aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lldb/source/Plugins/ABI/X86/ABIWindows_x86_64.cpp
blob: 63b670b07277dbed65473c78c59b363e809ec670 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
//===-- ABIWindows_x86_64.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ABIWindows_x86_64.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

using namespace lldb;
using namespace lldb_private;

LLDB_PLUGIN_DEFINE(ABIWindows_x86_64)

enum dwarf_regnums {
  dwarf_rax = 0,
  dwarf_rdx,
  dwarf_rcx,
  dwarf_rbx,
  dwarf_rsi,
  dwarf_rdi,
  dwarf_rbp,
  dwarf_rsp,
  dwarf_r8,
  dwarf_r9,
  dwarf_r10,
  dwarf_r11,
  dwarf_r12,
  dwarf_r13,
  dwarf_r14,
  dwarf_r15,
  dwarf_rip,
  dwarf_xmm0,
  dwarf_xmm1,
  dwarf_xmm2,
  dwarf_xmm3,
  dwarf_xmm4,
  dwarf_xmm5,
  dwarf_xmm6,
  dwarf_xmm7,
  dwarf_xmm8,
  dwarf_xmm9,
  dwarf_xmm10,
  dwarf_xmm11,
  dwarf_xmm12,
  dwarf_xmm13,
  dwarf_xmm14,
  dwarf_xmm15,
  dwarf_stmm0,
  dwarf_stmm1,
  dwarf_stmm2,
  dwarf_stmm3,
  dwarf_stmm4,
  dwarf_stmm5,
  dwarf_stmm6,
  dwarf_stmm7,
  dwarf_ymm0,
  dwarf_ymm1,
  dwarf_ymm2,
  dwarf_ymm3,
  dwarf_ymm4,
  dwarf_ymm5,
  dwarf_ymm6,
  dwarf_ymm7,
  dwarf_ymm8,
  dwarf_ymm9,
  dwarf_ymm10,
  dwarf_ymm11,
  dwarf_ymm12,
  dwarf_ymm13,
  dwarf_ymm14,
  dwarf_ymm15,
  dwarf_bnd0 = 126,
  dwarf_bnd1,
  dwarf_bnd2,
  dwarf_bnd3
};

bool ABIWindows_x86_64::GetPointerReturnRegister(const char *&name) {
  name = "rax";
  return true;
}

size_t ABIWindows_x86_64::GetRedZoneSize() const { return 0; }

//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------

ABISP
ABIWindows_x86_64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
  if (arch.GetTriple().getArch() == llvm::Triple::x86_64 &&
      arch.GetTriple().isOSWindows()) {
    return ABISP(
        new ABIWindows_x86_64(std::move(process_sp), MakeMCRegisterInfo(arch)));
  }
  return ABISP();
}

bool ABIWindows_x86_64::PrepareTrivialCall(Thread &thread, addr_t sp,
                                           addr_t func_addr, addr_t return_addr,
                                           llvm::ArrayRef<addr_t> args) const {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));

  if (log) {
    StreamString s;
    s.Printf("ABIWindows_x86_64::PrepareTrivialCall (tid = 0x%" PRIx64
             ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
             ", return_addr = 0x%" PRIx64,
             thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
             (uint64_t)return_addr);

    for (size_t i = 0; i < args.size(); ++i)
      s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
               args[i]);
    s.PutCString(")");
    log->PutString(s.GetString());
  }

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return false;

  const RegisterInfo *reg_info = nullptr;

  if (args.size() > 4) // Windows x64 only put first 4 arguments into registers
    return false;

  for (size_t i = 0; i < args.size(); ++i) {
    reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
                                        LLDB_REGNUM_GENERIC_ARG1 + i);
    LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
              static_cast<uint64_t>(i + 1), args[i], reg_info->name);
    if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
      return false;
  }

  // First, align the SP

  LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
            (uint64_t)sp, (uint64_t)(sp & ~0xfull));

  sp &= ~(0xfull); // 16-byte alignment

  sp -= 8; // return address

  Status error;
  const RegisterInfo *pc_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
  const RegisterInfo *sp_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
  ProcessSP process_sp(thread.GetProcess());

  RegisterValue reg_value;
  LLDB_LOGF(log,
            "Pushing the return address onto the stack: 0x%" PRIx64
            ": 0x%" PRIx64,
            (uint64_t)sp, (uint64_t)return_addr);

  // Save return address onto the stack
  if (!process_sp->WritePointerToMemory(sp, return_addr, error))
    return false;

  // %rsp is set to the actual stack value.

  LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);

  if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
    return false;

  // %rip is set to the address of the called function.

  LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);

  if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
    return false;

  return true;
}

static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
                                bool is_signed, Thread &thread,
                                uint32_t *argument_register_ids,
                                unsigned int &current_argument_register,
                                addr_t &current_stack_argument) {
  if (bit_width > 64)
    return false; // Scalar can't hold large integer arguments

  if (current_argument_register < 4) { // Windows pass first 4 arguments to register
    scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
        argument_register_ids[current_argument_register], 0);
    current_argument_register++;
    if (is_signed)
      scalar.SignExtend(bit_width);
  	return true;
  }
  uint32_t byte_size = (bit_width + (CHAR_BIT - 1)) / CHAR_BIT;
  Status error;
  if (thread.GetProcess()->ReadScalarIntegerFromMemory(
          current_stack_argument, byte_size, is_signed, scalar, error)) {
    current_stack_argument += byte_size;
    return true;
  }
  return false;
}

bool ABIWindows_x86_64::GetArgumentValues(Thread &thread,
                                       ValueList &values) const {
  unsigned int num_values = values.GetSize();
  unsigned int value_index;

  // Extract the register context so we can read arguments from registers

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();

  if (!reg_ctx)
    return false;

  // Get the pointer to the first stack argument so we have a place to start
  // when reading data

  addr_t sp = reg_ctx->GetSP(0);

  if (!sp)
    return false;

  addr_t current_stack_argument = sp + 8; // jump over return address

  uint32_t argument_register_ids[4];

  argument_register_ids[0] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[1] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[2] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
          ->kinds[eRegisterKindLLDB];
  argument_register_ids[3] =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
          ->kinds[eRegisterKindLLDB];

  unsigned int current_argument_register = 0;

  for (value_index = 0; value_index < num_values; ++value_index) {
    Value *value = values.GetValueAtIndex(value_index);

    if (!value)
      return false;

    CompilerType compiler_type = value->GetCompilerType();
    llvm::Optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
    if (!bit_size)
      return false;
    bool is_signed;

    if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
      ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
                          argument_register_ids, current_argument_register,
                          current_stack_argument);
    } else if (compiler_type.IsPointerType()) {
      ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
                          argument_register_ids, current_argument_register,
                          current_stack_argument);
    }
  }

  return true;
}

Status ABIWindows_x86_64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
                                            lldb::ValueObjectSP &new_value_sp) {
  Status error;
  if (!new_value_sp) {
    error.SetErrorString("Empty value object for return value.");
    return error;
  }

  CompilerType compiler_type = new_value_sp->GetCompilerType();
  if (!compiler_type) {
    error.SetErrorString("Null clang type for return value.");
    return error;
  }

  Thread *thread = frame_sp->GetThread().get();

  bool is_signed;
  uint32_t count;
  bool is_complex;

  RegisterContext *reg_ctx = thread->GetRegisterContext().get();

  bool set_it_simple = false;
  if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
      compiler_type.IsPointerType()) {
    const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("rax", 0);

