aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfo.td
blob: edc08187d8f775a08ce8f98c7590fde60ed0d7bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
//===-- RISCVInstrInfo.td - Target Description for RISC-V --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//

// Target-independent type requirements, but with target-specific formats.
def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
                                       SDTCisVT<1, i32>]>;
def SDT_CallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>,
                                     SDTCisVT<1, i32>]>;

// Target-dependent type requirements.
def SDT_RISCVCall     : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
                                             SDTCisVT<3, OtherVT>,
                                             SDTCisSameAs<0, 4>,
                                             SDTCisSameAs<4, 5>]>;
def SDT_RISCVBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
                                         SDTCisVT<2, OtherVT>,
                                         SDTCisVT<3, OtherVT>]>;
def SDT_RISCVReadCSR  : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDT_RISCVWriteCSR : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisInt<1>]>;
def SDT_RISCVSwapCSR  : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
                                             SDTCisInt<2>]>;
def SDT_RISCVReadCycleWide : SDTypeProfile<2, 0, [SDTCisVT<0, i32>,
                                                  SDTCisVT<1, i32>]>;
def SDT_RISCVIntUnaryOpW : SDTypeProfile<1, 1, [
  SDTCisSameAs<0, 1>, SDTCisVT<0, i64>
]>;
def SDT_RISCVIntBinOpW : SDTypeProfile<1, 2, [
  SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>
]>;
def SDT_RISCVIntShiftDOpW : SDTypeProfile<1, 3, [
  SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>, SDTCisVT<3, i64>
]>;

// Target-independent nodes, but with target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
                           [SDNPHasChain, SDNPOutGlue]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

// Target-dependent nodes.
def riscv_call      : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                              SDNPVariadic]>;
def riscv_ret_glue  : SDNode<"RISCVISD::RET_GLUE", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def riscv_sret_glue : SDNode<"RISCVISD::SRET_GLUE", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue]>;
def riscv_mret_glue : SDNode<"RISCVISD::MRET_GLUE", SDTNone,
                             [SDNPHasChain, SDNPOptInGlue]>;
def riscv_selectcc  : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>;
def riscv_brcc      : SDNode<"RISCVISD::BR_CC", SDT_RISCVBrCC,
                             [SDNPHasChain]>;
def riscv_tail      : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
                             [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                              SDNPVariadic]>;
def riscv_sllw      : SDNode<"RISCVISD::SLLW", SDT_RISCVIntBinOpW>;
def riscv_sraw      : SDNode<"RISCVISD::SRAW", SDT_RISCVIntBinOpW>;
def riscv_srlw      : SDNode<"RISCVISD::SRLW", SDT_RISCVIntBinOpW>;
def riscv_read_csr  : SDNode<"RISCVISD::READ_CSR", SDT_RISCVReadCSR,
                             [SDNPHasChain]>;
def riscv_write_csr : SDNode<"RISCVISD::WRITE_CSR", SDT_RISCVWriteCSR,
                             [SDNPHasChain]>;
def riscv_swap_csr  : SDNode<"RISCVISD::SWAP_CSR", SDT_RISCVSwapCSR,
                             [SDNPHasChain]>;

def riscv_read_cycle_wide : SDNode<"RISCVISD::READ_CYCLE_WIDE",
                                   SDT_RISCVReadCycleWide,
                                   [SDNPHasChain, SDNPSideEffect]>;

def riscv_add_lo : SDNode<"RISCVISD::ADD_LO", SDTIntBinOp>;
def riscv_hi : SDNode<"RISCVISD::HI", SDTIntUnaryOp>;
def riscv_lla : SDNode<"RISCVISD::LLA", SDTIntUnaryOp>;
def riscv_add_tprel : SDNode<"RISCVISD::ADD_TPREL",
                             SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
                                                  SDTCisSameAs<0, 2>,
                                                  SDTCisSameAs<0, 3>,
                                                  SDTCisInt<0>]>>;

//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//

class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
  let Name = prefix # "ImmXLen" # suffix;
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
  let Name = prefix # "Imm" # width # suffix;
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

def ImmZeroAsmOperand : AsmOperandClass {
  let Name = "ImmZero";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = !strconcat("Invalid", Name);
}

