aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineFunction.cpp
blob: 02f58ca5eef05594a4e7823cc977e1a036a5ebff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
//===- MachineFunction.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function.  This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>

#include "LiveDebugValues/LiveDebugValues.h"

using namespace llvm;

#define DEBUG_TYPE "codegen"

static cl::opt<unsigned> AlignAllFunctions(
    "align-all-functions",
    cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
             "means align on 16B boundaries)."),
    cl::init(0), cl::Hidden);

static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
  using P = MachineFunctionProperties::Property;

  // clang-format off
  switch(Prop) {
  case P::FailedISel: return "FailedISel";
  case P::IsSSA: return "IsSSA";
  case P::Legalized: return "Legalized";
  case P::NoPHIs: return "NoPHIs";
  case P::NoVRegs: return "NoVRegs";
  case P::RegBankSelected: return "RegBankSelected";
  case P::Selected: return "Selected";
  case P::TracksLiveness: return "TracksLiveness";
  case P::TiedOpsRewritten: return "TiedOpsRewritten";
  case P::FailsVerification: return "FailsVerification";
  case P::TracksDebugUserValues: return "TracksDebugUserValues";
  }
  // clang-format on
  llvm_unreachable("Invalid machine function property");
}

// Pin the vtable to this file.
void MachineFunction::Delegate::anchor() {}

void MachineFunctionProperties::print(raw_ostream &OS) const {
  const char *Separator = "";
  for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
    if (!Properties[I])
      continue;
    OS << Separator << getPropertyName(static_cast<Property>(I));
    Separator = ", ";
  }
}

//===----------------------------------------------------------------------===//
// MachineFunction implementation
//===----------------------------------------------------------------------===//

// Out-of-line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() = default;

void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
  MBB->getParent()->deleteMachineBasicBlock(MBB);
}

static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
                                           const Function &F) {
  if (auto MA = F.getFnStackAlign())
    return MA->value();
  return STI->getFrameLowering()->getStackAlign().value();
}

MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
                                 const TargetSubtargetInfo &STI,
                                 unsigned FunctionNum, MachineModuleInfo &mmi)
    : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
  FunctionNumber = FunctionNum;
  init();
}

void MachineFunction::handleInsertion(MachineInstr &MI) {
  if (TheDelegate)
    TheDelegate->MF_HandleInsertion(MI);
}

void MachineFunction::handleRemoval(MachineInstr &MI) {
  if (TheDelegate)
    TheDelegate->MF_HandleRemoval(MI);
}

void MachineFunction::init() {
  // Assume the function starts in SSA form with correct liveness.
  Properties.set(MachineFunctionProperties::Property::IsSSA);
  Properties.set(MachineFunctionProperties::Property::TracksLiveness);
  if (STI->getRegisterInfo())
    RegInfo = new (Allocator) MachineRegisterInfo(this);
  else
    RegInfo = nullptr;

  MFInfo = nullptr;
  // We can realign the stack if the target supports it and the user hasn't
  // explicitly asked us not to.
  bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
                      !F.hasFnAttribute("no-realign-stack");
  FrameInfo = new (Allocator) MachineFrameInfo(
      getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
      /*ForcedRealign=*/CanRealignSP &&
          F.hasFnAttribute(Attribute::StackAlignment));

  if (F.hasFnAttribute(Attribute::StackAlignment))
    FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());

  ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
  Alignment = STI->getTargetLowering()->getMinFunctionAlignment();

  // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
  // FIXME: Use Function::hasOptSize().
  if (!F.hasFnAttribute(Attribute::OptimizeForSize))
    Alignment = std::max(Alignment,
                         STI->getTargetLowering()->getPrefFunctionAlignment());

  if (AlignAllFunctions)
    Alignment = Align(1ULL << AlignAllFunctions);

  JumpTableInfo = nullptr;

  if (isFuncletEHPersonality(classifyEHPersonality(
          F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
    WinEHInfo = new (Allocator) WinEHFuncInfo();
  }

  if (isScopedEHPersonality(classifyEHPersonality(
          F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
    WasmEHInfo = new (Allocator) WasmEHFuncInfo();
  }

  assert(Target.isCompatibleDataLayout(getDataLayout()) &&
         "Can't create a MachineFunction using a Module with a "
         "Target-incompatible DataLayout attached\n");

  PSVManager =
    std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
                                                  getInstrInfo()));
}

MachineFunction::~MachineFunction() {
  clear();
}

void MachineFunction::clear() {
  Properties.reset();
  // Don't call destructors on MachineInstr and MachineOperand. All of their
  // memory comes from the BumpPtrAllocator which is about to be purged.
  //
  // Do call MachineBasicBlock destructors, it contains std::vectors.
  for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
    I->Insts.clearAndLeakNodesUnsafely();
  MBBNumbering.clear();

  InstructionRecycler.clear(Allocator);
  OperandRecycler.clear(Allocator);
  BasicBlockRecycler.clear(Allocator);
  CodeViewAnnotations.clear();
  VariableDbgInfos.clear();
  if (RegInfo) {
    RegInfo->~MachineRegisterInfo();
    Allocator.Deallocate(RegInfo);
  }
  if (MFInfo) {
    MFInfo->~MachineFunctionInfo();
    Allocator.Deallocate(MFInfo);
  }

