const " + Name;
    return Name + " *";
  }
  std::string llvmName() const override {
    return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
  }
  const Type *getPointeeType() const { return Pointee; }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Pointer;
  }
};

// Base class for all the types that have a name of the form
// [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
//
// For this sub-hierarchy we invent a cNameBase() method which returns the
// whole name except for the trailing "_t", so that Vector and MultiVector can
// append an extra "x2" or whatever to their element type's cNameBase(). Then
// the main cName() query method puts "_t" on the end for the final type name.

class CRegularNamedType : public Type {
  using Type::Type;
  virtual std::string cNameBase() const = 0;

public:
  std::string cName() const override { return cNameBase() + "_t"; }
};

class ScalarType : public CRegularNamedType {
  ScalarTypeKind Kind;
  unsigned Bits;
  std::string NameOverride;

public:
  ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
    Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
               .Case("s", ScalarTypeKind::SignedInt)
               .Case("u", ScalarTypeKind::UnsignedInt)
               .Case("f", ScalarTypeKind::Float);
    Bits = Record->getValueAsInt("size");
    NameOverride = std::string(Record->getValueAsString("nameOverride"));
  }
  unsigned sizeInBits() const override { return Bits; }
  ScalarTypeKind kind() const { return Kind; }
  std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
  std::string cNameBase() const override {
    return toCPrefix(Kind) + utostr(Bits);
  }
  std::string cName() const override {
    if (NameOverride.empty())
      return CRegularNamedType::cName();
    return NameOverride;
  }
  std::string llvmName() const override {
    if (Kind == ScalarTypeKind::Float) {
      if (Bits == 16)
        return "HalfTy";
      if (Bits == 32)
        return "FloatTy";
      if (Bits == 64)
        return "DoubleTy";
      PrintFatalError("bad size for floating type");
    }
    return "Int" + utostr(Bits) + "Ty";
  }
  std::string acleSuffix(std::string overrideLetter) const override {
    return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
               + utostr(Bits);
  }
  bool isInteger() const { return Kind != ScalarTypeKind::Float; }
  bool requiresFloat() const override { return !isInteger(); }
  bool requiresMVE() const override { return false; }
  bool hasNonstandardName() const { return !NameOverride.empty(); }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Scalar;
  }
};

class VectorType : public CRegularNamedType {
  const ScalarType *Element;
  unsigned Lanes;

public:
  VectorType(const ScalarType *Element, unsigned Lanes)
      : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
  unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
  unsigned lanes() const { return Lanes; }
  bool requiresFloat() const override { return Element->requiresFloat(); }
  bool requiresMVE() const override { return true; }
  std::string cNameBase() const override {
    return Element->cNameBase() + "x" + utostr(Lanes);
  }
  std::string llvmName() const override {
    return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
           utostr(Lanes) + ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Vector;
  }
};

class MultiVectorType : public CRegularNamedType {
  const VectorType *Element;
  unsigned Registers;

public:
  MultiVectorType(unsigned Registers, const VectorType *Element)
      : CRegularNamedType(TypeKind::MultiVector), Element(Element),
        Registers(Registers) {}
  unsigned sizeInBits() const override {
    return Registers * Element->sizeInBits();
  }
  unsigned registers() const { return Registers; }
  bool requiresFloat() const override { return Element->requiresFloat(); }
  bool requiresMVE() const override { return true; }
  std::string cNameBase() const override {
    return Element->cNameBase() + "x" + utostr(Registers);
  }

  // MultiVectorType doesn't override llvmName, because we don't expect to do
  // automatic code generation for the MVE intrinsics that use it: the {vld2,
  // vld4, vst2, vst4} family are the only ones that use these types, so it was
  // easier to hand-write the codegen for dealing with these structs than to
  // build in lots of extra automatic machinery that would only be used once.

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::MultiVector;
  }
};

class PredicateType : public CRegularNamedType {
  unsigned Lanes;

public:
  PredicateType(unsigned Lanes)
      : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
  unsigned sizeInBits() const override { return 16; }
  std::string cNameBase() const override { return "mve_pred16"; }
  bool requiresFloat() const override { return false; };
  bool requiresMVE() const override { return true; }
  std::string llvmName() const override {
    return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
           ")";
  }

  static bool classof(const Type *T) {
    return T->typeKind() == TypeKind::Predicate;
  }
};

// -----------------------------------------------------------------------------
// Class to facilitate merging together the code generation for many intrinsics
// by means of varying a few constant or type parameters.
//
// Most obviously, the intrinsics in a single parametrised family will have
// code generation sequences that only differ in a type or two, e.g. vaddq_s8
// and vaddq_u16 will look the same apart from putting a different vector type
// in the call to CGM.getIntrinsic(). But also, completely different intrinsics
// will often code-generate in the same way, with only a different choice of
// _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
// marshalling the arguments and return values of the IR intrinsic in exactly
// the same way. And others might differ only in some other kind of constant,
// such as a lane index.
//
// So, when we generate the IR-building code for all these intrinsics, we keep
// track of every value that could possibly be pulled out of the code and
// stored ahead of time in a local variable. Then we group together intrinsics
// by textual equivalence of the code that would result if _all_ those
// parameters were stored in local variables. That gives us maximal sets that
// can be implemented by a single piece of IR-building code by changing
// parameter values ahead of time.
//
// After we've done that, we do a second pass in which we only allocate _some_
// of the parameters into local variables, by tracking which ones have the same
// values as each other (so that a single variable can be reused) and which
// ones are the same across the whole set (so that no variable is needed at
// all).
//
// Hence the class below. Its allocParam method is invoked during code
// generation by every method of a Result subclass (see below) that wants to
// give it the opportunity to pull something out into a switchable parameter.
// It returns a variable name for the parameter, or (if it's being used in the
// second pass once we've decided that some parameters don't need to be stored
// in variables after all) it might just return the input expression unchanged.

struct CodeGenParamAllocator {
  // Accumulated during code generation
  std::vector<std::string> *ParamTypes = nullptr;
  std::vector<std::string> *ParamValues = nullptr;

  // Provided ahead of time in pass 2, to indicate which parameters are being
  // assigned to what. This vector contains an entry for each call to
  // allocParam expected during code gen (which we counted up in pass 1), and
  // indicates the number of the parameter variable that should be returned, or
  // -1 if this call shouldn't allocate a parameter variable at all.
  //
  // We rely on the recursive code generation working identically in passes 1
  // and 2, so that the same list of calls to allocParam happen in the same
  // order. That guarantees that the parameter numbers recorded in pass 1 will
  // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
  // decided to do about each one in pass 2.
  std::vector<int> *ParamNumberMap = nullptr;

  // Internally track how many things we've allocated
  unsigned nparams = 0;

  std::string allocParam(StringRef Type, StringRef Value) {
    unsigned ParamNumber;

    if (!ParamNumberMap) {
      // In pass 1, unconditionally assign a new parameter variable to every
      // value we're asked to process.
      ParamNumber = nparams++;
    } else {
      // In pass 2, consult the map provided by the caller to find out which
      // variable we should be keeping things in.
      int MapValue = (*ParamNumberMap)[nparams++];
      if (MapValue < 0)
        return std::string(Value);
      ParamNumber = MapValue;
    }

    // If we've allocated a new parameter variable for the first time, store
    // its type and value to be retrieved after codegen.
    if (ParamTypes && ParamTypes->size() == ParamNumber)
      ParamTypes->push_back(std::string(Type));
    if (ParamValues && ParamValues->size() == ParamNumber)
      ParamValues->push_back(std::string(Value));

    // Unimaginative naming scheme for parameter variables.
    return "Param" + utostr(ParamNumber);
  }
};