// A parse method for (${gpr}) or 0(${gpr}), where the 0 is be silently ignored.
def ZeroOffsetMemOpOperand : AsmOperandClass {
  let Name = "ZeroOffsetMemOpOperand";
  let RenderMethod = "addRegOperands";
  let PredicateMethod = "isGPR";
  let ParserMethod = "parseZeroOffsetMemOp";
}

class MemOperand<RegisterClass regClass> : RegisterOperand<regClass>{
  let OperandType = "OPERAND_MEMORY";
}

def GPRMemZeroOffset : MemOperand<GPR> {
  let ParserMatchClass = ZeroOffsetMemOpOperand;
  let PrintMethod = "printZeroOffsetMemOp";
}

def GPRMem : MemOperand<GPR>;

def SPMem : MemOperand<SP>;

def GPRCMem : MemOperand<GPRC>;

class SImmAsmOperand<int width, string suffix = "">
    : ImmAsmOperand<"S", width, suffix> {
}

class UImmAsmOperand<int width, string suffix = "">
    : ImmAsmOperand<"U", width, suffix> {
}

class RISCVOp<ValueType vt = XLenVT> : Operand<vt> {
  let OperandNamespace = "RISCVOp";
}

class RISCVUImmOp<int bitsNum> : RISCVOp {
  let ParserMatchClass = UImmAsmOperand<bitsNum>;
  let DecoderMethod = "decodeUImmOperand<" # bitsNum # ">";
  let OperandType = "OPERAND_UIMM" # bitsNum;
}

class RISCVUImmLeafOp<int bitsNum> :
  RISCVUImmOp<bitsNum>, ImmLeaf<XLenVT, "return isUInt<" # bitsNum # ">(Imm);">;

class RISCVSImmOp<int bitsNum> : RISCVOp {
  let ParserMatchClass = SImmAsmOperand<bitsNum>;
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeSImmOperand<" # bitsNum # ">";
  let OperandType = "OPERAND_SIMM" # bitsNum;
}

class RISCVSImmLeafOp<int bitsNum> :
  RISCVSImmOp<bitsNum>, ImmLeaf<XLenVT, "return isInt<" # bitsNum # ">(Imm);">;

def FenceArg : AsmOperandClass {
  let Name = "FenceArg";
  let RenderMethod = "addFenceArgOperands";
  let ParserMethod = "parseFenceArg";
}

def fencearg : RISCVOp {
  let ParserMatchClass = FenceArg;
  let PrintMethod = "printFenceArg";
  let DecoderMethod = "decodeUImmOperand<4>";
  let OperandType = "OPERAND_UIMM4";
}

def UImmLog2XLenAsmOperand : AsmOperandClass {
  let Name = "UImmLog2XLen";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidUImmLog2XLen";
}

def uimmlog2xlen : RISCVOp, ImmLeaf<XLenVT, [{
  if (Subtarget->is64Bit())
    return isUInt<6>(Imm);
  return isUInt<5>(Imm);
}]> {
  let ParserMatchClass = UImmLog2XLenAsmOperand;
  // TODO: should ensure invalid shamt is rejected when decoding.
  let DecoderMethod = "decodeUImmOperand<6>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (!MCOp.evaluateAsConstantImm(Imm))
      return false;
    if (STI.getTargetTriple().isArch64Bit())
      return isUInt<6>(Imm);
    return isUInt<5>(Imm);
  }];
  let OperandType = "OPERAND_UIMMLOG2XLEN";
}

def InsnDirectiveOpcode : AsmOperandClass {
  let Name = "InsnDirectiveOpcode";
  let ParserMethod = "parseInsnDirectiveOpcode";
  let RenderMethod = "addImmOperands";
  let PredicateMethod = "isImm";
}

def uimm1 : RISCVUImmLeafOp<1>;
def uimm2 : RISCVUImmLeafOp<2> {
  let MCOperandPredicate = [{
    int64_t Imm;
    if (!MCOp.evaluateAsConstantImm(Imm))
      return false;
    return isUInt<2>(Imm);
  }];
}
def uimm3 : RISCVUImmOp<3>;
def uimm4 : RISCVUImmOp<4>;
def uimm5 : RISCVUImmLeafOp<5>;
def uimm6 : RISCVUImmLeafOp<6>;
def uimm7_opcode : RISCVUImmOp<7> {
  let ParserMatchClass = InsnDirectiveOpcode;
}
def uimm7 : RISCVUImmOp<7>;
def uimm8 : RISCVUImmOp<8>;
def simm12 : RISCVSImmLeafOp<12> {
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isInt<12>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

// A 12-bit signed immediate which cannot fit in 6-bit signed immediate,
// but even negative value fit in 12-bit.
def simm12_no6 : ImmLeaf<XLenVT, [{
  return isInt<12>(Imm) && !isInt<6>(Imm) && isInt<12>(-Imm);}]>;