  FrameInfo->~MachineFrameInfo();
  Allocator.Deallocate(FrameInfo);

  ConstantPool->~MachineConstantPool();
  Allocator.Deallocate(ConstantPool);

  if (JumpTableInfo) {
    JumpTableInfo->~MachineJumpTableInfo();
    Allocator.Deallocate(JumpTableInfo);
  }

  if (WinEHInfo) {
    WinEHInfo->~WinEHFuncInfo();
    Allocator.Deallocate(WinEHInfo);
  }

  if (WasmEHInfo) {
    WasmEHInfo->~WasmEHFuncInfo();
    Allocator.Deallocate(WasmEHInfo);
  }
}

const DataLayout &MachineFunction::getDataLayout() const {
  return F.getParent()->getDataLayout();
}

/// Get the JumpTableInfo for this function.
/// If it does not already exist, allocate one.
MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind) {
  if (JumpTableInfo) return JumpTableInfo;

  JumpTableInfo = new (Allocator)
    MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
  return JumpTableInfo;
}

DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
  return F.getDenormalMode(FPType);
}

/// Should we be emitting segmented stack stuff for the function
bool MachineFunction::shouldSplitStack() const {
  return getFunction().hasFnAttribute("split-stack");
}

LLVM_NODISCARD unsigned
MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
  FrameInstructions.push_back(Inst);
  return FrameInstructions.size() - 1;
}

/// This discards all of the MachineBasicBlock numbers and recomputes them.
/// This guarantees that the MBB numbers are sequential, dense, and match the
/// ordering of the blocks within the function.  If a specific MachineBasicBlock
/// is specified, only that block and those after it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
  if (empty()) { MBBNumbering.clear(); return; }
  MachineFunction::iterator MBBI, E = end();
  if (MBB == nullptr)
    MBBI = begin();
  else
    MBBI = MBB->getIterator();

  // Figure out the block number this should have.
  unsigned BlockNo = 0;
  if (MBBI != begin())
    BlockNo = std::prev(MBBI)->getNumber() + 1;

  for (; MBBI != E; ++MBBI, ++BlockNo) {
    if (MBBI->getNumber() != (int)BlockNo) {
      // Remove use of the old number.
      if (MBBI->getNumber() != -1) {
        assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
               "MBB number mismatch!");
        MBBNumbering[MBBI->getNumber()] = nullptr;
      }

      // If BlockNo is already taken, set that block's number to -1.
      if (MBBNumbering[BlockNo])
        MBBNumbering[BlockNo]->setNumber(-1);

      MBBNumbering[BlockNo] = &*MBBI;
      MBBI->setNumber(BlockNo);
    }
  }

  // Okay, all the blocks are renumbered.  If we have compactified the block
  // numbering, shrink MBBNumbering now.
  assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
  MBBNumbering.resize(BlockNo);
}

/// This method iterates over the basic blocks and assigns their IsBeginSection
/// and IsEndSection fields. This must be called after MBB layout is finalized
/// and the SectionID's are assigned to MBBs.
void MachineFunction::assignBeginEndSections() {
  front().setIsBeginSection();
  auto CurrentSectionID = front().getSectionID();
  for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
    if (MBBI->getSectionID() == CurrentSectionID)
      continue;
    MBBI->setIsBeginSection();
    std::prev(MBBI)->setIsEndSection();
    CurrentSectionID = MBBI->getSectionID();
  }
  back().setIsEndSection();
}

/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
                                                  DebugLoc DL,
                                                  bool NoImplicit) {
  return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
      MachineInstr(*this, MCID, std::move(DL), NoImplicit);
}

/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
/// identical in all ways except the instruction has no parent, prev, or next.
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
  return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
             MachineInstr(*this, *Orig);
}

MachineInstr &MachineFunction::cloneMachineInstrBundle(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
    const MachineInstr &Orig) {
  MachineInstr *FirstClone = nullptr;
  MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
  while (true) {
    MachineInstr *Cloned = CloneMachineInstr(&*I);
    MBB.insert(InsertBefore, Cloned);
    if (FirstClone == nullptr) {
      FirstClone = Cloned;
    } else {
      Cloned->bundleWithPred();
    }

    if (!I->isBundledWithSucc())
      break;
    ++I;
  }
  // Copy over call site info to the cloned instruction if needed. If Orig is in
  // a bundle, copyCallSiteInfo takes care of finding the call instruction in
  // the bundle.
  if (Orig.shouldUpdateCallSiteInfo())
    copyCallSiteInfo(&Orig, FirstClone);
  return *FirstClone;
}

/// Delete the given MachineInstr.
///
/// This function also serves as the MachineInstr destructor - the real
/// ~MachineInstr() destructor must be empty.
void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
  // Verify that a call site info is at valid state. This assertion should
  // be triggered during the implementation of support for the
  // call site info of a new architecture. If the assertion is triggered,
  // back trace will tell where to insert a call to updateCallSiteInfo().
  assert((!MI->isCandidateForCallSiteEntry() ||
          CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
         "Call site info was not updated!");
  // Strip it for parts. The operand array and the MI object itself are
  // independently recyclable.
  if (MI->Operands)
    deallocateOperandArray(MI->CapOperands, MI->Operands);
  // Don't call ~MachineInstr() which must be trivial anyway because
  // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
  // destructors.
  InstructionRecycler.Deallocate(Allocator, MI);
}