// -----------------------------------------------------------------------------
// System of classes that represent all the intermediate values used during
// code-generation for an intrinsic.
//
// The base class 'Result' can represent a value of the LLVM type 'Value', or
// sometimes 'Address' (for loads/stores, including an alignment requirement).
//
// In the case where the Tablegen provides a value in the codegen dag as a
// plain integer literal, the Result object we construct here will be one that
// returns true from hasIntegerConstantValue(). This allows the generated C++
// code to use the constant directly in contexts which can take a literal
// integer, such as Builder.CreateExtractValue(thing, 1), without going to the
// effort of calling llvm::ConstantInt::get() and then pulling the constant
// back out of the resulting llvm:Value later.

class Result {
public:
  // Convenient shorthand for the pointer type we'll be using everywhere.
  using Ptr = std::shared_ptr<Result>;

private:
  Ptr Predecessor;
  std::string VarName;
  bool VarNameUsed = false;
  unsigned Visited = 0;

public:
  virtual ~Result() = default;
  using Scope = std::map<std::string, Ptr>;
  virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
  virtual bool hasIntegerConstantValue() const { return false; }
  virtual uint32_t integerConstantValue() const { return 0; }
  virtual bool hasIntegerValue() const { return false; }
  virtual std::string getIntegerValue(const std::string &) {
    llvm_unreachable("non-working Result::getIntegerValue called");
  }
  virtual std::string typeName() const { return "Value *"; }

  // Mostly, when a code-generation operation has a dependency on prior
  // operations, it's because it uses the output values of those operations as
  // inputs. But there's one exception, which is the use of 'seq' in Tablegen
  // to indicate that operations have to be performed in sequence regardless of
  // whether they use each others' output values.
  //
  // So, the actual generation of code is done by depth-first search, using the
  // prerequisites() method to get a list of all the other Results that have to
  // be computed before this one. That method divides into the 'predecessor',
  // set by setPredecessor() while processing a 'seq' dag node, and the list
  // returned by 'morePrerequisites', which each subclass implements to return
  // a list of the Results it uses as input to whatever its own computation is
  // doing.

  virtual void morePrerequisites(std::vector<Ptr> &output) const {}
  std::vector<Ptr> prerequisites() const {
    std::vector<Ptr> ToRet;
    if (Predecessor)
      ToRet.push_back(Predecessor);
    morePrerequisites(ToRet);
    return ToRet;
  }

  void setPredecessor(Ptr p) {
    // If the user has nested one 'seq' node inside another, and this
    // method is called on the return value of the inner 'seq' (i.e.
    // the final item inside it), then we can't link _this_ node to p,
    // because it already has a predecessor. Instead, walk the chain
    // until we find the first item in the inner seq, and link that to
    // p, so that nesting seqs has the obvious effect of linking
    // everything together into one long sequential chain.
    Result *r = this;
    while (r->Predecessor)
      r = r->Predecessor.get();
    r->Predecessor = p;
  }

  // Each Result will be assigned a variable name in the output code, but not
  // all those variable names will actually be used (e.g. the return value of
  // Builder.CreateStore has void type, so nobody will want to refer to it). To
  // prevent annoying compiler warnings, we track whether each Result's
  // variable name was ever actually mentioned in subsequent statements, so
  // that it can be left out of the final generated code.
  std::string varname() {
    VarNameUsed = true;
    return VarName;
  }
  void setVarname(const StringRef s) { VarName = std::string(s); }
  bool varnameUsed() const { return VarNameUsed; }

  // Emit code to generate this result as a Value *.
  virtual std::string asValue() {
    return varname();
  }

  // Code generation happens in multiple passes. This method tracks whether a
  // Result has yet been visited in a given pass, without the need for a
  // tedious loop in between passes that goes through and resets a 'visited'
  // flag back to false: you just set Pass=1 the first time round, and Pass=2
  // the second time.
  bool needsVisiting(unsigned Pass) {
    bool ToRet = Visited < Pass;
    Visited = Pass;
    return ToRet;
  }
};

// Result subclass that retrieves one of the arguments to the clang builtin
// function. In cases where the argument has pointer type, we call
// EmitPointerWithAlignment and store the result in a variable of type Address,
// so that load and store IR nodes can know the right alignment. Otherwise, we
// call EmitScalarExpr.
//
// There are aggregate parameters in the MVE intrinsics API, but we don't deal
// with them in this Tablegen back end: they only arise in the vld2q/vld4q and
// vst2q/vst4q family, which is few enough that we just write the code by hand
// for those in CGBuiltin.cpp.
class BuiltinArgResult : public Result {
public:
  unsigned ArgNum;
  bool AddressType;
  bool Immediate;
  BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
      : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
    OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
       << "(E->getArg(" << ArgNum << "))";
  }
  std::string typeName() const override {
    return AddressType ? "Address" : Result::typeName();
  }
  // Emit code to generate this result as a Value *.
  std::string asValue() override {
    if (AddressType)
      return "(" + varname() + ".getPointer())";
    return Result::asValue();
  }
  bool hasIntegerValue() const override { return Immediate; }
  std::string getIntegerValue(const std::string &IntType) override {
    return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
           utostr(ArgNum) + "), getContext())";
  }
};

// Result subclass for an integer literal appearing in Tablegen. This may need
// to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
// it may be used directly as an integer, depending on which IRBuilder method
// it's being passed to.
class IntLiteralResult : public Result {
public:
  const ScalarType *IntegerType;
  uint32_t IntegerValue;
  IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
      : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "llvm::ConstantInt::get("
       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
       << ", ";
    OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
       << ")";
  }
  bool hasIntegerConstantValue() const override { return true; }
  uint32_t integerConstantValue() const override { return IntegerValue; }
};

// Result subclass representing a cast between different integer types. We use
// our own ScalarType abstraction as the representation of the target type,
// which gives both size and signedness.
class IntCastResult : public Result {
public:
  const ScalarType *IntegerType;
  Ptr V;
  IntCastResult(const ScalarType *IntegerType, Ptr V)
      : IntegerType(IntegerType), V(V) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Builder.CreateIntCast(" << V->varname() << ", "
       << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
       << ParamAlloc.allocParam("bool",
                                IntegerType->kind() == ScalarTypeKind::SignedInt
                                    ? "true"
                                    : "false")
       << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(V);
  }
};

// Result subclass representing a cast between different pointer types.
class PointerCastResult : public Result {
public:
  const PointerType *PtrType;
  Ptr V;
  PointerCastResult(const PointerType *PtrType, Ptr V)
      : PtrType(PtrType), V(V) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
       << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(V);
  }
};

// Result subclass representing a call to an IRBuilder method. Each IRBuilder
// method we want to use will have a Tablegen record giving the method name and
// describing any important details of how to call it, such as whether a
// particular argument should be an integer constant instead of an llvm::Value.
class IRBuilderResult : public Result {
public:
  StringRef CallPrefix;
  std::vector<Ptr> Args;
  std::set<unsigned> AddressArgs;
  std::map<unsigned, std::string> IntegerArgs;
  IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
                  std::set<unsigned> AddressArgs,
                  std::map<unsigned, std::string> IntegerArgs)
      : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
        IntegerArgs(IntegerArgs) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << CallPrefix;
    const char *Sep = "";
    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
      Ptr Arg = Args[i];
      auto it = IntegerArgs.find(i);

      OS << Sep;
      Sep = ", ";

      if (it != IntegerArgs.end()) {
        if (Arg->hasIntegerConstantValue())
          OS << "static_cast<" << it->second << ">("
             << ParamAlloc.allocParam(it->second,
                                      utostr(Arg->integerConstantValue()))
             << ")";
        else if (Arg->hasIntegerValue())
          OS << ParamAlloc.allocParam(it->second,
                                      Arg->getIntegerValue(it->second));
      } else {
        OS << Arg->varname();
      }
    }
    OS << ")";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    for (unsigned i = 0, e = Args.size(); i < e; ++i) {
      Ptr Arg = Args[i];
      if (IntegerArgs.find(i) != IntegerArgs.end())
        continue;
      output.push_back(Arg);
    }
  }
};

