aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64CallLowering.cpp
blob: bb6c7938791eedda106707e2a7ea866bdc49d1e9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
//===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AArch64CallLowering.h"
#include "AArch64ISelLowering.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>

#define DEBUG_TYPE "aarch64-call-lowering"

using namespace llvm;

AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
  : CallLowering(&TLI) {}

static void applyStackPassedSmallTypeDAGHack(EVT OrigVT, MVT &ValVT,
                                             MVT &LocVT) {
  // If ValVT is i1/i8/i16, we should set LocVT to i8/i8/i16. This is a legacy
  // hack because the DAG calls the assignment function with pre-legalized
  // register typed values, not the raw type.
  //
  // This hack is not applied to return values which are not passed on the
  // stack.
  if (OrigVT == MVT::i1 || OrigVT == MVT::i8)
    ValVT = LocVT = MVT::i8;
  else if (OrigVT == MVT::i16)
    ValVT = LocVT = MVT::i16;
}

// Account for i1/i8/i16 stack passed value hack
static LLT getStackValueStoreTypeHack(const CCValAssign &VA) {
  const MVT ValVT = VA.getValVT();
  return (ValVT == MVT::i8 || ValVT == MVT::i16) ? LLT(ValVT)
                                                 : LLT(VA.getLocVT());
}

namespace {

struct AArch64IncomingValueAssigner
    : public CallLowering::IncomingValueAssigner {
  AArch64IncomingValueAssigner(CCAssignFn *AssignFn_,
                               CCAssignFn *AssignFnVarArg_)
      : IncomingValueAssigner(AssignFn_, AssignFnVarArg_) {}

  bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
    return IncomingValueAssigner::assignArg(ValNo, OrigVT, ValVT, LocVT,
                                            LocInfo, Info, Flags, State);
  }
};

struct AArch64OutgoingValueAssigner
    : public CallLowering::OutgoingValueAssigner {
  const AArch64Subtarget &Subtarget;

  /// Track if this is used for a return instead of function argument
  /// passing. We apply a hack to i1/i8/i16 stack passed values, but do not use
  /// stack passed returns for them and cannot apply the type adjustment.
  bool IsReturn;

  AArch64OutgoingValueAssigner(CCAssignFn *AssignFn_,
                               CCAssignFn *AssignFnVarArg_,
                               const AArch64Subtarget &Subtarget_,
                               bool IsReturn)
      : OutgoingValueAssigner(AssignFn_, AssignFnVarArg_),
        Subtarget(Subtarget_), IsReturn(IsReturn) {}

  bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    bool IsCalleeWin = Subtarget.isCallingConvWin64(State.getCallingConv());
    bool UseVarArgsCCForFixed = IsCalleeWin && State.isVarArg();

    if (!State.isVarArg() && !UseVarArgsCCForFixed && !IsReturn)
      applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);

    bool Res;
    if (Info.IsFixed && !UseVarArgsCCForFixed)
      Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
    else
      Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);

    StackOffset = State.getNextStackOffset();
    return Res;
  }
};

struct IncomingArgHandler : public CallLowering::IncomingValueHandler {
  IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
      : IncomingValueHandler(MIRBuilder, MRI) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO,
                           ISD::ArgFlagsTy Flags) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();

    // Byval is assumed to be writable memory, but other stack passed arguments
    // are not.
    const bool IsImmutable = !Flags.isByVal();

    int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
    return AddrReg.getReg(0);
  }

  LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const override {
    // For pointers, we just need to fixup the integer types reported in the
    // CCValAssign.
    if (Flags.isPointer())
      return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags);
    return getStackValueStoreTypeHack(VA);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign VA) override {
    markPhysRegUsed(PhysReg);
    IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();

    LLT ValTy(VA.getValVT());
    LLT LocTy(VA.getLocVT());