    DataExtractor data;
    Status data_error;
    size_t num_bytes = new_value_sp->GetData(data, data_error);
    if (data_error.Fail()) {
      error.SetErrorStringWithFormat(
          "Couldn't convert return value to raw data: %s",
          data_error.AsCString());
      return error;
    }
    lldb::offset_t offset = 0;
    if (num_bytes <= 8) {
      uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);

      if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
        set_it_simple = true;
    } else {
      error.SetErrorString("We don't support returning longer than 64 bit "
                           "integer values at present.");
    }
  } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
    if (is_complex)
      error.SetErrorString(
          "We don't support returning complex values at present");
    else {
      llvm::Optional<uint64_t> bit_width =
          compiler_type.GetBitSize(frame_sp.get());
      if (!bit_width) {
        error.SetErrorString("can't get type size");
        return error;
      }
      if (*bit_width <= 64) {
        const RegisterInfo *xmm0_info =
            reg_ctx->GetRegisterInfoByName("xmm0", 0);
        RegisterValue xmm0_value;
        DataExtractor data;
        Status data_error;
        size_t num_bytes = new_value_sp->GetData(data, data_error);
        if (data_error.Fail()) {
          error.SetErrorStringWithFormat(
              "Couldn't convert return value to raw data: %s",
              data_error.AsCString());
          return error;
        }

        unsigned char buffer[16];
        ByteOrder byte_order = data.GetByteOrder();

        data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
        xmm0_value.SetBytes(buffer, 16, byte_order);
        reg_ctx->WriteRegister(xmm0_info, xmm0_value);
        set_it_simple = true;
      } else {
        // Windows doesn't support 80 bit FP
        error.SetErrorString(
            "Windows-x86_64 doesn't allow FP larger than 64 bits.");
      }
    }
  }

  if (!set_it_simple) {
    // Okay we've got a structure or something that doesn't fit in a simple
    // register.
    // TODO(wanyi): On Windows, if the return type is a struct:
    // 1) smaller that 64 bits and return by value -> RAX
    // 2) bigger than 64 bits, the caller will allocate memory for that struct
    // and pass the struct pointer in RCX then return the pointer in RAX
    error.SetErrorString("We only support setting simple integer and float "
                         "return types at present.");
  }

  return error;
}

ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectSimple(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;
  Value value;

  if (!return_compiler_type)
    return return_valobj_sp;

  value.SetCompilerType(return_compiler_type);

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return return_valobj_sp;

  const uint32_t type_flags = return_compiler_type.GetTypeInfo();
  if (type_flags & eTypeIsScalar) {
    value.SetValueType(Value::eValueTypeScalar);

    bool success = false;
    if (type_flags & eTypeIsInteger) {
      // Extract the register context so we can read arguments from registers
      llvm::Optional<uint64_t> byte_size =
          return_compiler_type.GetByteSize(nullptr);
      if (!byte_size)
        return return_valobj_sp;
      uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
          reg_ctx->GetRegisterInfoByName("rax", 0), 0);
      const bool is_signed = (type_flags & eTypeIsSigned) != 0;
      switch (*byte_size) {
      default:
        break;

      case sizeof(uint64_t):
        if (is_signed)
          value.GetScalar() = (int64_t)(raw_value);
        else
          value.GetScalar() = (uint64_t)(raw_value);
        success = true;
        break;

      case sizeof(uint32_t):
        if (is_signed)
          value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
        else
          value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
        success = true;
        break;

      case sizeof(uint16_t):
        if (is_signed)
          value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
        else
          value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
        success = true;
        break;

      case sizeof(uint8_t):
        if (is_signed)
          value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
        else
          value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
        success = true;
        break;
      }
    } else if (type_flags & eTypeIsFloat) {
      if (type_flags & eTypeIsComplex) {
        // Don't handle complex yet.
      } else {
        llvm::Optional<uint64_t> byte_size =
            return_compiler_type.GetByteSize(nullptr);
        if (byte_size && *byte_size <= sizeof(long double)) {
          const RegisterInfo *xmm0_info =
              reg_ctx->GetRegisterInfoByName("xmm0", 0);
          RegisterValue xmm0_value;
          if (reg_ctx->ReadRegister(xmm0_info, xmm0_value)) {
            DataExtractor data;
            if (xmm0_value.GetData(data)) {
              lldb::offset_t offset = 0;
              if (*byte_size == sizeof(float)) {
                value.GetScalar() = (float)data.GetFloat(&offset);
                success = true;
              } else if (*byte_size == sizeof(double)) {
                // double and long double are the same on windows
                value.GetScalar() = (double)data.GetDouble(&offset);
                success = true;
              }
            }
          }
        }
      }
    }