// Result subclass representing making an Address out of a Value.
class AddressResult : public Result {
public:
  Ptr Arg;
  const Type *Ty;
  unsigned Align;
  AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
      : Arg(Arg), Ty(Ty), Align(Align) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
       << ", CharUnits::fromQuantity(" << Align << "))";
  }
  std::string typeName() const override {
    return "Address";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.push_back(Arg);
  }
};

// Result subclass representing a call to an IR intrinsic, which we first have
// to look up using an Intrinsic::ID constant and an array of types.
class IRIntrinsicResult : public Result {
public:
  std::string IntrinsicID;
  std::vector<const Type *> ParamTypes;
  std::vector<Ptr> Args;
  IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
                    std::vector<Ptr> Args)
      : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
        Args(Args) {}
  void genCode(raw_ostream &OS,
               CodeGenParamAllocator &ParamAlloc) const override {
    std::string IntNo = ParamAlloc.allocParam(
        "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
    OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
    if (!ParamTypes.empty()) {
      OS << ", {";
      const char *Sep = "";
      for (auto T : ParamTypes) {
        OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
        Sep = ", ";
      }
      OS << "}";
    }
    OS << "), {";
    const char *Sep = "";
    for (auto Arg : Args) {
      OS << Sep << Arg->asValue();
      Sep = ", ";
    }
    OS << "})";
  }
  void morePrerequisites(std::vector<Ptr> &output) const override {
    output.insert(output.end(), Args.begin(), Args.end());
  }
};

// Result subclass that specifies a type, for use in IRBuilder operations such
// as CreateBitCast that take a type argument.
class TypeResult : public Result {
public:
  const Type *T;
  TypeResult(const Type *T) : T(T) {}
  void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
    OS << T->llvmName();
  }
  std::string typeName() const override {
    return "llvm::Type *";
  }
};

// -----------------------------------------------------------------------------
// Class that describes a single ACLE intrinsic.
//
// A Tablegen record will typically describe more than one ACLE intrinsic, by
// means of setting the 'list<Type> Params' field to a list of multiple
// parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
// We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
// rather than a single one for all of them. Hence, the constructor takes both
// a Tablegen record and the current value of the parameter type.

class ACLEIntrinsic {
  // Structure documenting that one of the intrinsic's arguments is required to
  // be a compile-time constant integer, and what constraints there are on its
  // value. Used when generating Sema checking code.
  struct ImmediateArg {
    enum class BoundsType { ExplicitRange, UInt };
    BoundsType boundsType;
    int64_t i1, i2;
    StringRef ExtraCheckType, ExtraCheckArgs;
    const Type *ArgType;
  };

  // For polymorphic intrinsics, FullName is the explicit name that uniquely
  // identifies this variant of the intrinsic, and ShortName is the name it
  // shares with at least one other intrinsic.
  std::string ShortName, FullName;

  // Name of the architecture extension, used in the Clang builtin name
  StringRef BuiltinExtension;

  // A very small number of intrinsics _only_ have a polymorphic
  // variant (vuninitializedq taking an unevaluated argument).
  bool PolymorphicOnly;

  // Another rarely-used flag indicating that the builtin doesn't
  // evaluate its argument(s) at all.
  bool NonEvaluating;

  // True if the intrinsic needs only the C header part (no codegen, semantic
  // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
  bool HeaderOnly;

  const Type *ReturnType;
  std::vector<const Type *> ArgTypes;
  std::map<unsigned, ImmediateArg> ImmediateArgs;
  Result::Ptr Code;

  std::map<std::string, std::string> CustomCodeGenArgs;

  // Recursive function that does the internals of code generation.
  void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
                  unsigned Pass) const {
    if (!V->needsVisiting(Pass))
      return;

    for (Result::Ptr W : V->prerequisites())
      genCodeDfs(W, Used, Pass);

    Used.push_back(V);
  }

public:
  const std::string &shortName() const { return ShortName; }
  const std::string &fullName() const { return FullName; }
  StringRef builtinExtension() const { return BuiltinExtension; }
  const Type *returnType() const { return ReturnType; }
  const std::vector<const Type *> &argTypes() const { return ArgTypes; }
  bool requiresFloat() const {
    if (ReturnType->requiresFloat())
      return true;
    for (const Type *T : ArgTypes)
      if (T->requiresFloat())
        return true;
    return false;
  }
  bool requiresMVE() const {
    return ReturnType->requiresMVE() ||
           any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
  }
  bool polymorphic() const { return ShortName != FullName; }
  bool polymorphicOnly() const { return PolymorphicOnly; }
  bool nonEvaluating() const { return NonEvaluating; }
  bool headerOnly() const { return HeaderOnly; }

  // External entry point for code generation, called from EmitterBase.
  void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
               unsigned Pass) const {
    assert(!headerOnly() && "Called genCode for header-only intrinsic");
    if (!hasCode()) {
      for (auto kv : CustomCodeGenArgs)
        OS << "  " << kv.first << " = " << kv.second << ";\n";
      OS << "  break; // custom code gen\n";
      return;
    }
    std::list<Result::Ptr> Used;
    genCodeDfs(Code, Used, Pass);

    unsigned varindex = 0;
    for (Result::Ptr V : Used)
      if (V->varnameUsed())
        V->setVarname("Val" + utostr(varindex++));

    for (Result::Ptr V : Used) {
      OS << "  ";
      if (V == Used.back()) {
        assert(!V->varnameUsed());
        OS << "return "; // FIXME: what if the top-level thing is void?
      } else if (V->varnameUsed()) {
        std::string Type = V->typeName();
        OS << V->typeName();
        if (!StringRef(Type).ends_with("*"))
          OS << " ";
        OS << V->varname() << " = ";
      }
      V->genCode(OS, ParamAlloc);
      OS << ";\n";
    }
  }
  bool hasCode() const { return Code != nullptr; }

  static std::string signedHexLiteral(const llvm::APInt &iOrig) {
    llvm::APInt i = iOrig.trunc(64);
    SmallString<40> s;
    i.toString(s, 16, true, true);
    return std::string(s);
  }

  std::string genSema() const {
    assert(!headerOnly() && "Called genSema for header-only intrinsic");
    std::vector<std::string> SemaChecks;

    for (const auto &kv : ImmediateArgs) {
      const ImmediateArg &IA = kv.second;

      llvm::APInt lo(128, 0), hi(128, 0);
      switch (IA.boundsType) {
      case ImmediateArg::BoundsType::ExplicitRange:
        lo = IA.i1;
        hi = IA.i2;
        break;
      case ImmediateArg::BoundsType::UInt:
        lo = 0;
        hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
        break;
      }

      std::string Index = utostr(kv.first);

      // Emit a range check if the legal range of values for the
      // immediate is smaller than the _possible_ range of values for
      // its type.
      unsigned ArgTypeBits = IA.ArgType->sizeInBits();
      llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
      llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
      if (ActualRange.ult(ArgTypeRange))
        SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
                             ", " + signedHexLiteral(lo) + ", " +
                             signedHexLiteral(hi) + ")");

      if (!IA.ExtraCheckType.empty()) {
        std::string Suffix;
        if (!IA.ExtraCheckArgs.empty()) {
          std::string tmp;
          StringRef Arg = IA.ExtraCheckArgs;
          if (Arg == "!lanesize") {
            tmp = utostr(IA.ArgType->sizeInBits());
            Arg = tmp;
          }
          Suffix = (Twine(", ") + Arg).str();
        }
        SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
                              IA.ExtraCheckType + "(TheCall, " + Index +
                              Suffix + ")")
                                 .str());
      }

      assert(!SemaChecks.empty());
    }
    if (SemaChecks.empty())
      return "";
    return join(std::begin(SemaChecks), std::end(SemaChecks),
                " ||\n         ") +
           ";\n";
  }

  ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
};

// -----------------------------------------------------------------------------
// The top-level class that holds all the state from analyzing the entire
// Tablegen input.

class EmitterBase {
protected:
  // EmitterBase holds a collection of all the types we've instantiated.
  VoidType Void;
  std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
  std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
           std::unique_ptr<VectorType>>
      VectorTypes;
  std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
      MultiVectorTypes;
  std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
  std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;

  // And all the ACLEIntrinsic instances we've created.
  std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;

public:
  // Methods to create a Type object, or return the right existing one from the
  // maps stored in this object.
  const VoidType *getVoidType() { return &Void; }
  const ScalarType *getScalarType(StringRef Name) {
    return ScalarTypes[std::string(Name)].get();
  }
  const ScalarType *getScalarType(Record *R) {
    return getScalarType(R->getName());
  }
  const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
    std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
                                                       ST->sizeInBits(), Lanes);
    if (VectorTypes.find(key) == VectorTypes.end())
      VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
    return VectorTypes[key].get();
  }
  const VectorType *getVectorType(const ScalarType *ST) {
    return getVectorType(ST, 128 / ST->sizeInBits());
  }
  const MultiVectorType *getMultiVectorType(unsigned Registers,
                                            const VectorType *VT) {
    std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
    if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
      MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
    return MultiVectorTypes[key].get();
  }
  const PredicateType *getPredicateType(unsigned Lanes) {
    unsigned key = Lanes;
    if (PredicateTypes.find(key) == PredicateTypes.end())
      PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
    return PredicateTypes[key].get();
  }
  const PointerType *getPointerType(const Type *T, bool Const) {
    PointerType PT(T, Const);
    std::string key = PT.cName();
    if (PointerTypes.find(key) == PointerTypes.end())
      PointerTypes[key] = std::make_unique<PointerType>(PT);
    return PointerTypes[key].get();
  }

  // Methods to construct a type from various pieces of Tablegen. These are
  // always called in the context of setting up a particular ACLEIntrinsic, so
  // there's always an ambient parameter type (because we're iterating through
  // the Params list in the Tablegen record for the intrinsic), which is used
  // to expand Tablegen classes like 'Vector' which mean something different in
  // each member of a parametric family.
  const Type *getType(Record *R, const Type *Param);
  const Type *getType(DagInit *D, const Type *Param);
  const Type *getType(Init *I, const Type *Param);

  // Functions that translate the Tablegen representation of an intrinsic's
  // code generation into a collection of Value objects (which will then be
  // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
  Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
                            const Type *Param);
  Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
                               const Result::Scope &Scope, const Type *Param);
  Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
                            bool Immediate);

  void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);

  // Constructor and top-level functions.

  EmitterBase(RecordKeeper &Records);
  virtual ~EmitterBase() = default;

  virtual void EmitHeader(raw_ostream &OS) = 0;
  virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
  virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
  void EmitBuiltinCG(raw_ostream &OS);
  void EmitBuiltinAliases(raw_ostream &OS);
};

const Type *EmitterBase::getType(Init *I, const Type *Param) {
  if (auto Dag = dyn_cast<DagInit>(I))
    return getType(Dag, Param);
  if (auto Def = dyn_cast<DefInit>(I))
    return getType(Def->getDef(), Param);

  PrintFatalError("Could not convert this value into a type");
}

const Type *EmitterBase::getType(Record *R, const Type *Param) {
  // Pass to a subfield of any wrapper records. We don't expect more than one
  // of these: immediate operands are used as plain numbers rather than as
  // llvm::Value, so it's meaningless to promote their type anyway.
  if (R->isSubClassOf("Immediate"))
    R = R->getValueAsDef("type");
  else if (R->isSubClassOf("unpromoted"))
    R = R->getValueAsDef("underlying_type");

  if (R->getName() == "Void")
    return getVoidType();
  if (R->isSubClassOf("PrimitiveType"))
    return getScalarType(R);
  if (R->isSubClassOf("ComplexType"))
    return getType(R->getValueAsDag("spec"), Param);

  PrintFatalError(R->getLoc(), "Could not convert this record into a type");
}

const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
  // The meat of the getType system: types in the Tablegen are represented by a
  // dag whose operators select sub-cases of this function.

  Record *Op = cast<DefInit>(D->getOperator())->getDef();
  if (!Op->isSubClassOf("ComplexTypeOp"))
    PrintFatalError(
        "Expected ComplexTypeOp as dag operator in type expression");

  if (Op->getName() == "CTO_Parameter") {
    if (isa<VoidType>(Param))
      PrintFatalError("Parametric type in unparametrised context");
    return Param;
  }

  if (Op->getName() == "CTO_Vec") {
    const Type *Element = getType(D->getArg(0), Param);
    if (D->getNumArgs() == 1) {
      return getVectorType(cast<ScalarType>(Element));
    } else {
      const Type *ExistingVector = getType(D->getArg(1), Param);
      return getVectorType(cast<ScalarType>(Element),
                           cast<VectorType>(ExistingVector)->lanes());
    }
  }

  if (Op->getName() == "CTO_Pred") {
    const Type *Element = getType(D->getArg(0), Param);
    return getPredicateType(128 / Element->sizeInBits());
  }

  if (Op->isSubClassOf("CTO_Tuple")) {
    unsigned Registers = Op->getValueAsInt("n");
    const Type *Element = getType(D->getArg(0), Param);
    return getMultiVectorType(Registers, cast<VectorType>(Element));
  }

  if (Op->isSubClassOf("CTO_Pointer")) {
    const Type *Pointee = getType(D->getArg(0), Param);
    return getPointerType(Pointee, Op->getValueAsBit("const"));
  }

  if (Op->getName() == "CTO_CopyKind") {
    const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
    const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
    for (const auto &kv : ScalarTypes) {
      const ScalarType *RT = kv.second.get();
      if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
        return RT;
    }
    PrintFatalError("Cannot find a type to satisfy CopyKind");
  }

  if (Op->isSubClassOf("CTO_ScaleSize")) {
    const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
    int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
    unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
    for (const auto &kv : ScalarTypes) {
      const ScalarType *RT = kv.second.get();
      if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
        return RT;
    }
    PrintFatalError("Cannot find a type to satisfy ScaleSize");
  }

  PrintFatalError("Bad operator in type dag expression");
}

Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
                                       const Type *Param) {
  Record *Op = cast<DefInit>(D->getOperator())->getDef();

  if (Op->getName() == "seq") {
    Result::Scope SubScope = Scope;
    Result::Ptr PrevV = nullptr;
    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
      // We don't use getCodeForDagArg here, because the argument name
      // has different semantics in a seq
      Result::Ptr V =
          getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
      StringRef ArgName = D->getArgNameStr(i);
      if (!ArgName.empty())
        SubScope[std::string(ArgName)] = V;
      if (PrevV)
        V->setPredecessor(PrevV);
      PrevV = V;
    }
    return PrevV;
  } else if (Op->isSubClassOf("Type")) {
    if (D->getNumArgs() != 1)
      PrintFatalError("Type casts should have exactly one argument");
    const Type *CastType = getType(Op, Param);
    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
    if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
      if (!ST->requiresFloat()) {
        if (Arg->hasIntegerConstantValue())
          return std::make_shared<IntLiteralResult>(
              ST, Arg->integerConstantValue());
        else
          return std::make_shared<IntCastResult>(ST, Arg);
      }
    } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
      return std::make_shared<PointerCastResult>(PT, Arg);
    }
    PrintFatalError("Unsupported type cast");
  } else if (Op->getName() == "address") {
    if (D->getNumArgs() != 2)
      PrintFatalError("'address' should have two arguments");
    Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);