    // Fixup the types for the DAG compatibility hack.
    if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16)
      std::swap(ValTy, LocTy);
    else {
      // The calling code knows if this is a pointer or not, we're only touching
      // the LocTy for the i8/i16 hack.
      assert(LocTy.getSizeInBits() == MemTy.getSizeInBits());
      LocTy = MemTy;
    }

    auto MMO = MF.getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, LocTy,
        inferAlignFromPtrInfo(MF, MPO));

    switch (VA.getLocInfo()) {
    case CCValAssign::LocInfo::ZExt:
      MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, ValVReg, Addr, *MMO);
      return;
    case CCValAssign::LocInfo::SExt:
      MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, ValVReg, Addr, *MMO);
      return;
    default:
      MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
      return;
    }
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(MCRegister PhysReg) = 0;
};

struct FormalArgHandler : public IncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
      : IncomingArgHandler(MIRBuilder, MRI) {}

  void markPhysRegUsed(MCRegister PhysReg) override {
    MIRBuilder.getMRI()->addLiveIn(PhysReg);
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

struct CallReturnHandler : public IncomingArgHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    MachineInstrBuilder MIB)
      : IncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}

  void markPhysRegUsed(MCRegister PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

  MachineInstrBuilder MIB;
};

/// A special return arg handler for "returned" attribute arg calls.
struct ReturnedArgCallReturnHandler : public CallReturnHandler {
  ReturnedArgCallReturnHandler(MachineIRBuilder &MIRBuilder,
                               MachineRegisterInfo &MRI,
                               MachineInstrBuilder MIB)
      : CallReturnHandler(MIRBuilder, MRI, MIB) {}

  void markPhysRegUsed(MCRegister PhysReg) override {}
};

struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler {
  OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                     MachineInstrBuilder MIB, bool IsTailCall = false,
                     int FPDiff = 0)
      : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), IsTailCall(IsTailCall),
        FPDiff(FPDiff),
        Subtarget(MIRBuilder.getMF().getSubtarget<AArch64Subtarget>()) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO,
                           ISD::ArgFlagsTy Flags) override {
    MachineFunction &MF = MIRBuilder.getMF();
    LLT p0 = LLT::pointer(0, 64);
    LLT s64 = LLT::scalar(64);

    if (IsTailCall) {
      assert(!Flags.isByVal() && "byval unhandled with tail calls");

      Offset += FPDiff;
      int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
      auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
      MPO = MachinePointerInfo::getFixedStack(MF, FI);
      return FIReg.getReg(0);
    }

    if (!SPReg)
      SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);

    auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);

    auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);

    MPO = MachinePointerInfo::getStack(MF, Offset);
    return AddrReg.getReg(0);
  }

  /// We need to fixup the reported store size for certain value types because
  /// we invert the interpretation of ValVT and LocVT in certain cases. This is
  /// for compatability with the DAG call lowering implementation, which we're
  /// currently building on top of.
  LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const override {
    if (Flags.isPointer())
      return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags);
    return getStackValueStoreTypeHack(VA);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign VA) override {
    MIB.addUse(PhysReg, RegState::Implicit);
    Register ExtReg = extendRegister(ValVReg, VA);
    MIRBuilder.buildCopy(PhysReg, ExtReg);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();
    auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy,
                                       inferAlignFromPtrInfo(MF, MPO));
    MIRBuilder.buildStore(ValVReg, Addr, *MMO);
  }

  void assignValueToAddress(const CallLowering::ArgInfo &Arg, unsigned RegIndex,
                            Register Addr, LLT MemTy, MachinePointerInfo &MPO,
                            CCValAssign &VA) override {
    unsigned MaxSize = MemTy.getSizeInBytes() * 8;
    // For varargs, we always want to extend them to 8 bytes, in which case
    // we disable setting a max.
    if (!Arg.IsFixed)
      MaxSize = 0;

    Register ValVReg = Arg.Regs[RegIndex];
    if (VA.getLocInfo() != CCValAssign::LocInfo::FPExt) {
      MVT LocVT = VA.getLocVT();
      MVT ValVT = VA.getValVT();

      if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) {
        std::swap(ValVT, LocVT);
        MemTy = LLT(VA.getValVT());
      }

      ValVReg = extendRegister(ValVReg, VA, MaxSize);
    } else {
      // The store does not cover the full allocated stack slot.
      MemTy = LLT(VA.getValVT());
    }

    assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
  }

  MachineInstrBuilder MIB;

  bool IsTailCall;

  /// For tail calls, the byte offset of the call's argument area from the
  /// callee's. Unused elsewhere.
  int FPDiff;