    if (success)
      return_valobj_sp = ValueObjectConstResult::Create(
          thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
  } else if ((type_flags & eTypeIsPointer) ||
             (type_flags & eTypeInstanceIsPointer)) {
    unsigned rax_id =
        reg_ctx->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
    value.GetScalar() =
        (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
                                                                      0);
    value.SetValueType(Value::eValueTypeScalar);
    return_valobj_sp = ValueObjectConstResult::Create(
        thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
  } else if (type_flags & eTypeIsVector) {
    llvm::Optional<uint64_t> byte_size =
        return_compiler_type.GetByteSize(nullptr);
    if (byte_size && *byte_size > 0) {
      const RegisterInfo *xmm_reg =
          reg_ctx->GetRegisterInfoByName("xmm0", 0);
      if (xmm_reg == nullptr)
        xmm_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);

      if (xmm_reg) {
        if (*byte_size <= xmm_reg->byte_size) {
          ProcessSP process_sp(thread.GetProcess());
          if (process_sp) {
            std::unique_ptr<DataBufferHeap> heap_data_up(
                new DataBufferHeap(*byte_size, 0));
            const ByteOrder byte_order = process_sp->GetByteOrder();
            RegisterValue reg_value;
            if (reg_ctx->ReadRegister(xmm_reg, reg_value)) {
              Status error;
              if (reg_value.GetAsMemoryData(
                      xmm_reg, heap_data_up->GetBytes(),
                      heap_data_up->GetByteSize(), byte_order, error)) {
                DataExtractor data(DataBufferSP(heap_data_up.release()),
                                   byte_order,
                                   process_sp->GetTarget()
                                       .GetArchitecture()
                                       .GetAddressByteSize());
                return_valobj_sp = ValueObjectConstResult::Create(
                    &thread, return_compiler_type, ConstString(""), data);
              }
            }
          }
        }
      }
    }
  }

  return return_valobj_sp;
}

// The compiler will flatten the nested aggregate type into single
// layer and push the value to stack
// This helper function will flatten an aggregate type
// and return true if it can be returned in register(s) by value
// return false if the aggregate is in memory
static bool FlattenAggregateType(
    Thread &thread, ExecutionContext &exe_ctx,
    CompilerType &return_compiler_type,
    uint32_t data_byte_offset,
    std::vector<uint32_t> &aggregate_field_offsets,
    std::vector<CompilerType> &aggregate_compiler_types) {

  const uint32_t num_children = return_compiler_type.GetNumFields();
  for (uint32_t idx = 0; idx < num_children; ++idx) {
    std::string name;
    bool is_signed;
    uint32_t count;
    bool is_complex;

    uint64_t field_bit_offset = 0;
    CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
        idx, name, &field_bit_offset, nullptr, nullptr);
    llvm::Optional<uint64_t> field_bit_width =
          field_compiler_type.GetBitSize(&thread);

    // if we don't know the size of the field (e.g. invalid type), exit
    if (!field_bit_width || *field_bit_width == 0) {
      return false;
    }
    // If there are any unaligned fields, this is stored in memory.
    if (field_bit_offset % *field_bit_width != 0) {
      return false;
    }

    // add overall offset
    uint32_t field_byte_offset = field_bit_offset / 8 + data_byte_offset;

    const uint32_t field_type_flags = field_compiler_type.GetTypeInfo();
    if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
        field_compiler_type.IsPointerType() ||
        field_compiler_type.IsFloatingPointType(count, is_complex)) {
      aggregate_field_offsets.push_back(field_byte_offset);
      aggregate_compiler_types.push_back(field_compiler_type);
    } else if (field_type_flags & eTypeHasChildren) {
      if (!FlattenAggregateType(thread, exe_ctx, field_compiler_type,
                                field_byte_offset, aggregate_field_offsets,
                                aggregate_compiler_types)) {
        return false;
      }
    }
  }
  return true;
}

ValueObjectSP ABIWindows_x86_64::GetReturnValueObjectImpl(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;

  if (!return_compiler_type) {
    return return_valobj_sp;
  }

  // try extract value as if it's a simple type
  return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
  if (return_valobj_sp) {
    return return_valobj_sp;
  }

  RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
  if (!reg_ctx_sp) {
    return return_valobj_sp;
  }

  llvm::Optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
  if (!bit_width) {
    return return_valobj_sp;
  }

  // if it's not simple or aggregate type, then we don't know how to handle it
  if (!return_compiler_type.IsAggregateType()) {
    return return_valobj_sp;
  }

  ExecutionContext exe_ctx(thread.shared_from_this());
  Target *target = exe_ctx.GetTargetPtr();
  uint32_t max_register_value_bit_width = 64;

  // The scenario here is to have a struct/class which is POD
  // if the return struct/class size is larger than 64 bits,
  // the caller will allocate memory for it and pass the return addr in RCX
  // then return the address in RAX

  // if the struct is returned by value in register (RAX)
  // its size has to be: 1, 2, 4, 8, 16, 32, or 64 bits (aligned)
  // for floating point, the return value will be copied over to RAX
  bool is_memory = *bit_width > max_register_value_bit_width ||
                   *bit_width & (*bit_width - 1);
  std::vector<uint32_t> aggregate_field_offsets;
  std::vector<CompilerType> aggregate_compiler_types;
  if (!is_memory &&
      FlattenAggregateType(thread, exe_ctx, return_compiler_type,
                           0, aggregate_field_offsets,
                           aggregate_compiler_types)) {
    ByteOrder byte_order = target->GetArchitecture().GetByteOrder();
    DataBufferSP data_sp(
        new DataBufferHeap(max_register_value_bit_width / 8, 0));
    DataExtractor return_ext(data_sp, byte_order,
        target->GetArchitecture().GetAddressByteSize());

    // The only register used to return struct/class by value
    const RegisterInfo *rax_info =
        reg_ctx_sp->GetRegisterInfoByName("rax", 0);
    RegisterValue rax_value;
    reg_ctx_sp->ReadRegister(rax_info, rax_value);
    DataExtractor rax_data;
    rax_value.GetData(rax_data);

    uint32_t used_bytes =
        0; // Tracks how much of the rax registers we've consumed so far

    // in case of the returned type is a subclass of non-abstract-base class
    // it will have a padding to skip the base content
    if (aggregate_field_offsets.size())
      used_bytes = aggregate_field_offsets[0];

    const uint32_t num_children = aggregate_compiler_types.size();
    for (uint32_t idx = 0; idx < num_children; idx++) {
      bool is_signed;
      bool is_complex;
      uint32_t count;

      CompilerType field_compiler_type = aggregate_compiler_types[idx];
      uint32_t field_byte_width = (uint32_t) (*field_compiler_type.GetByteSize(&thread));
      uint32_t field_byte_offset = aggregate_field_offsets[idx];

      // this is unlikely w/o the overall size being greater than 8 bytes
      // For now, return a nullptr return value object.
      if (used_bytes >= 8 || used_bytes + field_byte_width > 8) {
        return return_valobj_sp;
      }

      DataExtractor *copy_from_extractor = nullptr;
      uint32_t copy_from_offset = 0;
      if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
          field_compiler_type.IsPointerType() ||
          field_compiler_type.IsFloatingPointType(count, is_complex)) {
        copy_from_extractor = &rax_data;
        copy_from_offset = used_bytes;
        used_bytes += field_byte_width;
      }
      // These two tests are just sanity checks.  If I somehow get the type
      // calculation wrong above it is better to just return nothing than to
      // assert or crash.
      if (!copy_from_extractor) {
        return return_valobj_sp;
      }
      if (copy_from_offset + field_byte_width >
          copy_from_extractor->GetByteSize()) {
        return return_valobj_sp;
      }
      copy_from_extractor->CopyByteOrderedData(copy_from_offset,
          field_byte_width, data_sp->GetBytes() + field_byte_offset,
          field_byte_width, byte_order);
    }
    if (!is_memory) {
      // The result is in our data buffer.  Let's make a variable object out
      // of it:
      return_valobj_sp = ValueObjectConstResult::Create(
          &thread, return_compiler_type, ConstString(""), return_ext);
    }
  }

  // The Windows x86_64 ABI specifies that the return address for MEMORY
  // objects be placed in rax on exit from the function.