/// Allocate a new MachineBasicBlock. Use this instead of
/// `new MachineBasicBlock'.
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
  return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
             MachineBasicBlock(*this, bb);
}

/// Delete the given MachineBasicBlock.
void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
  assert(MBB->getParent() == this && "MBB parent mismatch!");
  // Clean up any references to MBB in jump tables before deleting it.
  if (JumpTableInfo)
    JumpTableInfo->RemoveMBBFromJumpTables(MBB);
  MBB->~MachineBasicBlock();
  BasicBlockRecycler.Deallocate(Allocator, MBB);
}

MachineMemOperand *MachineFunction::getMachineMemOperand(
    MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
    Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
    SyncScope::ID SSID, AtomicOrdering Ordering,
    AtomicOrdering FailureOrdering) {
  return new (Allocator)
      MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
                        SSID, Ordering, FailureOrdering);
}

MachineMemOperand *MachineFunction::getMachineMemOperand(
    MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
    Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
    SyncScope::ID SSID, AtomicOrdering Ordering,
    AtomicOrdering FailureOrdering) {
  return new (Allocator)
      MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
                        Ordering, FailureOrdering);
}

MachineMemOperand *MachineFunction::getMachineMemOperand(
    const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
  return new (Allocator)
      MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
                        AAMDNodes(), nullptr, MMO->getSyncScopeID(),
                        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}

MachineMemOperand *MachineFunction::getMachineMemOperand(
    const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
  return new (Allocator)
      MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
                        AAMDNodes(), nullptr, MMO->getSyncScopeID(),
                        MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}

MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
                                      int64_t Offset, LLT Ty) {
  const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();

  // If there is no pointer value, the offset isn't tracked so we need to adjust
  // the base alignment.
  Align Alignment = PtrInfo.V.isNull()
                        ? commonAlignment(MMO->getBaseAlign(), Offset)
                        : MMO->getBaseAlign();

  // Do not preserve ranges, since we don't necessarily know what the high bits
  // are anymore.
  return new (Allocator) MachineMemOperand(
      PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
      MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
      MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}

MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
                                      const AAMDNodes &AAInfo) {
  MachinePointerInfo MPI = MMO->getValue() ?
             MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
             MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());

  return new (Allocator) MachineMemOperand(
      MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
      MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
      MMO->getFailureOrdering());
}

MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
                                      MachineMemOperand::Flags Flags) {
  return new (Allocator) MachineMemOperand(
      MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
      MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
      MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}

MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
    ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
    MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
  return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
                                         PostInstrSymbol, HeapAllocMarker);
}

const char *MachineFunction::createExternalSymbolName(StringRef Name) {
  char *Dest = Allocator.Allocate<char>(Name.size() + 1);
  llvm::copy(Name, Dest);
  Dest[Name.size()] = 0;
  return Dest;
}

uint32_t *MachineFunction::allocateRegMask() {
  unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
  unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
  uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
  memset(Mask, 0, Size * sizeof(Mask[0]));
  return Mask;
}

ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
  int* AllocMask = Allocator.Allocate<int>(Mask.size());
  copy(Mask, AllocMask);
  return {AllocMask, Mask.size()};
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineFunction::dump() const {
  print(dbgs());
}
#endif

StringRef MachineFunction::getName() const {
  return getFunction().getName();
}

void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
  OS << "# Machine code for function " << getName() << ": ";
  getProperties().print(OS);
  OS << '\n';

  // Print Frame Information
  FrameInfo->print(*this, OS);

  // Print JumpTable Information
  if (JumpTableInfo)
    JumpTableInfo->print(OS);

  // Print Constant Pool
  ConstantPool->print(OS);

  const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();

  if (RegInfo && !RegInfo->livein_empty()) {
    OS << "Function Live Ins: ";
    for (MachineRegisterInfo::livein_iterator
         I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
      OS << printReg(I->first, TRI);
      if (I->second)
        OS << " in " << printReg(I->second, TRI);
      if (std::next(I) != E)
        OS << ", ";
    }
    OS << '\n';
  }

  ModuleSlotTracker MST(getFunction().getParent());
  MST.incorporateFunction(getFunction());
  for (const auto &BB : *this) {
    OS << '\n';
    // If we print the whole function, print it at its most verbose level.
    BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
  }

  OS << "\n# End machine code for function " << getName() << ".\n\n";
}

/// True if this function needs frame moves for debug or exceptions.
bool MachineFunction::needsFrameMoves() const {
  return getMMI().hasDebugInfo() ||
         getTarget().Options.ForceDwarfFrameSection ||
         F.needsUnwindTableEntry();
}

namespace llvm {

  template<>
  struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
    DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}

    static std::string getGraphName(const MachineFunction *F) {
      return ("CFG for '" + F->getName() + "' function").str();
    }

    std::string getNodeLabel(const MachineBasicBlock *Node,
                             const MachineFunction *Graph) {
      std::string OutStr;
      {
        raw_string_ostream OSS(OutStr);

        if (isSimple()) {
          OSS << printMBBReference(*Node);
          if (const BasicBlock *BB = Node->getBasicBlock())
            OSS << ": " << BB->getName();
        } else
          Node->print(OSS);
      }

      if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());