  // Cache the SP register vreg if we need it more than once in this call site.
  Register SPReg;

  const AArch64Subtarget &Subtarget;
};
} // namespace

static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
  return (CallConv == CallingConv::Fast && TailCallOpt) ||
         CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail;
}

bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                      const Value *Val,
                                      ArrayRef<Register> VRegs,
                                      FunctionLoweringInfo &FLI,
                                      Register SwiftErrorVReg) const {
  auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
  assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
         "Return value without a vreg");

  bool Success = true;
  if (!VRegs.empty()) {
    MachineFunction &MF = MIRBuilder.getMF();
    const Function &F = MF.getFunction();
    const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();

    MachineRegisterInfo &MRI = MF.getRegInfo();
    const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
    CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
    auto &DL = F.getParent()->getDataLayout();
    LLVMContext &Ctx = Val->getType()->getContext();

    SmallVector<EVT, 4> SplitEVTs;
    ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
    assert(VRegs.size() == SplitEVTs.size() &&
           "For each split Type there should be exactly one VReg.");

    SmallVector<ArgInfo, 8> SplitArgs;
    CallingConv::ID CC = F.getCallingConv();

    for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
      Register CurVReg = VRegs[i];
      ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx), 0};
      setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);

      // i1 is a special case because SDAG i1 true is naturally zero extended
      // when widened using ANYEXT. We need to do it explicitly here.
      if (MRI.getType(CurVReg).getSizeInBits() == 1) {
        CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
      } else if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) ==
                 1) {
        // Some types will need extending as specified by the CC.
        MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
        if (EVT(NewVT) != SplitEVTs[i]) {
          unsigned ExtendOp = TargetOpcode::G_ANYEXT;
          if (F.getAttributes().hasRetAttr(Attribute::SExt))
            ExtendOp = TargetOpcode::G_SEXT;
          else if (F.getAttributes().hasRetAttr(Attribute::ZExt))
            ExtendOp = TargetOpcode::G_ZEXT;

          LLT NewLLT(NewVT);
          LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
          CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
          // Instead of an extend, we might have a vector type which needs
          // padding with more elements, e.g. <2 x half> -> <4 x half>.
          if (NewVT.isVector()) {
            if (OldLLT.isVector()) {
              if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
                // We don't handle VA types which are not exactly twice the
                // size, but can easily be done in future.
                if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
                  LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
                  return false;
                }
                auto Undef = MIRBuilder.buildUndef({OldLLT});
                CurVReg =
                    MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
              } else {
                // Just do a vector extend.
                CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
                              .getReg(0);
              }
            } else if (NewLLT.getNumElements() == 2) {
              // We need to pad a <1 x S> type to <2 x S>. Since we don't have
              // <1 x S> vector types in GISel we use a build_vector instead
              // of a vector merge/concat.
              auto Undef = MIRBuilder.buildUndef({OldLLT});
              CurVReg =
                  MIRBuilder
                      .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
                      .getReg(0);
            } else {
              LLVM_DEBUG(dbgs() << "Could not handle ret ty\n");
              return false;
            }
          } else {
            // If the split EVT was a <1 x T> vector, and NewVT is T, then we
            // don't have to do anything since we don't distinguish between the
            // two.
            if (NewLLT != MRI.getType(CurVReg)) {
              // A scalar extend.
              CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
                            .getReg(0);
            }
          }
        }
      }
      if (CurVReg != CurArgInfo.Regs[0]) {
        CurArgInfo.Regs[0] = CurVReg;
        // Reset the arg flags after modifying CurVReg.
        setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
      }
      splitToValueTypes(CurArgInfo, SplitArgs, DL, CC);
    }

    AArch64OutgoingValueAssigner Assigner(AssignFn, AssignFn, Subtarget,
                                          /*IsReturn*/ true);
    OutgoingArgHandler Handler(MIRBuilder, MRI, MIB);
    Success = determineAndHandleAssignments(Handler, Assigner, SplitArgs,
                                            MIRBuilder, CC, F.isVarArg());
  }

  if (SwiftErrorVReg) {
    MIB.addUse(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
  }

  MIRBuilder.insertInstr(MIB);
  return Success;
}

/// Helper function to compute forwarded registers for musttail calls. Computes
/// the forwarded registers, sets MBB liveness, and emits COPY instructions that
/// can be used to save + restore registers later.
static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
                                             CCAssignFn *AssignFn) {
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineFunction &MF = MIRBuilder.getMF();
  MachineFrameInfo &MFI = MF.getFrameInfo();

  if (!MFI.hasMustTailInVarArgFunc())
    return;

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  const Function &F = MF.getFunction();
  assert(F.isVarArg() && "Expected F to be vararg?");