  // FIXME: This is just taking a guess, rax may very well no longer hold the
  // return storage location.
  // If we are going to do this right, when we make a new frame we should
  // check to see if it uses a memory return, and if we are at the first
  // instruction and if so stash away the return location.  Then we would
  // only return the memory return value if we know it is valid.
  if (is_memory) {
    unsigned rax_id =
        reg_ctx_sp->GetRegisterInfoByName("rax", 0)->kinds[eRegisterKindLLDB];
    lldb::addr_t storage_addr =
        (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(rax_id,
                                                                      0);
    return_valobj_sp = ValueObjectMemory::Create(
        &thread, "", Address(storage_addr, nullptr), return_compiler_type);
  }
  return return_valobj_sp;
}

// This defines the CFA as rsp+8
// the saved pc is at CFA-8 (i.e. rsp+0)
// The saved rsp is CFA+0

bool ABIWindows_x86_64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  uint32_t sp_reg_num = dwarf_rsp;
  uint32_t pc_reg_num = dwarf_rip;

  UnwindPlan::RowSP row(new UnwindPlan::Row);
  row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 8);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -8, false);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("x86_64 at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  return true;
}

// Windows-x86_64 doesn't use %rbp
// No available Unwind information for Windows-x86_64 (section .pdata)
// Let's use SysV-x86_64 one for now
bool ABIWindows_x86_64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  uint32_t fp_reg_num = dwarf_rbp;
  uint32_t sp_reg_num = dwarf_rsp;
  uint32_t pc_reg_num = dwarf_rip;

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  const int32_t ptr_size = 8;
  row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_rbp, 2 * ptr_size);
  row->SetOffset(0);

  row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("x86_64 default unwind plan");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);

  return true;
}

bool ABIWindows_x86_64::RegisterIsVolatile(const RegisterInfo *reg_info) {
  return !RegisterIsCalleeSaved(reg_info);
}

bool ABIWindows_x86_64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
  if (!reg_info)
    return false;
  assert(reg_info->name != nullptr && "unnamed register?");
  std::string Name = std::string(reg_info->name);
  bool IsCalleeSaved =
      llvm::StringSwitch<bool>(Name)
          .Cases("rbx", "ebx", "rbp", "ebp", "rdi", "edi", "rsi", "esi", true)
          .Cases("rsp", "esp", "r12", "r13", "r14", "r15", "sp", "fp", true)
          .Cases("xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12",
                 "xmm13", "xmm14", "xmm15", true)
          .Default(false);
  return IsCalleeSaved;
}

uint32_t ABIWindows_x86_64::GetGenericNum(llvm::StringRef reg) {
  return llvm::StringSwitch<uint32_t>(reg)
      .Case("rip", LLDB_REGNUM_GENERIC_PC)
      .Case("rsp", LLDB_REGNUM_GENERIC_SP)
      .Case("rbp", LLDB_REGNUM_GENERIC_FP)
      .Case("rflags", LLDB_REGNUM_GENERIC_FLAGS)
      .Case("rcx", LLDB_REGNUM_GENERIC_ARG1)
      .Case("rdx", LLDB_REGNUM_GENERIC_ARG2)
      .Case("r8", LLDB_REGNUM_GENERIC_ARG3)
      .Case("r9", LLDB_REGNUM_GENERIC_ARG4)
      .Default(LLDB_INVALID_REGNUM);
}

void ABIWindows_x86_64::Initialize() {
  PluginManager::RegisterPlugin(
      GetPluginNameStatic(), "Windows ABI for x86_64 targets", CreateInstance);
}

void ABIWindows_x86_64::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

lldb_private::ConstString ABIWindows_x86_64::GetPluginNameStatic() {
  static ConstString g_name("windows-x86_64");
  return g_name;
}

//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------

lldb_private::ConstString ABIWindows_x86_64::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t ABIWindows_x86_64::GetPluginVersion() { return 1; }