      // Process string output to make it nicer...
      for (unsigned i = 0; i != OutStr.length(); ++i)
        if (OutStr[i] == '\n') {                            // Left justify
          OutStr[i] = '\\';
          OutStr.insert(OutStr.begin()+i+1, 'l');
        }
      return OutStr;
    }
  };

} // end namespace llvm

void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
  ViewGraph(this, "mf" + getName());
#else
  errs() << "MachineFunction::viewCFG is only available in debug builds on "
         << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}

void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
  ViewGraph(this, "mf" + getName(), true);
#else
  errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
         << "systems with Graphviz or gv!\n";
#endif // NDEBUG
}

/// Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
Register MachineFunction::addLiveIn(MCRegister PReg,
                                    const TargetRegisterClass *RC) {
  MachineRegisterInfo &MRI = getRegInfo();
  Register VReg = MRI.getLiveInVirtReg(PReg);
  if (VReg) {
    const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
    (void)VRegRC;
    // A physical register can be added several times.
    // Between two calls, the register class of the related virtual register
    // may have been constrained to match some operation constraints.
    // In that case, check that the current register class includes the
    // physical register and is a sub class of the specified RC.
    assert((VRegRC == RC || (VRegRC->contains(PReg) &&
                             RC->hasSubClassEq(VRegRC))) &&
            "Register class mismatch!");
    return VReg;
  }
  VReg = MRI.createVirtualRegister(RC);
  MRI.addLiveIn(PReg, VReg);
  return VReg;
}

/// Return the MCSymbol for the specified non-empty jump table.
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
/// normal 'L' label is returned.
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
                                        bool isLinkerPrivate) const {
  const DataLayout &DL = getDataLayout();
  assert(JumpTableInfo && "No jump tables");
  assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");

  StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
                                     : DL.getPrivateGlobalPrefix();
  SmallString<60> Name;
  raw_svector_ostream(Name)
    << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
  return Ctx.getOrCreateSymbol(Name);
}

/// Return a function-local symbol to represent the PIC base.
MCSymbol *MachineFunction::getPICBaseSymbol() const {
  const DataLayout &DL = getDataLayout();
  return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
                               Twine(getFunctionNumber()) + "$pb");
}

/// \name Exception Handling
/// \{

LandingPadInfo &
MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
  unsigned N = LandingPads.size();
  for (unsigned i = 0; i < N; ++i) {
    LandingPadInfo &LP = LandingPads[i];
    if (LP.LandingPadBlock == LandingPad)
      return LP;
  }

  LandingPads.push_back(LandingPadInfo(LandingPad));
  return LandingPads[N];
}

void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
                                MCSymbol *BeginLabel, MCSymbol *EndLabel) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  LP.BeginLabels.push_back(BeginLabel);
  LP.EndLabels.push_back(EndLabel);
}

MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
  MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  LP.LandingPadLabel = LandingPadLabel;

  const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
  if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
    if (const auto *PF =
            dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
      getMMI().addPersonality(PF);

    if (LPI->isCleanup())
      addCleanup(LandingPad);

    // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
    //        correct, but we need to do it this way because of how the DWARF EH
    //        emitter processes the clauses.
    for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
      Value *Val = LPI->getClause(I - 1);
      if (LPI->isCatch(I - 1)) {
        addCatchTypeInfo(LandingPad,
                         dyn_cast<GlobalValue>(Val->stripPointerCasts()));
      } else {
        // Add filters in a list.
        auto *CVal = cast<Constant>(Val);
        SmallVector<const GlobalValue *, 4> FilterList;
        for (const Use &U : CVal->operands())
          FilterList.push_back(cast<GlobalValue>(U->stripPointerCasts()));

        addFilterTypeInfo(LandingPad, FilterList);
      }
    }

  } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
    for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
      Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
      addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
    }

  } else {
    assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
  }

  return LandingPadLabel;
}

void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
                                       ArrayRef<const GlobalValue *> TyInfo) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  for (const GlobalValue *GV : llvm::reverse(TyInfo))
    LP.TypeIds.push_back(getTypeIDFor(GV));
}

void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
                                        ArrayRef<const GlobalValue *> TyInfo) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  std::vector<unsigned> IdsInFilter(TyInfo.size());
  for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
    IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
  LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
}

void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
                                      bool TidyIfNoBeginLabels) {
  for (unsigned i = 0; i != LandingPads.size(); ) {
    LandingPadInfo &LandingPad = LandingPads[i];
    if (LandingPad.LandingPadLabel &&
        !LandingPad.LandingPadLabel->isDefined() &&
        (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
      LandingPad.LandingPadLabel = nullptr;

    // Special case: we *should* emit LPs with null LP MBB. This indicates
    // "nounwind" case.
    if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
      LandingPads.erase(LandingPads.begin() + i);
      continue;
    }

    if (TidyIfNoBeginLabels) {
      for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
        MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
        MCSymbol *EndLabel = LandingPad.EndLabels[j];
        if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
            (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
          continue;

        LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
        LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
        --j;
        --e;
      }

      // Remove landing pads with no try-ranges.
      if (LandingPads[i].BeginLabels.empty()) {
        LandingPads.erase(LandingPads.begin() + i);
        continue;
      }
    }