  // Compute the set of forwarded registers. The rest are scratch.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
                 F.getContext());
  SmallVector<MVT, 2> RegParmTypes;
  RegParmTypes.push_back(MVT::i64);
  RegParmTypes.push_back(MVT::f128);

  // Later on, we can use this vector to restore the registers if necessary.
  SmallVectorImpl<ForwardedRegister> &Forwards =
      FuncInfo->getForwardedMustTailRegParms();
  CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);

  // Conservatively forward X8, since it might be used for an aggregate
  // return.
  if (!CCInfo.isAllocated(AArch64::X8)) {
    Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
    Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
  }

  // Add the forwards to the MachineBasicBlock and MachineFunction.
  for (const auto &F : Forwards) {
    MBB.addLiveIn(F.PReg);
    MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
  }
}

bool AArch64CallLowering::fallBackToDAGISel(const MachineFunction &MF) const {
  auto &F = MF.getFunction();
  if (isa<ScalableVectorType>(F.getReturnType()))
    return true;
  if (llvm::any_of(F.args(), [](const Argument &A) {
        return isa<ScalableVectorType>(A.getType());
      }))
    return true;
  const auto &ST = MF.getSubtarget<AArch64Subtarget>();
  if (!ST.hasNEON() || !ST.hasFPARMv8()) {
    LLVM_DEBUG(dbgs() << "Falling back to SDAG because we don't support no-NEON\n");
    return true;
  }
  return false;
}

bool AArch64CallLowering::lowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs, FunctionLoweringInfo &FLI) const {
  MachineFunction &MF = MIRBuilder.getMF();
  MachineBasicBlock &MBB = MIRBuilder.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();

  SmallVector<ArgInfo, 8> SplitArgs;
  SmallVector<std::pair<Register, Register>> BoolArgs;
  unsigned i = 0;
  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()).isZero())
      continue;

    ArgInfo OrigArg{VRegs[i], Arg, i};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);

    // i1 arguments are zero-extended to i8 by the caller. Emit a
    // hint to reflect this.
    if (OrigArg.Ty->isIntegerTy(1)) {
      assert(OrigArg.Regs.size() == 1 &&
             MRI.getType(OrigArg.Regs[0]).getSizeInBits() == 1 &&
             "Unexpected registers used for i1 arg");

      if (!OrigArg.Flags[0].isZExt()) {
        // Lower i1 argument as i8, and insert AssertZExt + Trunc later.
        Register OrigReg = OrigArg.Regs[0];
        Register WideReg = MRI.createGenericVirtualRegister(LLT::scalar(8));
        OrigArg.Regs[0] = WideReg;
        BoolArgs.push_back({OrigReg, WideReg});
      }
    }

    if (Arg.hasAttribute(Attribute::SwiftAsync))
      MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);

    splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv());
    ++i;
  }

  if (!MBB.empty())
    MIRBuilder.setInstr(*MBB.begin());

  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *AssignFn =
      TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);

  AArch64IncomingValueAssigner Assigner(AssignFn, AssignFn);
  FormalArgHandler Handler(MIRBuilder, MRI);
  if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
                                     F.getCallingConv(), F.isVarArg()))
    return false;

  if (!BoolArgs.empty()) {
    for (auto &KV : BoolArgs) {
      Register OrigReg = KV.first;
      Register WideReg = KV.second;
      LLT WideTy = MRI.getType(WideReg);
      assert(MRI.getType(OrigReg).getScalarSizeInBits() == 1 &&
             "Unexpected bit size of a bool arg");
      MIRBuilder.buildTrunc(
          OrigReg, MIRBuilder.buildAssertZExt(WideTy, WideReg, 1).getReg(0));
    }
  }

  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  uint64_t StackOffset = Assigner.StackOffset;
  if (F.isVarArg()) {
    auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
    if (!Subtarget.isTargetDarwin()) {
        // FIXME: we need to reimplement saveVarArgsRegisters from
      // AArch64ISelLowering.
      return false;
    }

    // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
    StackOffset =
        alignTo(Assigner.StackOffset, Subtarget.isTargetILP32() ? 4 : 8);

    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
  }

  if (doesCalleeRestoreStack(F.getCallingConv(),
                             MF.getTarget().Options.GuaranteedTailCallOpt)) {
    // We have a non-standard ABI, so why not make full use of the stack that
    // we're going to pop? It must be aligned to 16 B in any case.
    StackOffset = alignTo(StackOffset, 16);