// A 13-bit signed immediate where the least significant bit is zero.
def simm13_lsb0 : Operand<OtherVT> {
  let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
  let PrintMethod = "printBranchOperand";
  let EncoderMethod = "getImmOpValueAsr1";
  let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isShiftedInt<12, 1>(Imm);
    return MCOp.isBareSymbolRef();
  }];
  let OperandType = "OPERAND_PCREL";
}

class UImm20Operand : RISCVOp {
  let EncoderMethod = "getImmOpValue";
  let DecoderMethod = "decodeUImmOperand<20>";
  let OperandType = "OPERAND_UIMM20";
}

class UImm20OperandMaybeSym : UImm20Operand {
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isUInt<20>(Imm);
    return MCOp.isBareSymbolRef();
  }];
}

def uimm20_lui : UImm20OperandMaybeSym {
  let ParserMatchClass = UImmAsmOperand<20, "LUI">;
}
def uimm20_auipc : UImm20OperandMaybeSym {
  let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
}

def uimm20 : UImm20Operand {
  let ParserMatchClass = UImmAsmOperand<20>;
  let MCOperandPredicate = [{
    int64_t Imm;
    if (!MCOp.evaluateAsConstantImm(Imm))
      return false;
    return isUInt<20>(Imm);
  }];
}

def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
  let ParserMethod = "parseJALOffset";
}

// A 21-bit signed immediate where the least significant bit is zero.
def simm21_lsb0_jal : Operand<OtherVT> {
  let ParserMatchClass = Simm21Lsb0JALAsmOperand;
  let PrintMethod = "printBranchOperand";
  let EncoderMethod = "getImmOpValueAsr1";
  let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
  let MCOperandPredicate = [{
    int64_t Imm;
    if (MCOp.evaluateAsConstantImm(Imm))
      return isShiftedInt<20, 1>(Imm);
    return MCOp.isBareSymbolRef();
  }];
  let OperandType = "OPERAND_PCREL";
}

def BareSymbol : AsmOperandClass {
  let Name = "BareSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidBareSymbol";
  let ParserMethod = "parseBareSymbol";
}

// A bare symbol.
def bare_symbol : Operand<XLenVT> {
  let ParserMatchClass = BareSymbol;
}

def CallSymbol : AsmOperandClass {
  let Name = "CallSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidCallSymbol";
  let ParserMethod = "parseCallSymbol";
}

// A bare symbol used in call/tail only.
def call_symbol : Operand<XLenVT> {
  let ParserMatchClass = CallSymbol;
}

def PseudoJumpSymbol : AsmOperandClass {
  let Name = "PseudoJumpSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidPseudoJumpSymbol";
  let ParserMethod = "parsePseudoJumpSymbol";
}

// A bare symbol used for pseudo jumps only.
def pseudo_jump_symbol : Operand<XLenVT> {
  let ParserMatchClass = PseudoJumpSymbol;
}

def TPRelAddSymbol : AsmOperandClass {
  let Name = "TPRelAddSymbol";
  let RenderMethod = "addImmOperands";
  let DiagnosticType = "InvalidTPRelAddSymbol";
  let ParserMethod = "parseOperandWithModifier";
}

// A bare symbol with the %tprel_add variant.
def tprel_add_symbol : Operand<XLenVT> {
  let ParserMatchClass = TPRelAddSymbol;
}

def CSRSystemRegister : AsmOperandClass {
  let Name = "CSRSystemRegister";
  let ParserMethod = "parseCSRSystemRegister";
  let DiagnosticType = "InvalidCSRSystemRegister";
}

def csr_sysreg : RISCVOp {
  let ParserMatchClass = CSRSystemRegister;
  let PrintMethod = "printCSRSystemRegister";
  let DecoderMethod = "decodeUImmOperand<12>";
  let OperandType = "OPERAND_UIMM12";
}

// A parameterized register class alternative to i32imm/i64imm from Target.td.
def ixlenimm : Operand<XLenVT>;

def ixlenimm_li : Operand<XLenVT> {
  let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
}

// Accepts subset of LI operands, used by LAImm and LLAImm
def ixlenimm_li_restricted : Operand<XLenVT> {
  let ParserMatchClass = ImmXLenAsmOperand<"", "LI_Restricted">;
}

// Standalone (codegen-only) immleaf patterns.