    // If there is no landing pad, ensure that the list of typeids is empty.
    // If the only typeid is a cleanup, this is the same as having no typeids.
    if (!LandingPad.LandingPadBlock ||
        (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
      LandingPad.TypeIds.clear();
    ++i;
  }
}

void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  LP.TypeIds.push_back(0);
}

void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
                                         const Function *Filter,
                                         const BlockAddress *RecoverBA) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  SEHHandler Handler;
  Handler.FilterOrFinally = Filter;
  Handler.RecoverBA = RecoverBA;
  LP.SEHHandlers.push_back(Handler);
}

void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
                                           const Function *Cleanup) {
  LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
  SEHHandler Handler;
  Handler.FilterOrFinally = Cleanup;
  Handler.RecoverBA = nullptr;
  LP.SEHHandlers.push_back(Handler);
}

void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
                                            ArrayRef<unsigned> Sites) {
  LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
}

unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
  for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
    if (TypeInfos[i] == TI) return i + 1;

  TypeInfos.push_back(TI);
  return TypeInfos.size();
}

int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
  // If the new filter coincides with the tail of an existing filter, then
  // re-use the existing filter.  Folding filters more than this requires
  // re-ordering filters and/or their elements - probably not worth it.
  for (unsigned i : FilterEnds) {
    unsigned j = TyIds.size();

    while (i && j)
      if (FilterIds[--i] != TyIds[--j])
        goto try_next;

    if (!j)
      // The new filter coincides with range [i, end) of the existing filter.
      return -(1 + i);

try_next:;
  }

  // Add the new filter.
  int FilterID = -(1 + FilterIds.size());
  FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
  llvm::append_range(FilterIds, TyIds);
  FilterEnds.push_back(FilterIds.size());
  FilterIds.push_back(0); // terminator
  return FilterID;
}

MachineFunction::CallSiteInfoMap::iterator
MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
  assert(MI->isCandidateForCallSiteEntry() &&
         "Call site info refers only to call (MI) candidates");

  if (!Target.Options.EmitCallSiteInfo)
    return CallSitesInfo.end();
  return CallSitesInfo.find(MI);
}

/// Return the call machine instruction or find a call within bundle.
static const MachineInstr *getCallInstr(const MachineInstr *MI) {
  if (!MI->isBundle())
    return MI;

  for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
                              getBundleEnd(MI->getIterator())))
    if (BMI.isCandidateForCallSiteEntry())
      return &BMI;

  llvm_unreachable("Unexpected bundle without a call site candidate");
}

void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
  assert(MI->shouldUpdateCallSiteInfo() &&
         "Call site info refers only to call (MI) candidates or "
         "candidates inside bundles");

  const MachineInstr *CallMI = getCallInstr(MI);
  CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
  if (CSIt == CallSitesInfo.end())
    return;
  CallSitesInfo.erase(CSIt);
}

void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
                                       const MachineInstr *New) {
  assert(Old->shouldUpdateCallSiteInfo() &&
         "Call site info refers only to call (MI) candidates or "
         "candidates inside bundles");

  if (!New->isCandidateForCallSiteEntry())
    return eraseCallSiteInfo(Old);

  const MachineInstr *OldCallMI = getCallInstr(Old);
  CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
  if (CSIt == CallSitesInfo.end())
    return;

  CallSiteInfo CSInfo = CSIt->second;
  CallSitesInfo[New] = CSInfo;
}

void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
                                       const MachineInstr *New) {
  assert(Old->shouldUpdateCallSiteInfo() &&
         "Call site info refers only to call (MI) candidates or "
         "candidates inside bundles");

  if (!New->isCandidateForCallSiteEntry())
    return eraseCallSiteInfo(Old);

  const MachineInstr *OldCallMI = getCallInstr(Old);
  CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
  if (CSIt == CallSitesInfo.end())
    return;

  CallSiteInfo CSInfo = std::move(CSIt->second);
  CallSitesInfo.erase(CSIt);
  CallSitesInfo[New] = CSInfo;
}

void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
  DebugInstrNumberingCount = Num;
}

void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
                                                 DebugInstrOperandPair B,
                                                 unsigned Subreg) {
  // Catch any accidental self-loops.
  assert(A.first != B.first);
  // Don't allow any substitutions _from_ the memory operand number.
  assert(A.second != DebugOperandMemNumber);

  DebugValueSubstitutions.push_back({A, B, Subreg});
}

void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
                                                   MachineInstr &New,
                                                   unsigned MaxOperand) {
  // If the Old instruction wasn't tracked at all, there is no work to do.
  unsigned OldInstrNum = Old.peekDebugInstrNum();
  if (!OldInstrNum)
    return;

  // Iterate over all operands looking for defs to create substitutions for.
  // Avoid creating new instr numbers unless we create a new substitution.
  // While this has no functional effect, it risks confusing someone reading
  // MIR output.
  // Examine all the operands, or the first N specified by the caller.
  MaxOperand = std::min(MaxOperand, Old.getNumOperands());
  for (unsigned int I = 0; I < MaxOperand; ++I) {
    const auto &OldMO = Old.getOperand(I);
    auto &NewMO = New.getOperand(I);
    (void)NewMO;

    if (!OldMO.isReg() || !OldMO.isDef())
      continue;
    assert(NewMO.isDef());

    unsigned NewInstrNum = New.getDebugInstrNum();
    makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
                               std::make_pair(NewInstrNum, I));
  }
}

auto MachineFunction::salvageCopySSA(MachineInstr &MI)
    -> DebugInstrOperandPair {
  MachineRegisterInfo &MRI = getRegInfo();
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();