    // If we're expected to restore the stack (e.g. fastcc), then we'll be
    // adding a multiple of 16.
    FuncInfo->setArgumentStackToRestore(StackOffset);

    // Our own callers will guarantee that the space is free by giving an
    // aligned value to CALLSEQ_START.
  }

  // When we tail call, we need to check if the callee's arguments
  // will fit on the caller's stack. So, whenever we lower formal arguments,
  // we should keep track of this information, since we might lower a tail call
  // in this function later.
  FuncInfo->setBytesInStackArgArea(StackOffset);

  auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  if (Subtarget.hasCustomCallingConv())
    Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);

  handleMustTailForwardedRegisters(MIRBuilder, AssignFn);

  // Move back to the end of the basic block.
  MIRBuilder.setMBB(MBB);

  return true;
}

/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
  return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
         CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
}

/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
  switch (CC) {
  case CallingConv::C:
  case CallingConv::PreserveMost:
  case CallingConv::Swift:
  case CallingConv::SwiftTail:
  case CallingConv::Tail:
  case CallingConv::Fast:
    return true;
  default:
    return false;
  }
}

/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
/// CC.
static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
  return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
}

bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &InArgs) const {
  const Function &CallerF = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();

  // If the calling conventions match, then everything must be the same.
  if (CalleeCC == CallerCC)
    return true;

  // Check if the caller and callee will handle arguments in the same way.
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  CCAssignFn *CalleeAssignFnFixed;
  CCAssignFn *CalleeAssignFnVarArg;
  std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
      getAssignFnsForCC(CalleeCC, TLI);

  CCAssignFn *CallerAssignFnFixed;
  CCAssignFn *CallerAssignFnVarArg;
  std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
      getAssignFnsForCC(CallerCC, TLI);

  AArch64IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
                                              CalleeAssignFnVarArg);
  AArch64IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
                                              CallerAssignFnVarArg);

  if (!resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner))
    return false;

  // Make sure that the caller and callee preserve all of the same registers.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
  const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
    TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
    TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
  }

  return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
}

bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
    CallLoweringInfo &Info, MachineFunction &MF,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  // If there are no outgoing arguments, then we are done.
  if (OutArgs.empty())
    return true;

  const Function &CallerF = MF.getFunction();
  LLVMContext &Ctx = CallerF.getContext();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();

  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  // We have outgoing arguments. Make sure that we can tail call with them.
  SmallVector<CCValAssign, 16> OutLocs;
  CCState OutInfo(CalleeCC, false, MF, OutLocs, Ctx);

  AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
                                              Subtarget, /*IsReturn*/ false);
  if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) {
    LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
    return false;
  }

  // Make sure that they can fit on the caller's stack.
  const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
  if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
    LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
    return false;
  }

  // Verify that the parameters in callee-saved registers match.
  // TODO: Port this over to CallLowering as general code once swiftself is
  // supported.
  auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
  const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
  MachineRegisterInfo &MRI = MF.getRegInfo();

  if (Info.IsVarArg) {
    // Be conservative and disallow variadic memory operands to match SDAG's
    // behaviour.
    // FIXME: If the caller's calling convention is C, then we can
    // potentially use its argument area. However, for cases like fastcc,
    // we can't do anything.
    for (unsigned i = 0; i < OutLocs.size(); ++i) {
      auto &ArgLoc = OutLocs[i];
      if (ArgLoc.isRegLoc())
        continue;

      LLVM_DEBUG(
          dbgs()
          << "... Cannot tail call vararg function with stack arguments\n");
      return false;
    }
  }

  return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
}

bool AArch64CallLowering::isEligibleForTailCallOptimization(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &InArgs,
    SmallVectorImpl<ArgInfo> &OutArgs) const {

  // Must pass all target-independent checks in order to tail call optimize.
  if (!Info.IsTailCall)
    return false;

  CallingConv::ID CalleeCC = Info.CallConv;
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &CallerF = MF.getFunction();

  LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");

  if (Info.SwiftErrorVReg) {
    // TODO: We should handle this.
    // Note that this is also handled by the check for no outgoing arguments.
    // Proactively disabling this though, because the swifterror handling in
    // lowerCall inserts a COPY *after* the location of the call.
    LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
    return false;
  }

  if (!mayTailCallThisCC(CalleeCC)) {
    LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
    return false;
  }