// A 6-bit constant greater than 32.
def uimm6gt32 : ImmLeaf<XLenVT, [{
  return isUInt<6>(Imm) && Imm > 32;
}]>;

// Addressing modes.
// Necessary because a frameindex can't be matched directly in a pattern.
def FrameAddrRegImm : ComplexPattern<iPTR, 2, "SelectFrameAddrRegImm",
                                     [frameindex, or, add]>;
def AddrRegImm : ComplexPattern<iPTR, 2, "SelectAddrRegImm">;

// Return the negation of an immediate value.
def NegImm : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N),
                                   N->getValueType(0));
}]>;

// Return an immediate value minus 32.
def ImmSub32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue() - 32, SDLoc(N),
                                   N->getValueType(0));
}]>;

// Return an immediate subtracted from XLen.
def ImmSubFromXLen : SDNodeXForm<imm, [{
  uint64_t XLen = Subtarget->getXLen();
  return CurDAG->getTargetConstant(XLen - N->getZExtValue(), SDLoc(N),
                                   N->getValueType(0));
}]>;

// Return an immediate subtracted from 32.
def ImmSubFrom32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N),
                                   N->getValueType(0));
}]>;

// Check if (add r, imm) can be optimized to (ADDI (ADDI r, imm0), imm1),
// in which imm = imm0 + imm1 and both imm0 and imm1 are simm12. We make imm0
// as large as possible and imm1 as small as possible so that we might be able
// to use c.addi for the small immediate.
def AddiPair : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  // The immediate operand must be in range [-4096,-2049] or [2048,4094].
  int64_t Imm = N->getSExtValue();
  return (-4096 <= Imm && Imm <= -2049) || (2048 <= Imm && Imm <= 4094);
}]>;

// Return imm - (imm < 0 ? -2048 : 2047).
def AddiPairImmSmall : SDNodeXForm<imm, [{
  int64_t Imm = N->getSExtValue();
  int64_t Adj = N->getSExtValue() < 0 ? -2048 : 2047;
  return CurDAG->getTargetConstant(Imm - Adj, SDLoc(N),
                                   N->getValueType(0));
}]>;

// Return -2048 if immediate is negative or 2047 if positive. These are the
// largest simm12 values.
def AddiPairImmLarge : SDNodeXForm<imm, [{
  int64_t Imm = N->getSExtValue() < 0 ? -2048 : 2047;
  return CurDAG->getTargetConstant(Imm, SDLoc(N),
                                   N->getValueType(0));
}]>;

def TrailingZeros : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(llvm::countr_zero(N->getZExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;

def XLenSubTrailingOnes : SDNodeXForm<imm, [{
  uint64_t XLen = Subtarget->getXLen();
  uint64_t TrailingOnes = llvm::countr_one(N->getZExtValue());
  return CurDAG->getTargetConstant(XLen - TrailingOnes, SDLoc(N),
                                   N->getValueType(0));
}]>;

// Checks if this mask is a non-empty sequence of ones starting at the
// most/least significant bit with the remainder zero and exceeds simm32/simm12.
def LeadingOnesMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  return !isInt<32>(N->getSExtValue()) && isMask_64(~N->getSExtValue());
}], TrailingZeros>;

def TrailingOnesMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  return !isInt<12>(N->getSExtValue()) && isMask_64(N->getZExtValue());
}], XLenSubTrailingOnes>;

// Similar to LeadingOnesMask, but only consider leading ones in the lower 32
// bits.
def LeadingOnesWMask : PatLeaf<(imm), [{
  if (!N->hasOneUse())
    return false;
  // If the value is a uint32 but not an int32, it must have bit 31 set and
  // bits 63:32 cleared. After that we're looking for a shifted mask but not
  // an all ones mask.
  int64_t Imm = N->getSExtValue();
  return !isInt<32>(Imm) && isUInt<32>(Imm) && isShiftedMask_64(Imm) &&
         Imm != UINT64_C(0xffffffff);
}], TrailingZeros>;

//===----------------------------------------------------------------------===//
// Instruction Formats
//===----------------------------------------------------------------------===//

include "RISCVInstrFormats.td"

//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class BranchCC_rri<bits<3> funct3, string opcodestr>
    : RVInstB<funct3, OPC_BRANCH, (outs),
              (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
              opcodestr, "$rs1, $rs2, $imm12">,
      Sched<[WriteJmp, ReadJmp, ReadJmp]> {
  let isBranch = 1;
  let isTerminator = 1;
}

let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
class Load_ri<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPRMem:$rs1, simm12:$imm12),
              opcodestr, "$rd, ${imm12}(${rs1})">;

class HLoad_r<bits<7> funct7, bits<5> funct5, string opcodestr>
    : RVInstR<funct7, 0b100, OPC_SYSTEM, (outs GPR:$rd),
              (ins GPRMemZeroOffset:$rs1), opcodestr, "$rd, $rs1"> {
  let rs2 = funct5;
}
}

// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
class Store_rri<bits<3> funct3, string opcodestr>
    : RVInstS<funct3, OPC_STORE, (outs),
              (ins GPR:$rs2, GPRMem:$rs1, simm12:$imm12),
              opcodestr, "$rs2, ${imm12}(${rs1})">;

class HStore_rr<bits<7> funct7, string opcodestr>
    : RVInstR<funct7, 0b100, OPC_SYSTEM, (outs),
              (ins GPR:$rs2, GPRMemZeroOffset:$rs1),
               opcodestr, "$rs2, $rs1"> {
  let rd = 0;
}
}

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_ri<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
              opcodestr, "$rd, $rs1, $imm12">,
      Sched<[WriteIALU, ReadIALU]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class Shift_ri<bits<5> imm11_7, bits<3> funct3, string opcodestr>
    : RVInstIShift<imm11_7, funct3, OPC_OP_IMM, (outs GPR:$rd),
                   (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
                   "$rd, $rs1, $shamt">,
      Sched<[WriteShiftImm, ReadShiftImm]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
             bit Commutable = 0>
    : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "$rd, $rs1, $rs2"> {
  let isCommutable = Commutable;
}

let hasNoSchedulingInfo = 1,
    hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ir<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
              opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>;

let hasNoSchedulingInfo = 1,
    hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class CSR_ii<bits<3> funct3, string opcodestr>
    : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
              (ins csr_sysreg:$imm12, uimm5:$rs1),
              opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ShiftW_ri<bits<7> imm11_5, bits<3> funct3, string opcodestr>
    : RVInstIShiftW<imm11_5, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
                    (ins GPR:$rs1, uimm5:$shamt), opcodestr,
                    "$rd, $rs1, $shamt">,
      Sched<[WriteShiftImm32, ReadShiftImm32]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr,
              bit Commutable = 0>
    : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
              (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2"> {
  let isCommutable = Commutable;
}

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv<string opcodestr, bits<7> funct7>
    : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "">;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
class Priv_rr<string opcodestr, bits<7> funct7>
    : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
              opcodestr, "$rs1, $rs2"> {
  let rd = 0;
}

//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
let isReMaterializable = 1, isAsCheapAsAMove = 1,
    IsSignExtendingOpW = 1 in
def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
                  "lui", "$rd, $imm20">, Sched<[WriteIALU]>;

def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
                    "auipc", "$rd, $imm20">, Sched<[WriteIALU]>;

def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
                  "jal", "$rd, $imm20">, Sched<[WriteJal]>;

def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
                   (ins GPR:$rs1, simm12:$imm12),
                   "jalr", "$rd, ${imm12}(${rs1})">,
           Sched<[WriteJalr, ReadJalr]>;
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0

def BEQ  : BranchCC_rri<0b000, "beq">;
def BNE  : BranchCC_rri<0b001, "bne">;
def BLT  : BranchCC_rri<0b100, "blt">;
def BGE  : BranchCC_rri<0b101, "bge">;
def BLTU : BranchCC_rri<0b110, "bltu">;
def BGEU : BranchCC_rri<0b111, "bgeu">;

let IsSignExtendingOpW = 1 in {
def LB  : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>;
def LH  : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>;
def LW  : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>;
def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>;
def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>;
}

def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>;
def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>;

// ADDI isn't always rematerializable, but isReMaterializable will be used as
// a hint which is verified in isReallyTriviallyReMaterializable.
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def ADDI  : ALU_ri<0b000, "addi">;

let IsSignExtendingOpW = 1 in {
def SLTI  : ALU_ri<0b010, "slti">;
def SLTIU : ALU_ri<0b011, "sltiu">;
}

let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def XORI  : ALU_ri<0b100, "xori">;
def ORI   : ALU_ri<0b110, "ori">;
}

def ANDI  : ALU_ri<0b111, "andi">;

def SLLI : Shift_ri<0b00000, 0b001, "slli">;
def SRLI : Shift_ri<0b00000, 0b101, "srli">;
def SRAI : Shift_ri<0b01000, 0b101, "srai">;