  // Chase the value read by a copy-like instruction back to the instruction
  // that ultimately _defines_ that value. This may pass:
  //  * Through multiple intermediate copies, including subregister moves /
  //    copies,
  //  * Copies from physical registers that must then be traced back to the
  //    defining instruction,
  //  * Or, physical registers may be live-in to (only) the entry block, which
  //    requires a DBG_PHI to be created.
  // We can pursue this problem in that order: trace back through copies,
  // optionally through a physical register, to a defining instruction. We
  // should never move from physreg to vreg. As we're still in SSA form, no need
  // to worry about partial definitions of registers.

  // Helper lambda to interpret a copy-like instruction. Takes instruction,
  // returns the register read and any subregister identifying which part is
  // read.
  auto GetRegAndSubreg =
      [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
    Register NewReg, OldReg;
    unsigned SubReg;
    if (Cpy.isCopy()) {
      OldReg = Cpy.getOperand(0).getReg();
      NewReg = Cpy.getOperand(1).getReg();
      SubReg = Cpy.getOperand(1).getSubReg();
    } else if (Cpy.isSubregToReg()) {
      OldReg = Cpy.getOperand(0).getReg();
      NewReg = Cpy.getOperand(2).getReg();
      SubReg = Cpy.getOperand(3).getImm();
    } else {
      auto CopyDetails = *TII.isCopyInstr(Cpy);
      const MachineOperand &Src = *CopyDetails.Source;
      const MachineOperand &Dest = *CopyDetails.Destination;
      OldReg = Dest.getReg();
      NewReg = Src.getReg();
      SubReg = Src.getSubReg();
    }

    return {NewReg, SubReg};
  };

  // First seek either the defining instruction, or a copy from a physreg.
  // During search, the current state is the current copy instruction, and which
  // register we've read. Accumulate qualifying subregisters into SubregsSeen;
  // deal with those later.
  auto State = GetRegAndSubreg(MI);
  auto CurInst = MI.getIterator();
  SmallVector<unsigned, 4> SubregsSeen;
  while (true) {
    // If we've found a copy from a physreg, first portion of search is over.
    if (!State.first.isVirtual())
      break;

    // Record any subregister qualifier.
    if (State.second)
      SubregsSeen.push_back(State.second);

    assert(MRI.hasOneDef(State.first));
    MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
    CurInst = Inst.getIterator();

    // Any non-copy instruction is the defining instruction we're seeking.
    if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
      break;
    State = GetRegAndSubreg(Inst);
  };

  // Helper lambda to apply additional subregister substitutions to a known
  // instruction/operand pair. Adds new (fake) substitutions so that we can
  // record the subregister. FIXME: this isn't very space efficient if multiple
  // values are tracked back through the same copies; cache something later.
  auto ApplySubregisters =
      [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
    for (unsigned Subreg : reverse(SubregsSeen)) {
      // Fetch a new instruction number, not attached to an actual instruction.
      unsigned NewInstrNumber = getNewDebugInstrNum();
      // Add a substitution from the "new" number to the known one, with a
      // qualifying subreg.
      makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
      // Return the new number; to find the underlying value, consumers need to
      // deal with the qualifying subreg.
      P = {NewInstrNumber, 0};
    }
    return P;
  };

  // If we managed to find the defining instruction after COPYs, return an
  // instruction / operand pair after adding subregister qualifiers.
  if (State.first.isVirtual()) {
    // Virtual register def -- we can just look up where this happens.
    MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
    for (auto &MO : Inst->operands()) {
      if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
        continue;
      return ApplySubregisters(
          {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
    }

    llvm_unreachable("Vreg def with no corresponding operand?");
  }

  // Our search ended in a copy from a physreg: walk back up the function
  // looking for whatever defines the physreg.
  assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
  State = GetRegAndSubreg(*CurInst);
  Register RegToSeek = State.first;

  auto RMII = CurInst->getReverseIterator();
  auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
  for (auto &ToExamine : PrevInstrs) {
    for (auto &MO : ToExamine.operands()) {
      // Test for operand that defines something aliasing RegToSeek.
      if (!MO.isReg() || !MO.isDef() ||
          !TRI.regsOverlap(RegToSeek, MO.getReg()))
        continue;

      return ApplySubregisters(
          {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
    }
  }

  MachineBasicBlock &InsertBB = *CurInst->getParent();

  // We reached the start of the block before finding a defining instruction.
  // It could be from a constant register, otherwise it must be an argument.
  if (TRI.isConstantPhysReg(State.first)) {
    // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
    // matter where we put it, as it's constant valued.
    assert(CurInst->isCopy());
  } else if (State.first == TRI.getFrameRegister(*this)) {
    // LLVM IR is allowed to read the framepointer by calling a
    // llvm.frameaddress.* intrinsic. We can support this by emitting a
    // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
    // position that DBG_PHIs appear at, limiting what can be done later.
    // TODO: see if there's a better way of expressing these variable
    // locations.
    ;
  } else {
    // Assert that this is the entry block, or an EH pad. If it isn't, then
    // there is some code construct we don't recognise that deals with physregs
    // across blocks.
    assert(!State.first.isVirtual());
    assert(&*InsertBB.getParent()->begin() == &InsertBB || InsertBB.isEHPad());
  }