  // Byval parameters hand the function a pointer directly into the stack area
  // we want to reuse during a tail call. Working around this *is* possible (see
  // X86).
  //
  // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
  // it?
  //
  // On Windows, "inreg" attributes signify non-aggregate indirect returns.
  // In this case, it is necessary to save/restore X0 in the callee. Tail
  // call opt interferes with this. So we disable tail call opt when the
  // caller has an argument with "inreg" attribute.
  //
  // FIXME: Check whether the callee also has an "inreg" argument.
  //
  // When the caller has a swifterror argument, we don't want to tail call
  // because would have to move into the swifterror register before the
  // tail call.
  if (any_of(CallerF.args(), [](const Argument &A) {
        return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
      })) {
    LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
                         "inreg, or swifterror arguments\n");
    return false;
  }

  // Externally-defined functions with weak linkage should not be
  // tail-called on AArch64 when the OS does not support dynamic
  // pre-emption of symbols, as the AAELF spec requires normal calls
  // to undefined weak functions to be replaced with a NOP or jump to the
  // next instruction. The behaviour of branch instructions in this
  // situation (as used for tail calls) is implementation-defined, so we
  // cannot rely on the linker replacing the tail call with a return.
  if (Info.Callee.isGlobal()) {
    const GlobalValue *GV = Info.Callee.getGlobal();
    const Triple &TT = MF.getTarget().getTargetTriple();
    if (GV->hasExternalWeakLinkage() &&
        (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
         TT.isOSBinFormatMachO())) {
      LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
                           "with weak linkage for this OS.\n");
      return false;
    }
  }

  // If we have -tailcallopt, then we're done.
  if (canGuaranteeTCO(CalleeCC, MF.getTarget().Options.GuaranteedTailCallOpt))
    return CalleeCC == CallerF.getCallingConv();

  // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
  // Try to find cases where we can do that.

  // I want anyone implementing a new calling convention to think long and hard
  // about this assert.
  assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
         "Unexpected variadic calling convention");

  // Verify that the incoming and outgoing arguments from the callee are
  // safe to tail call.
  if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
    LLVM_DEBUG(
        dbgs()
        << "... Caller and callee have incompatible calling conventions.\n");
    return false;
  }

  if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
    return false;

  LLVM_DEBUG(
      dbgs() << "... Call is eligible for tail call optimization.\n");
  return true;
}

static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
                              bool IsTailCall) {
  if (!IsTailCall)
    return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;

  if (!IsIndirect)
    return AArch64::TCRETURNdi;

  // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
  // x16 or x17.
  if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
    return AArch64::TCRETURNriBTI;

  return AArch64::TCRETURNri;
}

static const uint32_t *
getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> &OutArgs,
               AArch64CallLowering::CallLoweringInfo &Info,
               const AArch64RegisterInfo &TRI, MachineFunction &MF) {
  const uint32_t *Mask;
  if (!OutArgs.empty() && OutArgs[0].Flags[0].isReturned()) {
    // For 'this' returns, use the X0-preserving mask if applicable
    Mask = TRI.getThisReturnPreservedMask(MF, Info.CallConv);
    if (!Mask) {
      OutArgs[0].Flags[0].setReturned(false);
      Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
    }
  } else {
    Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
  }
  return Mask;
}

bool AArch64CallLowering::lowerTailCall(
    MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
    SmallVectorImpl<ArgInfo> &OutArgs) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
  AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();

  // True when we're tail calling, but without -tailcallopt.
  bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt &&
                   Info.CallConv != CallingConv::Tail &&
                   Info.CallConv != CallingConv::SwiftTail;

  // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
  // register class. Until we can do that, we should fall back here.
  if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) {
    LLVM_DEBUG(
        dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
    return false;
  }

  // Find out which ABI gets to decide where things go.
  CallingConv::ID CalleeCC = Info.CallConv;
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);

  MachineInstrBuilder CallSeqStart;
  if (!IsSibCall)
    CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.add(Info.Callee);

  // Byte offset for the tail call. When we are sibcalling, this will always
  // be 0.
  MIB.addImm(0);