def ADD  : ALU_rr<0b0000000, 0b000, "add", Commutable=1>,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SUB  : ALU_rr<0b0100000, 0b000, "sub">,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLL  : ALU_rr<0b0000000, 0b001, "sll">,
           Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
let IsSignExtendingOpW = 1 in {
def SLT  : ALU_rr<0b0000000, 0b010, "slt">,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SLTU : ALU_rr<0b0000000, 0b011, "sltu">,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
}
def XOR  : ALU_rr<0b0000000, 0b100, "xor", Commutable=1>,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def SRL  : ALU_rr<0b0000000, 0b101, "srl">,
           Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def SRA  : ALU_rr<0b0100000, 0b101, "sra">,
           Sched<[WriteShiftReg, ReadShiftReg, ReadShiftReg]>;
def OR   : ALU_rr<0b0000000, 0b110, "or", Commutable=1>,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;
def AND  : ALU_rr<0b0000000, 0b111, "and", Commutable=1>,
           Sched<[WriteIALU, ReadIALU, ReadIALU]>;

let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
                    (ins fencearg:$pred, fencearg:$succ),
                    "fence", "$pred, $succ">, Sched<[]> {
  bits<4> pred;
  bits<4> succ;

  let rs1 = 0;
  let rd = 0;
  let imm12 = {0b0000,pred,succ};
}

def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = {0b1000,0b0011,0b0011};
}

def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0;
}

def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0;
}

def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">,
             Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 1;
}

// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
// instruction (i.e., it should always trap, if your implementation has invalid
// instruction traps).
def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">,
            Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0b110000000000;
}

let Predicates = [HasStdExtZawrs] in {
def WRS_NTO : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "wrs.nto", "">,
              Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0b000000001101;
}

def WRS_STO : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "wrs.sto", "">,
              Sched<[]> {
  let rs1 = 0;
  let rd = 0;
  let imm12 = 0b000000011101;
}
} // Predicates = [HasStdExtZawrs]

} // hasSideEffects = 1, mayLoad = 0, mayStore = 0

def CSRRW : CSR_ir<0b001, "csrrw">;
def CSRRS : CSR_ir<0b010, "csrrs">;
def CSRRC : CSR_ir<0b011, "csrrc">;

def CSRRWI : CSR_ii<0b101, "csrrwi">;
def CSRRSI : CSR_ii<0b110, "csrrsi">;
def CSRRCI : CSR_ii<0b111, "csrrci">;

/// RV64I instructions

let Predicates = [IsRV64] in {
def LWU   : Load_ri<0b110, "lwu">, Sched<[WriteLDW, ReadMemBase]>;
def LD    : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>;
def SD    : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>;

let IsSignExtendingOpW = 1 in {
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
                    (ins GPR:$rs1, simm12:$imm12),
                    "addiw", "$rd, $rs1, $imm12">,
            Sched<[WriteIALU32, ReadIALU32]>;

def SLLIW : ShiftW_ri<0b0000000, 0b001, "slliw">;
def SRLIW : ShiftW_ri<0b0000000, 0b101, "srliw">;
def SRAIW : ShiftW_ri<0b0100000, 0b101, "sraiw">;

def ADDW  : ALUW_rr<0b0000000, 0b000, "addw", Commutable=1>,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SUBW  : ALUW_rr<0b0100000, 0b000, "subw">,
            Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
def SLLW  : ALUW_rr<0b0000000, 0b001, "sllw">,
            Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
def SRLW  : ALUW_rr<0b0000000, 0b101, "srlw">,
            Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
def SRAW  : ALUW_rr<0b0100000, 0b101, "sraw">,
            Sched<[WriteShiftReg32, ReadShiftReg32, ReadShiftReg32]>;
} // IsSignExtendingOpW = 1
} // Predicates = [IsRV64]

//===----------------------------------------------------------------------===//
// Privileged instructions
//===----------------------------------------------------------------------===//

let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def SRET : Priv<"sret", 0b0001000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}

def MRET : Priv<"mret", 0b0011000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1

def WFI : Priv<"wfi", 0b0001000>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00101;
}

let Predicates = [HasStdExtSvinval] in {
def SFENCE_W_INVAL : Priv<"sfence.w.inval", 0b0001100>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0;
}

def SFENCE_INVAL_IR : Priv<"sfence.inval.ir", 0b0001100>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b00001;
}
def SINVAL_VMA  : Priv_rr<"sinval.vma", 0b0001011>, Sched<[]>;
def HINVAL_VVMA : Priv_rr<"hinval.vvma", 0b0010011>, Sched<[]>;
def HINVAL_GVMA : Priv_rr<"hinval.gvma", 0b0110011>, Sched<[]>;
} // Predicates = [HasStdExtSvinval]

def SFENCE_VMA  : Priv_rr<"sfence.vma", 0b0001001>, Sched<[]>;

let Predicates = [HasStdExtH] in {
def HFENCE_VVMA : Priv_rr<"hfence.vvma", 0b0010001>, Sched<[]>;
def HFENCE_GVMA : Priv_rr<"hfence.gvma", 0b0110001>, Sched<[]>;