  // Create DBG_PHI for specified physreg.
  auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
                         TII.get(TargetOpcode::DBG_PHI));
  Builder.addReg(State.first);
  unsigned NewNum = getNewDebugInstrNum();
  Builder.addImm(NewNum);
  return ApplySubregisters({NewNum, 0u});
}

void MachineFunction::finalizeDebugInstrRefs() {
  auto *TII = getSubtarget().getInstrInfo();

  auto MakeUndefDbgValue = [&](MachineInstr &MI) {
    const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
    MI.setDesc(RefII);
    MI.getOperand(0).setReg(0);
    MI.getOperand(1).ChangeToRegister(0, false);
  };

  for (auto &MBB : *this) {
    for (auto &MI : MBB) {
      if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
        continue;

      Register Reg = MI.getOperand(0).getReg();

      // Some vregs can be deleted as redundant in the meantime. Mark those
      // as DBG_VALUE $noreg. Additionally, some normal instructions are
      // quickly deleted, leaving dangling references to vregs with no def.
      if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
        MakeUndefDbgValue(MI);
        continue;
      }

      assert(Reg.isVirtual());
      MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);

      // If we've found a copy-like instruction, follow it back to the
      // instruction that defines the source value, see salvageCopySSA docs
      // for why this is important.
      if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
        auto Result = salvageCopySSA(DefMI);
        MI.getOperand(0).ChangeToImmediate(Result.first);
        MI.getOperand(1).setImm(Result.second);
      } else {
        // Otherwise, identify the operand number that the VReg refers to.
        unsigned OperandIdx = 0;
        for (const auto &MO : DefMI.operands()) {
          if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
            break;
          ++OperandIdx;
        }
        assert(OperandIdx < DefMI.getNumOperands());

        // Morph this instr ref to point at the given instruction and operand.
        unsigned ID = DefMI.getDebugInstrNum();
        MI.getOperand(0).ChangeToImmediate(ID);
        MI.getOperand(1).setImm(OperandIdx);
      }
    }
  }
}

bool MachineFunction::useDebugInstrRef() const {
  // Disable instr-ref at -O0: it's very slow (in compile time). We can still
  // have optimized code inlined into this unoptimized code, however with
  // fewer and less aggressive optimizations happening, coverage and accuracy
  // should not suffer.
  if (getTarget().getOptLevel() == CodeGenOpt::None)
    return false;

  // Don't use instr-ref if this function is marked optnone.
  if (F.hasFnAttribute(Attribute::OptimizeNone))
    return false;

  if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
    return true;

  return false;
}

// Use one million as a high / reserved number.
const unsigned MachineFunction::DebugOperandMemNumber = 1000000;

/// \}

//===----------------------------------------------------------------------===//
//  MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//

/// Return the size of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
  // The size of a jump table entry is 4 bytes unless the entry is just the
  // address of a block, in which case it is the pointer size.
  switch (getEntryKind()) {
  case MachineJumpTableInfo::EK_BlockAddress:
    return TD.getPointerSize();
  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    return 8;
  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
  case MachineJumpTableInfo::EK_LabelDifference32:
  case MachineJumpTableInfo::EK_Custom32:
    return 4;
  case MachineJumpTableInfo::EK_Inline:
    return 0;
  }
  llvm_unreachable("Unknown jump table encoding!");
}

/// Return the alignment of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
  // The alignment of a jump table entry is the alignment of int32 unless the
  // entry is just the address of a block, in which case it is the pointer
  // alignment.
  switch (getEntryKind()) {
  case MachineJumpTableInfo::EK_BlockAddress:
    return TD.getPointerABIAlignment(0).value();
  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
    return TD.getABIIntegerTypeAlignment(64).value();
  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
  case MachineJumpTableInfo::EK_LabelDifference32:
  case MachineJumpTableInfo::EK_Custom32:
    return TD.getABIIntegerTypeAlignment(32).value();
  case MachineJumpTableInfo::EK_Inline:
    return 1;
  }
  llvm_unreachable("Unknown jump table encoding!");
}

/// Create a new jump table entry in the jump table info.
unsigned MachineJumpTableInfo::createJumpTableIndex(
                               const std::vector<MachineBasicBlock*> &DestBBs) {
  assert(!DestBBs.empty() && "Cannot create an empty jump table!");
  JumpTables.push_back(MachineJumpTableEntry(DestBBs));
  return JumpTables.size()-1;
}

/// If Old is the target of any jump tables, update the jump tables to branch
/// to New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
                                                  MachineBasicBlock *New) {
  assert(Old != New && "Not making a change?");
  bool MadeChange = false;
  for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
    ReplaceMBBInJumpTable(i, Old, New);
  return MadeChange;
}

/// If MBB is present in any jump tables, remove it.
bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
  bool MadeChange = false;
  for (MachineJumpTableEntry &JTE : JumpTables) {
    auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
    MadeChange |= (removeBeginItr != JTE.MBBs.end());
    JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
  }
  return MadeChange;
}