  // Tell the call which registers are clobbered.
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  auto TRI = Subtarget.getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
  if (Subtarget.hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // FPDiff is the byte offset of the call's argument area from the callee's.
  // Stores to callee stack arguments will be placed in FixedStackSlots offset
  // by this amount for a tail call. In a sibling call it must be 0 because the
  // caller will deallocate the entire stack and the callee still expects its
  // arguments to begin at SP+0.
  int FPDiff = 0;

  // This will be 0 for sibcalls, potentially nonzero for tail calls produced
  // by -tailcallopt. For sibcalls, the memory operands for the call are
  // already available in the caller's incoming argument space.
  unsigned NumBytes = 0;
  if (!IsSibCall) {
    // We aren't sibcalling, so we need to compute FPDiff. We need to do this
    // before handling assignments, because FPDiff must be known for memory
    // arguments.
    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
    SmallVector<CCValAssign, 16> OutLocs;
    CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());

    AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
                                                Subtarget, /*IsReturn*/ false);
    if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
      return false;

    // The callee will pop the argument stack as a tail call. Thus, we must
    // keep it 16-byte aligned.
    NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);

    // FPDiff will be negative if this tail call requires more space than we
    // would automatically have in our incoming argument space. Positive if we
    // actually shrink the stack.
    FPDiff = NumReusableBytes - NumBytes;

    // Update the required reserved area if this is the tail call requiring the
    // most argument stack space.
    if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
      FuncInfo->setTailCallReservedStack(-FPDiff);

    // The stack pointer must be 16-byte aligned at all times it's used for a
    // memory operation, which in practice means at *all* times and in
    // particular across call boundaries. Therefore our own arguments started at
    // a 16-byte aligned SP and the delta applied for the tail call should
    // satisfy the same constraint.
    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
  }

  const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();

  AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
                                        Subtarget, /*IsReturn*/ false);

  // Do the actual argument marshalling.
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB,
                             /*IsTailCall*/ true, FPDiff);
  if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
                                     CalleeCC, Info.IsVarArg))
    return false;

  Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);

  if (Info.IsVarArg && Info.IsMustTailCall) {
    // Now we know what's being passed to the function. Add uses to the call for
    // the forwarded registers that we *aren't* passing as parameters. This will
    // preserve the copies we build earlier.
    for (const auto &F : Forwards) {
      Register ForwardedReg = F.PReg;
      // If the register is already passed, or aliases a register which is
      // already being passed, then skip it.
      if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
            if (!Use.isReg())
              return false;
            return TRI->regsOverlap(Use.getReg(), ForwardedReg);
          }))
        continue;

      // We aren't passing it already, so we should add it to the call.
      MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
      MIB.addReg(ForwardedReg, RegState::Implicit);
    }
  }

  // If we have -tailcallopt, we need to adjust the stack. We'll do the call
  // sequence start and end here.
  if (!IsSibCall) {
    MIB->getOperand(1).setImm(FPDiff);
    CallSeqStart.addImm(0).addImm(0);
    // End the call sequence *before* emitting the call. Normally, we would
    // tidy the frame up after the call. However, here, we've laid out the
    // parameters so that when SP is reset, they will be in the correct
    // location.
    MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(0).addImm(0);
  }

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific instruction,
  // it must have a register class matching the constraint of that instruction.
  if (Info.Callee.isReg())
    constrainOperandRegClass(MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
                             *MF.getSubtarget().getRegBankInfo(), *MIB,
                             MIB->getDesc(), Info.Callee, 0);

  MF.getFrameInfo().setHasTailCall();
  Info.LoweredTailCall = true;
  return true;
}

bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
                                    CallLoweringInfo &Info) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  auto &DL = F.getParent()->getDataLayout();
  const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();

  SmallVector<ArgInfo, 8> OutArgs;
  for (auto &OrigArg : Info.OrigArgs) {
    splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
    // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
    if (OrigArg.Ty->isIntegerTy(1)) {
      ArgInfo &OutArg = OutArgs.back();
      assert(OutArg.Regs.size() == 1 &&
             MRI.getType(OutArg.Regs[0]).getSizeInBits() == 1 &&
             "Unexpected registers used for i1 arg");

      // We cannot use a ZExt ArgInfo flag here, because it will
      // zero-extend the argument to i32 instead of just i8.
      OutArg.Regs[0] =
          MIRBuilder.buildZExt(LLT::scalar(8), OutArg.Regs[0]).getReg(0);
      LLVMContext &Ctx = MF.getFunction().getContext();
      OutArg.Ty = Type::getInt8Ty(Ctx);
    }
  }