def HLV_B   : HLoad_r<0b0110000, 0b00000, "hlv.b">, Sched<[]>;
def HLV_BU  : HLoad_r<0b0110000, 0b00001, "hlv.bu">, Sched<[]>;
def HLV_H   : HLoad_r<0b0110010, 0b00000, "hlv.h">, Sched<[]>;
def HLV_HU  : HLoad_r<0b0110010, 0b00001, "hlv.hu">, Sched<[]>;
def HLVX_HU : HLoad_r<0b0110010, 0b00011, "hlvx.hu">, Sched<[]>;
def HLV_W   : HLoad_r<0b0110100, 0b00000, "hlv.w">, Sched<[]>;
def HLVX_WU : HLoad_r<0b0110100, 0b00011, "hlvx.wu">, Sched<[]>;
def HSV_B   : HStore_rr<0b0110001, "hsv.b">, Sched<[]>;
def HSV_H   : HStore_rr<0b0110011, "hsv.h">, Sched<[]>;
def HSV_W   : HStore_rr<0b0110101, "hsv.w">, Sched<[]>;
}
let Predicates = [IsRV64, HasStdExtH] in {
def HLV_WU  : HLoad_r<0b0110100, 0b00001, "hlv.wu">, Sched<[]>;
def HLV_D   : HLoad_r<0b0110110, 0b00000, "hlv.d">, Sched<[]>;
def HSV_D   : HStore_rr<0b0110111, "hsv.d">, Sched<[]>;
}

//===----------------------------------------------------------------------===//
// Debug instructions
//===----------------------------------------------------------------------===//

let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
def DRET : Priv<"dret", 0b0111101>, Sched<[]> {
  let rd = 0;
  let rs1 = 0;
  let rs2 = 0b10010;
}
} // isBarrier = 1, isReturn = 1, isTerminator = 1

//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//

def : InstAlias<"nop",           (ADDI      X0,      X0,       0)>;

// Note that the size is 32 because up to 8 32-bit instructions are needed to
// generate an arbitrary 64-bit immediate. However, the size does not really
// matter since PseudoLI is currently only used in the AsmParser where it gets
// expanded to real instructions immediately.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
    isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
                      "li", "$rd, $imm">;

def PseudoLB  : PseudoLoad<"lb">;
def PseudoLBU : PseudoLoad<"lbu">;
def PseudoLH  : PseudoLoad<"lh">;
def PseudoLHU : PseudoLoad<"lhu">;
def PseudoLW  : PseudoLoad<"lw">;

def PseudoSB  : PseudoStore<"sb">;
def PseudoSH  : PseudoStore<"sh">;
def PseudoSW  : PseudoStore<"sw">;

let Predicates = [IsRV64] in {
def PseudoLWU : PseudoLoad<"lwu">;
def PseudoLD  : PseudoLoad<"ld">;
def PseudoSD  : PseudoStore<"sd">;
} // Predicates = [IsRV64]

def : InstAlias<"li $rd, $imm",  (ADDI GPR:$rd, X0, simm12:$imm)>;
def : InstAlias<"mv $rd, $rs",   (ADDI GPR:$rd, GPR:$rs,       0)>;
def : InstAlias<"not $rd, $rs",  (XORI GPR:$rd, GPR:$rs,      -1)>;
def : InstAlias<"neg $rd, $rs",  (SUB  GPR:$rd,      X0, GPR:$rs)>;

let Predicates = [IsRV64] in {
def : InstAlias<"negw $rd, $rs",   (SUBW  GPR:$rd,      X0, GPR:$rs)>;
def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs,       0)>;
} // Predicates = [IsRV64]

def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs,       1)>;
def : InstAlias<"snez $rd, $rs", (SLTU  GPR:$rd,      X0, GPR:$rs)>;
def : InstAlias<"sltz $rd, $rs", (SLT   GPR:$rd, GPR:$rs,      X0)>;
def : InstAlias<"sgtz $rd, $rs", (SLT   GPR:$rd,      X0, GPR:$rs)>;

// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
// form will always be printed. Therefore, set a zero weight.
def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;

def : InstAlias<"beqz $rs, $offset",
                (BEQ GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bnez $rs, $offset",
                (BNE GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"blez $rs, $offset",
                (BGE      X0, GPR:$rs, simm13_lsb0:$offset)>;
def : InstAlias<"bgez $rs, $offset",
                (BGE GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bltz $rs, $offset",
                (BLT GPR:$rs,      X0, simm13_lsb0:$offset)>;
def : InstAlias<"bgtz $rs, $offset",
                (BLT      X0, GPR:$rs, simm13_lsb0:$offset)>;