    const Type *Ty = nullptr;
    if (auto *DI = dyn_cast<DagInit>(D->getArg(0)))
      if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param)))
        Ty = PTy->getPointeeType();
    if (!Ty)
      PrintFatalError("'address' pointer argument should be a pointer");

    unsigned Alignment;
    if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
      Alignment = II->getValue();
    } else {
      PrintFatalError("'address' alignment argument should be an integer");
    }
    return std::make_shared<AddressResult>(Arg, Ty, Alignment);
  } else if (Op->getName() == "unsignedflag") {
    if (D->getNumArgs() != 1)
      PrintFatalError("unsignedflag should have exactly one argument");
    Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
    if (!TypeRec->isSubClassOf("Type"))
      PrintFatalError("unsignedflag's argument should be a type");
    if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
      return std::make_shared<IntLiteralResult>(
        getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
    } else {
      PrintFatalError("unsignedflag's argument should be a scalar type");
    }
  } else if (Op->getName() == "bitsize") {
    if (D->getNumArgs() != 1)
      PrintFatalError("bitsize should have exactly one argument");
    Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
    if (!TypeRec->isSubClassOf("Type"))
      PrintFatalError("bitsize's argument should be a type");
    if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
      return std::make_shared<IntLiteralResult>(getScalarType("u32"),
                                                ST->sizeInBits());
    } else {
      PrintFatalError("bitsize's argument should be a scalar type");
    }
  } else {
    std::vector<Result::Ptr> Args;
    for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
      Args.push_back(getCodeForDagArg(D, i, Scope, Param));
    if (Op->isSubClassOf("IRBuilderBase")) {
      std::set<unsigned> AddressArgs;
      std::map<unsigned, std::string> IntegerArgs;
      for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
        unsigned Index = sp->getValueAsInt("index");
        if (sp->isSubClassOf("IRBuilderAddrParam")) {
          AddressArgs.insert(Index);
        } else if (sp->isSubClassOf("IRBuilderIntParam")) {
          IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
        }
      }
      return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
                                               Args, AddressArgs, IntegerArgs);
    } else if (Op->isSubClassOf("IRIntBase")) {
      std::vector<const Type *> ParamTypes;
      for (Record *RParam : Op->getValueAsListOfDefs("params"))
        ParamTypes.push_back(getType(RParam, Param));
      std::string IntName = std::string(Op->getValueAsString("intname"));
      if (Op->getValueAsBit("appendKind"))
        IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
      return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
    } else {
      PrintFatalError("Unsupported dag node " + Op->getName());
    }
  }
}

Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
                                          const Result::Scope &Scope,
                                          const Type *Param) {
  Init *Arg = D->getArg(ArgNum);
  StringRef Name = D->getArgNameStr(ArgNum);

  if (!Name.empty()) {
    if (!isa<UnsetInit>(Arg))
      PrintFatalError(
          "dag operator argument should not have both a value and a name");
    auto it = Scope.find(std::string(Name));
    if (it == Scope.end())
      PrintFatalError("unrecognized variable name '" + Name + "'");
    return it->second;
  }

  // Sometimes the Arg is a bit. Prior to multiclass template argument
  // checking, integers would sneak through the bit declaration,
  // but now they really are bits.
  if (auto *BI = dyn_cast<BitInit>(Arg))
    return std::make_shared<IntLiteralResult>(getScalarType("u32"),
                                              BI->getValue());

  if (auto *II = dyn_cast<IntInit>(Arg))
    return std::make_shared<IntLiteralResult>(getScalarType("u32"),
                                              II->getValue());

  if (auto *DI = dyn_cast<DagInit>(Arg))
    return getCodeForDag(DI, Scope, Param);

  if (auto *DI = dyn_cast<DefInit>(Arg)) {
    Record *Rec = DI->getDef();
    if (Rec->isSubClassOf("Type")) {
      const Type *T = getType(Rec, Param);
      return std::make_shared<TypeResult>(T);
    }
  }

  PrintError("bad DAG argument type for code generation");
  PrintNote("DAG: " + D->getAsString());
  if (TypedInit *Typed = dyn_cast<TypedInit>(Arg))
    PrintNote("argument type: " + Typed->getType()->getAsString());
  PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
}

Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
                                       bool Promote, bool Immediate) {
  Result::Ptr V = std::make_shared<BuiltinArgResult>(
      ArgNum, isa<PointerType>(ArgType), Immediate);

  if (Promote) {
    if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
      if (ST->isInteger() && ST->sizeInBits() < 32)
        V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
    } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
      V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
      V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
                                              std::vector<const Type *>{PT},
                                              std::vector<Result::Ptr>{V});
    }
  }

  return V;
}

ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
    : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
  // Derive the intrinsic's full name, by taking the name of the
  // Tablegen record (or override) and appending the suffix from its
  // parameter type. (If the intrinsic is unparametrised, its
  // parameter type will be given as Void, which returns the empty
  // string for acleSuffix.)
  StringRef BaseName =
      (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
                                       : R->getName());
  StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
  FullName =
      (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();

  // Derive the intrinsic's polymorphic name, by removing components from the
  // full name as specified by its 'pnt' member ('polymorphic name type'),
  // which indicates how many type suffixes to remove, and any other piece of
  // the name that should be removed.
  Record *PolymorphicNameType = R->getValueAsDef("pnt");
  SmallVector<StringRef, 8> NameParts;
  StringRef(FullName).split(NameParts, '_');
  for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
                           "NumTypeSuffixesToDiscard");
       i < e; ++i)
    NameParts.pop_back();
  if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
    StringRef ExtraSuffix =
        PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
    auto it = NameParts.end();
    while (it != NameParts.begin()) {
      --it;
      if (*it == ExtraSuffix) {
        NameParts.erase(it);
        break;
      }
    }
  }
  ShortName = join(std::begin(NameParts), std::end(NameParts), "_");

  BuiltinExtension = R->getValueAsString("builtinExtension");

  PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
  NonEvaluating = R->getValueAsBit("nonEvaluating");
  HeaderOnly = R->getValueAsBit("headerOnly");

  // Process the intrinsic's argument list.
  DagInit *ArgsDag = R->getValueAsDag("args");
  Result::Scope Scope;
  for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
    Init *TypeInit = ArgsDag->getArg(i);

    bool Promote = true;
    if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
      if (TypeDI->getDef()->isSubClassOf("unpromoted"))
        Promote = false;

    // Work out the type of the argument, for use in the function prototype in
    // the header file.
    const Type *ArgType = ME.getType(TypeInit, Param);
    ArgTypes.push_back(ArgType);

    // If the argument is a subclass of Immediate, record the details about
    // what values it can take, for Sema checking.
    bool Immediate = false;
    if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
      Record *TypeRec = TypeDI->getDef();
      if (TypeRec->isSubClassOf("Immediate")) {
        Immediate = true;

        Record *Bounds = TypeRec->getValueAsDef("bounds");
        ImmediateArg &IA = ImmediateArgs[i];
        if (Bounds->isSubClassOf("IB_ConstRange")) {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = Bounds->getValueAsInt("lo");
          IA.i2 = Bounds->getValueAsInt("hi");
        } else if (Bounds->getName() == "IB_UEltValue") {
          IA.boundsType = ImmediateArg::BoundsType::UInt;
          IA.i1 = Param->sizeInBits();
        } else if (Bounds->getName() == "IB_LaneIndex") {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = 0;
          IA.i2 = 128 / Param->sizeInBits() - 1;
        } else if (Bounds->isSubClassOf("IB_EltBit")) {
          IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
          IA.i1 = Bounds->getValueAsInt("base");
          const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
          IA.i2 = IA.i1 + T->sizeInBits() - 1;
        } else {
          PrintFatalError("unrecognised ImmediateBounds subclass");
        }