/// If Old is a target of the jump tables, update the jump table to branch to
/// New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
                                                 MachineBasicBlock *Old,
                                                 MachineBasicBlock *New) {
  assert(Old != New && "Not making a change?");
  bool MadeChange = false;
  MachineJumpTableEntry &JTE = JumpTables[Idx];
  for (MachineBasicBlock *&MBB : JTE.MBBs)
    if (MBB == Old) {
      MBB = New;
      MadeChange = true;
    }
  return MadeChange;
}

void MachineJumpTableInfo::print(raw_ostream &OS) const {
  if (JumpTables.empty()) return;

  OS << "Jump Tables:\n";

  for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
    OS << printJumpTableEntryReference(i) << ':';
    for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
      OS << ' ' << printMBBReference(*MBB);
    if (i != e)
      OS << '\n';
  }

  OS << '\n';
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
#endif

Printable llvm::printJumpTableEntryReference(unsigned Idx) {
  return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
}

//===----------------------------------------------------------------------===//
//  MachineConstantPool implementation
//===----------------------------------------------------------------------===//

void MachineConstantPoolValue::anchor() {}

unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
  return DL.getTypeAllocSize(Ty);
}

unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
  if (isMachineConstantPoolEntry())
    return Val.MachineCPVal->getSizeInBytes(DL);
  return DL.getTypeAllocSize(Val.ConstVal->getType());
}

bool MachineConstantPoolEntry::needsRelocation() const {
  if (isMachineConstantPoolEntry())
    return true;
  return Val.ConstVal->needsDynamicRelocation();
}

SectionKind
MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
  if (needsRelocation())
    return SectionKind::getReadOnlyWithRel();
  switch (getSizeInBytes(*DL)) {
  case 4:
    return SectionKind::getMergeableConst4();
  case 8:
    return SectionKind::getMergeableConst8();
  case 16:
    return SectionKind::getMergeableConst16();
  case 32:
    return SectionKind::getMergeableConst32();
  default:
    return SectionKind::getReadOnly();
  }
}

MachineConstantPool::~MachineConstantPool() {
  // A constant may be a member of both Constants and MachineCPVsSharingEntries,
  // so keep track of which we've deleted to avoid double deletions.
  DenseSet<MachineConstantPoolValue*> Deleted;
  for (const MachineConstantPoolEntry &C : Constants)
    if (C.isMachineConstantPoolEntry()) {
      Deleted.insert(C.Val.MachineCPVal);
      delete C.Val.MachineCPVal;
    }
  for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
    if (Deleted.count(CPV) == 0)
      delete CPV;
  }
}

/// Test whether the given two constants can be allocated the same constant pool
/// entry.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
                                      const DataLayout &DL) {
  // Handle the trivial case quickly.
  if (A == B) return true;

  // If they have the same type but weren't the same constant, quickly
  // reject them.
  if (A->getType() == B->getType()) return false;

  // We can't handle structs or arrays.
  if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
      isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
    return false;

  // For now, only support constants with the same size.
  uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
  if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
    return false;

  Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);

  // Try constant folding a bitcast of both instructions to an integer.  If we
  // get two identical ConstantInt's, then we are good to share them.  We use
  // the constant folding APIs to do this so that we get the benefit of
  // DataLayout.
  if (isa<PointerType>(A->getType()))
    A = ConstantFoldCastOperand(Instruction::PtrToInt,
                                const_cast<Constant *>(A), IntTy, DL);
  else if (A->getType() != IntTy)
    A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
                                IntTy, DL);
  if (isa<PointerType>(B->getType()))
    B = ConstantFoldCastOperand(Instruction::PtrToInt,
                                const_cast<Constant *>(B), IntTy, DL);
  else if (B->getType() != IntTy)
    B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
                                IntTy, DL);

  return A == B;
}

/// Create a new entry in the constant pool or return an existing one.
/// User must specify the log2 of the minimum required alignment for the object.
unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
                                                   Align Alignment) {
  if (Alignment > PoolAlignment) PoolAlignment = Alignment;

  // Check to see if we already have this constant.
  //
  // FIXME, this could be made much more efficient for large constant pools.
  for (unsigned i = 0, e = Constants.size(); i != e; ++i)
    if (!Constants[i].isMachineConstantPoolEntry() &&
        CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
      if (Constants[i].getAlign() < Alignment)
        Constants[i].Alignment = Alignment;
      return i;
    }

  Constants.push_back(MachineConstantPoolEntry(C, Alignment));
  return Constants.size()-1;
}

unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
                                                   Align Alignment) {
  if (Alignment > PoolAlignment) PoolAlignment = Alignment;

  // Check to see if we already have this constant.
  //
  // FIXME, this could be made much more efficient for large constant pools.
  int Idx = V->getExistingMachineCPValue(this, Alignment);
  if (Idx != -1) {
    MachineCPVsSharingEntries.insert(V);
    return (unsigned)Idx;
  }

  Constants.push_back(MachineConstantPoolEntry(V, Alignment));
  return Constants.size()-1;
}

void MachineConstantPool::print(raw_ostream &OS) const {
  if (Constants.empty()) return;

  OS << "Constant Pool:\n";
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    OS << "  cp#" << i << ": ";
    if (Constants[i].isMachineConstantPoolEntry())
      Constants[i].Val.MachineCPVal->print(OS);
    else
      Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
    OS << ", align=" << Constants[i].getAlign().value();
    OS << "\n";
  }
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
#endif