  SmallVector<ArgInfo, 8> InArgs;
  if (!Info.OrigRet.Ty->isVoidTy())
    splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);

  // If we can lower as a tail call, do that instead.
  bool CanTailCallOpt =
      isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);

  // We must emit a tail call if we have musttail.
  if (Info.IsMustTailCall && !CanTailCallOpt) {
    // There are types of incoming/outgoing arguments we can't handle yet, so
    // it doesn't make sense to actually die here like in ISelLowering. Instead,
    // fall back to SelectionDAG and let it try to handle this.
    LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
    return false;
  }

  Info.IsTailCall = CanTailCallOpt;
  if (CanTailCallOpt)
    return lowerTailCall(MIRBuilder, Info, OutArgs);

  // Find out which ABI gets to decide where things go.
  CCAssignFn *AssignFnFixed;
  CCAssignFn *AssignFnVarArg;
  std::tie(AssignFnFixed, AssignFnVarArg) =
      getAssignFnsForCC(Info.CallConv, TLI);

  MachineInstrBuilder CallSeqStart;
  CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);

  // Create a temporarily-floating call instruction so we can add the implicit
  // uses of arg registers.
  const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
  unsigned Opc = 0;
  // A call to a returns twice function like setjmp must be followed by a bti
  // instruction.
  if (Info.CB && Info.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
      !Subtarget.noBTIAtReturnTwice() &&
      MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
    Opc = AArch64::BLR_BTI;
  else
    Opc = getCallOpcode(MF, Info.Callee.isReg(), false);

  auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
  MIB.add(Info.Callee);

  // Tell the call which registers are clobbered.
  const uint32_t *Mask;
  const auto *TRI = Subtarget.getRegisterInfo();

  AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
                                        Subtarget, /*IsReturn*/ false);
  // Do the actual argument marshalling.
  OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, /*IsReturn*/ false);
  if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
                                     Info.CallConv, Info.IsVarArg))
    return false;

  Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);

  if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
    TRI->UpdateCustomCallPreservedMask(MF, &Mask);
  MIB.addRegMask(Mask);

  if (TRI->isAnyArgRegReserved(MF))
    TRI->emitReservedArgRegCallError(MF);

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  // If Callee is a reg, since it is used by a target specific
  // instruction, it must have a register class matching the
  // constraint of that instruction.
  if (Info.Callee.isReg())
    constrainOperandRegClass(MF, *TRI, MRI, *Subtarget.getInstrInfo(),
                             *Subtarget.getRegBankInfo(), *MIB, MIB->getDesc(),
                             Info.Callee, 0);

  // Finally we can copy the returned value back into its virtual-register. In
  // symmetry with the arguments, the physical register must be an
  // implicit-define of the call instruction.
  if (!Info.OrigRet.Ty->isVoidTy()) {
    CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
    CallReturnHandler Handler(MIRBuilder, MRI, MIB);
    bool UsingReturnedArg =
        !OutArgs.empty() && OutArgs[0].Flags[0].isReturned();

    AArch64OutgoingValueAssigner Assigner(RetAssignFn, RetAssignFn, Subtarget,
                                          /*IsReturn*/ false);
    ReturnedArgCallReturnHandler ReturnedArgHandler(MIRBuilder, MRI, MIB);
    if (!determineAndHandleAssignments(
            UsingReturnedArg ? ReturnedArgHandler : Handler, Assigner, InArgs,
            MIRBuilder, Info.CallConv, Info.IsVarArg,
            UsingReturnedArg ? makeArrayRef(OutArgs[0].Regs) : None))
      return false;
  }

  if (Info.SwiftErrorVReg) {
    MIB.addDef(AArch64::X21, RegState::Implicit);
    MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
  }

  uint64_t CalleePopBytes =
      doesCalleeRestoreStack(Info.CallConv,
                             MF.getTarget().Options.GuaranteedTailCallOpt)
          ? alignTo(Assigner.StackOffset, 16)
          : 0;

  CallSeqStart.addImm(Assigner.StackOffset).addImm(0);
  MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
      .addImm(Assigner.StackOffset)
      .addImm(CalleePopBytes);

  return true;
}

bool AArch64CallLowering::isTypeIsValidForThisReturn(EVT Ty) const {
  return Ty.getSizeInBits() == 64;
}