        IA.ArgType = ArgType;

        if (!TypeRec->isValueUnset("extra")) {
          IA.ExtraCheckType = TypeRec->getValueAsString("extra");
          if (!TypeRec->isValueUnset("extraarg"))
            IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
        }
      }
    }

    // The argument will usually have a name in the arguments dag, which goes
    // into the variable-name scope that the code gen will refer to.
    StringRef ArgName = ArgsDag->getArgNameStr(i);
    if (!ArgName.empty())
      Scope[std::string(ArgName)] =
          ME.getCodeForArg(i, ArgType, Promote, Immediate);
  }

  // Finally, go through the codegen dag and translate it into a Result object
  // (with an arbitrary DAG of depended-on Results hanging off it).
  DagInit *CodeDag = R->getValueAsDag("codegen");
  Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
  if (MainOp->isSubClassOf("CustomCodegen")) {
    // Or, if it's the special case of CustomCodegen, just accumulate
    // a list of parameters we're going to assign to variables before
    // breaking from the loop.
    CustomCodeGenArgs["CustomCodeGenType"] =
        (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
    for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
      StringRef Name = CodeDag->getArgNameStr(i);
      if (Name.empty()) {
        PrintFatalError("Operands to CustomCodegen should have names");
      } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
        CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
      } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
        CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
      } else {
        PrintFatalError("Operands to CustomCodegen should be integers");
      }
    }
  } else {
    Code = ME.getCodeForDag(CodeDag, Scope, Param);
  }
}

EmitterBase::EmitterBase(RecordKeeper &Records) {
  // Construct the whole EmitterBase.

  // First, look up all the instances of PrimitiveType. This gives us the list
  // of vector typedefs we have to put in arm_mve.h, and also allows us to
  // collect all the useful ScalarType instances into a big list so that we can
  // use it for operations such as 'find the unsigned version of this signed
  // integer type'.
  for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
    ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);

  // Now go through the instances of Intrinsic, and for each one, iterate
  // through its list of type parameters making an ACLEIntrinsic for each one.
  for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
    for (Record *RParam : R->getValueAsListOfDefs("params")) {
      const Type *Param = getType(RParam, getVoidType());
      auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
      ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
    }
  }
}

/// A wrapper on raw_string_ostream that contains its own buffer rather than
/// having to point it at one elsewhere. (In other words, it works just like
/// std::ostringstream; also, this makes it convenient to declare a whole array
/// of them at once.)
///
/// We have to set this up using multiple inheritance, to ensure that the
/// string member has been constructed before raw_string_ostream's constructor
/// is given a pointer to it.
class string_holder {
protected:
  std::string S;
};
class raw_self_contained_string_ostream : private string_holder,
                                          public raw_string_ostream {
public:
  raw_self_contained_string_ostream() : raw_string_ostream(S) {}
};

const char LLVMLicenseHeader[] =
    " *\n"
    " *\n"
    " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
    " Exceptions.\n"
    " * See https://llvm.org/LICENSE.txt for license information.\n"
    " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
    " *\n"
    " *===-----------------------------------------------------------------"
    "------===\n"
    " */\n"
    "\n";

// Machinery for the grouping of intrinsics by similar codegen.
//
// The general setup is that 'MergeableGroup' stores the things that a set of
// similarly shaped intrinsics have in common: the text of their code
// generation, and the number and type of their parameter variables.
// MergeableGroup is the key in a std::map whose value is a set of
// OutputIntrinsic, which stores the ways in which a particular intrinsic
// specializes the MergeableGroup's generic description: the function name and
// the _values_ of the parameter variables.

struct ComparableStringVector : std::vector<std::string> {
  // Infrastructure: a derived class of vector<string> which comes with an
  // ordering, so that it can be used as a key in maps and an element in sets.
  // There's no requirement on the ordering beyond being deterministic.
  bool operator<(const ComparableStringVector &rhs) const {
    if (size() != rhs.size())
      return size() < rhs.size();
    for (size_t i = 0, e = size(); i < e; ++i)
      if ((*this)[i] != rhs[i])
        return (*this)[i] < rhs[i];
    return false;
  }
};

struct OutputIntrinsic {
  const ACLEIntrinsic *Int;
  std::string Name;
  ComparableStringVector ParamValues;
  bool operator<(const OutputIntrinsic &rhs) const {
    if (Name != rhs.Name)
      return Name < rhs.Name;
    return ParamValues < rhs.ParamValues;
  }
};
struct MergeableGroup {
  std::string Code;
  ComparableStringVector ParamTypes;
  bool operator<(const MergeableGroup &rhs) const {
    if (Code != rhs.Code)
      return Code < rhs.Code;
    return ParamTypes < rhs.ParamTypes;
  }
};

void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
  // Pass 1: generate code for all the intrinsics as if every type or constant
  // that can possibly be abstracted out into a parameter variable will be.
  // This identifies the sets of intrinsics we'll group together into a single
  // piece of code generation.

  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.headerOnly())
      continue;

    MergeableGroup MG;
    OutputIntrinsic OI;

    OI.Int = &Int;
    OI.Name = Int.fullName();
    CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
    raw_string_ostream OS(MG.Code);
    Int.genCode(OS, ParamAllocPrelim, 1);
    OS.flush();

    MergeableGroupsPrelim[MG].insert(OI);
  }

  // Pass 2: for each of those groups, optimize the parameter variable set by
  // eliminating 'parameters' that are the same for all intrinsics in the
  // group, and merging together pairs of parameter variables that take the
  // same values as each other for all intrinsics in the group.

  std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;

  for (const auto &kv : MergeableGroupsPrelim) {
    const MergeableGroup &MG = kv.first;
    std::vector<int> ParamNumbers;
    std::map<ComparableStringVector, int> ParamNumberMap;

    // Loop over the parameters for this group.
    for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
      // Is this parameter the same for all intrinsics in the group?
      const OutputIntrinsic &OI_first = *kv.second.begin();
      bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
        return OI.ParamValues[i] == OI_first.ParamValues[i];
      });

      // If so, record it as -1, meaning 'no parameter variable needed'. Then
      // the corresponding call to allocParam in pass 2 will not generate a
      // variable at all, and just use the value inline.
      if (Constant) {
        ParamNumbers.push_back(-1);
        continue;
      }

      // Otherwise, make a list of the values this parameter takes for each
      // intrinsic, and see if that value vector matches anything we already
      // have. We also record the parameter type, so that we don't accidentally
      // match up two parameter variables with different types. (Not that
      // there's much chance of them having textually equivalent values, but in
      // _principle_ it could happen.)
      ComparableStringVector key;
      key.push_back(MG.ParamTypes[i]);
      for (const auto &OI : kv.second)
        key.push_back(OI.ParamValues[i]);

      auto Found = ParamNumberMap.find(key);
      if (Found != ParamNumberMap.end()) {
        // Yes, an existing parameter variable can be reused for this.
        ParamNumbers.push_back(Found->second);
        continue;
      }

      // No, we need a new parameter variable.
      int ExistingIndex = ParamNumberMap.size();
      ParamNumberMap[key] = ExistingIndex;
      ParamNumbers.push_back(ExistingIndex);
    }

    // Now we're ready to do the pass 2 code generation, which will emit the
    // reduced set of parameter variables we've just worked out.

    for (const auto &OI_prelim : kv.second) {
      const ACLEIntrinsic *Int = OI_prelim.Int;

      MergeableGroup MG;
      OutputIntrinsic OI;

      OI.Int = OI_prelim.Int;
      OI.Name = OI_prelim.Name;
      CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
                                       &ParamNumbers};
      raw_string_ostream OS(MG.Code);
      Int->genCode(OS, ParamAlloc, 2);
      OS.flush();

      MergeableGroups[MG].insert(OI);
    }
  }

  // Output the actual C++ code.

  for (const auto &kv : MergeableGroups) {
    const MergeableGroup &MG = kv.first;

    // List of case statements in the main switch on BuiltinID, and an open
    // brace.
    const char *prefix = "";
    for (const auto &OI : kv.second) {
      OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
         << "_" << OI.Name << ":";

      prefix = "\n";
    }
    OS << " {\n";

    if (!MG.ParamTypes.empty()) {
      // If we've got some parameter variables, then emit their declarations...
      for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
        StringRef Type = MG.ParamTypes[i];
        OS << "  " << Type;
        if (!Type.ends_with("*"))
          OS << " ";
        OS << " Param" << utostr(i) << ";\n";
      }

      // ... and an inner switch on BuiltinID that will fill them in with each
      // individual intrinsic's values.
      OS << "  switch (BuiltinID) {\n";
      for (const auto &OI : kv.second) {
        OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
           << "_" << OI.Name << ":\n";
        for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
          OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
        OS << "    break;\n";
      }
      OS << "  }\n";
    }

    // And finally, output the code, and close the outer pair of braces. (The
    // code will always end with a 'return' statement, so we need not insert a
    // 'break' here.)
    OS << MG.Code << "}\n";
  }
}

void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
  // Build a sorted table of:
  // - intrinsic id number
  // - full name
  // - polymorphic name or -1
  StringToOffsetTable StringTable;
  OS << "static const IntrinToName MapData[] = {\n";
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.headerOnly())
      continue;
    int32_t ShortNameOffset =
        Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
                          : -1;
    OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
       << Int.fullName() << ", "
       << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
       << ShortNameOffset << "},\n";
  }
  OS << "};\n\n";

  OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";

  OS << "static const char IntrinNames[] = {\n";
  StringTable.EmitString(OS);
  OS << "};\n\n";
}

void EmitterBase::GroupSemaChecks(
    std::map<std::string, std::set<std::string>> &Checks) {
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.headerOnly())
      continue;
    std::string Check = Int.genSema();
    if (!Check.empty())
      Checks[Check].insert(Int.fullName());
  }
}

// -----------------------------------------------------------------------------
// The class used for generating arm_mve.h and related Clang bits
//

class MveEmitter : public EmitterBase {
public:
  MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
  void EmitHeader(raw_ostream &OS) override;
  void EmitBuiltinDef(raw_ostream &OS) override;
  void EmitBuiltinSema(raw_ostream &OS) override;
};

void MveEmitter::EmitHeader(raw_ostream &OS) {
  // Accumulate pieces of the header file that will be enabled under various
  // different combinations of #ifdef. The index into parts[] is made up of
  // the following bit flags.
  constexpr unsigned Float = 1;
  constexpr unsigned UseUserNamespace = 2;

  constexpr unsigned NumParts = 4;
  raw_self_contained_string_ostream parts[NumParts];

  // Write typedefs for all the required vector types, and a few scalar
  // types that don't already have the name we want them to have.

  parts[0] << "typedef uint16_t mve_pred16_t;\n";
  parts[Float] << "typedef __fp16 float16_t;\n"
                  "typedef float float32_t;\n";
  for (const auto &kv : ScalarTypes) {
    const ScalarType *ST = kv.second.get();
    if (ST->hasNonstandardName())
      continue;
    raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
    const VectorType *VT = getVectorType(ST);

    OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
       << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
       << VT->cName() << ";\n";

    // Every vector type also comes with a pair of multi-vector types for
    // the VLD2 and VLD4 instructions.
    for (unsigned n = 2; n <= 4; n += 2) {
      const MultiVectorType *MT = getMultiVectorType(n, VT);
      OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
         << MT->cName() << ";\n";
    }
  }
  parts[0] << "\n";
  parts[Float] << "\n";

  // Write declarations for all the intrinsics.

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;

    // We generate each intrinsic twice, under its full unambiguous
    // name and its shorter polymorphic name (if the latter exists).
    for (bool Polymorphic : {false, true}) {
      if (Polymorphic && !Int.polymorphic())
        continue;
      if (!Polymorphic && Int.polymorphicOnly())
        continue;

      // We also generate each intrinsic under a name like __arm_vfooq
      // (which is in C language implementation namespace, so it's
      // safe to define in any conforming user program) and a shorter
      // one like vfooq (which is in user namespace, so a user might
      // reasonably have used it for something already). If so, they
      // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
      // including the header, which will suppress the shorter names
      // and leave only the implementation-namespace ones. Then they
      // have to write __arm_vfooq everywhere, of course.

      for (bool UserNamespace : {false, true}) {
        raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
                                (UserNamespace ? UseUserNamespace : 0)];

        // Make the name of the function in this declaration.

        std::string FunctionName =
            Polymorphic ? Int.shortName() : Int.fullName();
        if (!UserNamespace)
          FunctionName = "__arm_" + FunctionName;

        // Make strings for the types involved in the function's
        // prototype.

        std::string RetTypeName = Int.returnType()->cName();
        if (!StringRef(RetTypeName).ends_with("*"))
          RetTypeName += " ";

        std::vector<std::string> ArgTypeNames;
        for (const Type *ArgTypePtr : Int.argTypes())
          ArgTypeNames.push_back(ArgTypePtr->cName());
        std::string ArgTypesString =
            join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");

        // Emit the actual declaration. All these functions are
        // declared 'static inline' without a body, which is fine
        // provided clang recognizes them as builtins, and has the
        // effect that this type signature is used in place of the one
        // that Builtins.def didn't provide. That's how we can get
        // structure types that weren't defined until this header was
        // included to be part of the type signature of a builtin that
        // was known to clang already.
        //
        // The declarations use __attribute__(__clang_arm_builtin_alias),
        // so that each function declared will be recognized as the
        // appropriate MVE builtin in spite of its user-facing name.
        //
        // (That's better than making them all wrapper functions,
        // partly because it avoids any compiler error message citing
        // the wrapper function definition instead of the user's code,
        // and mostly because some MVE intrinsics have arguments
        // required to be compile-time constants, and that property
        // can't be propagated through a wrapper function. It can be
        // propagated through a macro, but macros can't be overloaded
        // on argument types very easily - you have to use _Generic,
        // which makes error messages very confusing when the user
        // gets it wrong.)
        //
        // Finally, the polymorphic versions of the intrinsics are
        // also defined with __attribute__(overloadable), so that when
        // the same name is defined with several type signatures, the
        // right thing happens. Each one of the overloaded
        // declarations is given a different builtin id, which
        // has exactly the effect we want: first clang resolves the
        // overload to the right function, then it knows which builtin
        // it's referring to, and then the Sema checking for that
        // builtin can check further things like the constant
        // arguments.
        //
        // One more subtlety is the newline just before the return
        // type name. That's a cosmetic tweak to make the error
        // messages legible if the user gets the types wrong in a call
        // to a polymorphic function: this way, clang will print just
        // the _final_ line of each declaration in the header, to show
        // the type signatures that would have been legal. So all the
        // confusing machinery with __attribute__ is left out of the
        // error message, and the user sees something that's more or
        // less self-documenting: "here's a list of actually readable
        // type signatures for vfooq(), and here's why each one didn't
        // match your call".

        OS << "static __inline__ __attribute__(("
           << (Polymorphic ? "__overloadable__, " : "")
           << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
           << ")))\n"
           << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
      }
    }
  }
  for (auto &part : parts)
    part << "\n";

  // Now we've finished accumulating bits and pieces into the parts[] array.
  // Put it all together to write the final output file.

  OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
        "-----------------------------------===\n"
     << LLVMLicenseHeader
     << "#ifndef __ARM_MVE_H\n"
        "#define __ARM_MVE_H\n"
        "\n"
        "#if !__ARM_FEATURE_MVE\n"
        "#error \"MVE support not enabled\"\n"
        "#endif\n"
        "\n"
        "#include <stdint.h>\n"
        "\n"
        "#ifdef __cplusplus\n"
        "extern \"C\" {\n"
        "#endif\n"
        "\n";

  for (size_t i = 0; i < NumParts; ++i) {
    std::vector<std::string> conditions;
    if (i & Float)
      conditions.push_back("(__ARM_FEATURE_MVE & 2)");
    if (i & UseUserNamespace)
      conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");

    std::string condition =
        join(std::begin(conditions), std::end(conditions), " && ");
    if (!condition.empty())
      OS << "#if " << condition << "\n\n";
    OS << parts[i].str();
    if (!condition.empty())
      OS << "#endif /* " << condition << " */\n\n";
  }

  OS << "#ifdef __cplusplus\n"
        "} /* extern \"C\" */\n"
        "#endif\n"
        "\n"
        "#endif /* __ARM_MVE_H */\n";
}

void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
       << ", \"\", \"n\")\n";
  }

  std::set<std::string> ShortNamesSeen;

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;
    if (Int.polymorphic()) {
      StringRef Name = Int.shortName();
      if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
        OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
        if (Int.nonEvaluating())
          OS << "u"; // indicate that this builtin doesn't evaluate its args
        OS << "\")\n";
        ShortNamesSeen.insert(std::string(Name));
      }
    }
  }
}

void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
  std::map<std::string, std::set<std::string>> Checks;
  GroupSemaChecks(Checks);

  for (const auto &kv : Checks) {
    for (StringRef Name : kv.second)
      OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
    OS << "  return " << kv.first;
  }
}

// -----------------------------------------------------------------------------
// Class that describes an ACLE intrinsic implemented as a macro.
//
// This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
// want to avoid a combinatorial explosion by reinterpreting the arguments to
// fixed types.

class FunctionMacro {
  std::vector<StringRef> Params;
  StringRef Definition;

public:
  FunctionMacro(const Record &R);

  const std::vector<StringRef> &getParams() const { return Params; }
  StringRef getDefinition() const { return Definition; }
};

FunctionMacro::FunctionMacro(const Record &R) {
  Params = R.getValueAsListOfStrings("params");
  Definition = R.getValueAsString("definition");
}

// -----------------------------------------------------------------------------
// The class used for generating arm_cde.h and related Clang bits
//

class CdeEmitter : public EmitterBase {
  std::map<StringRef, FunctionMacro> FunctionMacros;

public:
  CdeEmitter(RecordKeeper &Records);
  void EmitHeader(raw_ostream &OS) override;
  void EmitBuiltinDef(raw_ostream &OS) override;
  void EmitBuiltinSema(raw_ostream &OS) override;
};

CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
  for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
    FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
}

void CdeEmitter::EmitHeader(raw_ostream &OS) {
  // Accumulate pieces of the header file that will be enabled under various
  // different combinations of #ifdef. The index into parts[] is one of the
  // following:
  constexpr unsigned None = 0;
  constexpr unsigned MVE = 1;
  constexpr unsigned MVEFloat = 2;

  constexpr unsigned NumParts = 3;
  raw_self_contained_string_ostream parts[NumParts];

  // Write typedefs for all the required vector types, and a few scalar
  // types that don't already have the name we want them to have.

  parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
  parts[MVEFloat] << "typedef __fp16 float16_t;\n"
                     "typedef float float32_t;\n";
  for (const auto &kv : ScalarTypes) {
    const ScalarType *ST = kv.second.get();
    if (ST->hasNonstandardName())
      continue;
    // We don't have float64x2_t
    if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
      continue;
    raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
    const VectorType *VT = getVectorType(ST);

    OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
       << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
       << VT->cName() << ";\n";
  }
  parts[MVE] << "\n";
  parts[MVEFloat] << "\n";

  // Write declarations for all the intrinsics.

  for (const auto &kv : ACLEIntrinsics) {
    const ACLEIntrinsic &Int = *kv.second;

    // We generate each intrinsic twice, under its full unambiguous
    // name and its shorter polymorphic name (if the latter exists).
    for (bool Polymorphic : {false, true}) {
      if (Polymorphic && !Int.polymorphic())
        continue;
      if (!Polymorphic && Int.polymorphicOnly())
        continue;

      raw_ostream &OS =
          parts[Int.requiresFloat() ? MVEFloat
                                    : Int.requiresMVE() ? MVE : None];

      // Make the name of the function in this declaration.
      std::string FunctionName =
          "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());

      // Make strings for the types involved in the function's
      // prototype.
      std::string RetTypeName = Int.returnType()->cName();
      if (!StringRef(RetTypeName).ends_with("*"))
        RetTypeName += " ";

      std::vector<std::string> ArgTypeNames;
      for (const Type *ArgTypePtr : Int.argTypes())
        ArgTypeNames.push_back(ArgTypePtr->cName());
      std::string ArgTypesString =
          join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");

      // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
      // comments
      OS << "static __inline__ __attribute__(("
         << (Polymorphic ? "__overloadable__, " : "")
         << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
         << "_" << Int.fullName() << ")))\n"
         << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
    }
  }

  for (const auto &kv : FunctionMacros) {
    StringRef Name = kv.first;
    const FunctionMacro &FM = kv.second;

    raw_ostream &OS = parts[MVE];
    OS << "#define "
       << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
       << FM.getDefinition() << "\n";
  }

  for (auto &part : parts)
    part << "\n";

  // Now we've finished accumulating bits and pieces into the parts[] array.
  // Put it all together to write the final output file.

  OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
        "-----------------------------------===\n"
     << LLVMLicenseHeader
     << "#ifndef __ARM_CDE_H\n"
        "#define __ARM_CDE_H\n"
        "\n"
        "#if !__ARM_FEATURE_CDE\n"
        "#error \"CDE support not enabled\"\n"
        "#endif\n"
        "\n"
        "#include <stdint.h>\n"
        "\n"
        "#ifdef __cplusplus\n"
        "extern \"C\" {\n"
        "#endif\n"
        "\n";

  for (size_t i = 0; i < NumParts; ++i) {
    std::string condition;
    if (i == MVEFloat)
      condition = "__ARM_FEATURE_MVE & 2";
    else if (i == MVE)
      condition = "__ARM_FEATURE_MVE";

    if (!condition.empty())
      OS << "#if " << condition << "\n\n";
    OS << parts[i].str();
    if (!condition.empty())
      OS << "#endif /* " << condition << " */\n\n";
  }

  OS << "#ifdef __cplusplus\n"
        "} /* extern \"C\" */\n"
        "#endif\n"
        "\n"
        "#endif /* __ARM_CDE_H */\n";
}

void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
  for (const auto &kv : ACLEIntrinsics) {
    if (kv.second->headerOnly())
      continue;
    const ACLEIntrinsic &Int = *kv.second;
    OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
       << ", \"\", \"ncU\")\n";
  }
}

void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
  std::map<std::string, std::set<std::string>> Checks;
  GroupSemaChecks(Checks);

  for (const auto &kv : Checks) {
    for (StringRef Name : kv.second)
      OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
    OS << "  Err = " << kv.first << "  break;\n";
  }
}

} // namespace

namespace clang {

// MVE

void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitHeader(OS);
}

void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinDef(OS);
}

void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinSema(OS);
}

void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinCG(OS);
}

void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
  MveEmitter(Records).EmitBuiltinAliases(OS);
}

// CDE

void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitHeader(OS);
}

void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinDef(OS);
}

void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinSema(OS);
}

void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinCG(OS);
}

void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
  CdeEmitter(Records).EmitBuiltinAliases(OS);
}

} // end namespace clang