// Always output the canonical mnemonic for the pseudo branch instructions.
// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
// as well (e.g. "bgt" will be recognised by the assembler but never printed by
// objdump). Match this behaviour by setting a zero weight.
def : InstAlias<"bgt $rs, $rt, $offset",
                (BLT  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"ble $rs, $rt, $offset",
                (BGE  GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bgtu $rs, $rt, $offset",
                (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
def : InstAlias<"bleu $rs, $rt, $offset",
                (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;

def : InstAlias<"j $offset",   (JAL X0, simm21_lsb0_jal:$offset)>;
def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;

// Non-zero offset aliases of "jalr" are the lowest weight, followed by the
// two-register form, then the one-register forms and finally "ret".
def : InstAlias<"jr $rs",                (JALR      X0, GPR:$rs, 0), 3>;
def : InstAlias<"jr ${offset}(${rs})",   (JALR      X0, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rs",              (JALR      X1, GPR:$rs, 0), 3>;
def : InstAlias<"jalr ${offset}(${rs})", (JALR      X1, GPR:$rs, simm12:$offset)>;
def : InstAlias<"jalr $rd, $rs",         (JALR GPR:$rd, GPR:$rs, 0), 2>;
def : InstAlias<"ret",                   (JALR      X0,      X1, 0), 4>;

// Non-canonical forms for jump targets also accepted by the assembler.
def : InstAlias<"jr $rs, $offset",        (JALR      X0, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rs, $offset",      (JALR      X1, GPR:$rs, simm12:$offset), 0>;
def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;

def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw

let Predicates = [HasStdExtZihintpause] in
def : InstAlias<"pause", (FENCE 0x1, 0x0)>; // 0x1 == w

def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
def : InstAlias<"rdcycle $rd",   (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
def : InstAlias<"rdtime $rd",    (CSRRS GPR:$rd, TIME.Encoding, X0)>;

let Predicates = [IsRV32] in {
def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
def : InstAlias<"rdcycleh $rd",   (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
def : InstAlias<"rdtimeh $rd",    (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
} // Predicates = [IsRV32]

def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr,      X0)>;
def : InstAlias<"csrw $csr, $rs", (CSRRW      X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrs $csr, $rs", (CSRRS      X0, csr_sysreg:$csr, GPR:$rs)>;
def : InstAlias<"csrc $csr, $rs", (CSRRC      X0, csr_sysreg:$csr, GPR:$rs)>;

def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;

let EmitPriority = 0 in {
def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;

def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
}

def : InstAlias<"sfence.vma",     (SFENCE_VMA      X0, X0)>;
def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;

def : InstAlias<"hfence.gvma",     (HFENCE_GVMA      X0, X0)>;
def : InstAlias<"hfence.gvma $rs", (HFENCE_GVMA GPR:$rs, X0)>;

def : InstAlias<"hfence.vvma",     (HFENCE_VVMA      X0, X0)>;
def : InstAlias<"hfence.vvma $rs", (HFENCE_VVMA GPR:$rs, X0)>;

let Predicates = [HasStdExtZihintntl] in {
  def : InstAlias<"ntl.p1",     (ADD   X0, X0, X2)>;
  def : InstAlias<"ntl.pall",   (ADD   X0, X0, X3)>;
  def : InstAlias<"ntl.s1",     (ADD   X0, X0, X4)>;
  def : InstAlias<"ntl.all",    (ADD   X0, X0, X5)>;
} // Predicates = [HasStdExtZihintntl]

let EmitPriority = 0 in {
def : InstAlias<"lb $rd, (${rs1})",
                (LB  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lh $rd, (${rs1})",
                (LH  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lw $rd, (${rs1})",
                (LW  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lbu $rd, (${rs1})",
                (LBU  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"lhu $rd, (${rs1})",
                (LHU  GPR:$rd, GPR:$rs1, 0)>;

def : InstAlias<"sb $rs2, (${rs1})",
                (SB  GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sh $rs2, (${rs1})",
                (SH  GPR:$rs2, GPR:$rs1, 0)>;
def : InstAlias<"sw $rs2, (${rs1})",
                (SW  GPR:$rs2, GPR:$rs1, 0)>;

def : InstAlias<"add $rd, $rs1, $imm12",
                (ADDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"and $rd, $rs1, $imm12",
                (ANDI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"xor $rd, $rs1, $imm12",
                (XORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"or $rd, $rs1, $imm12",
                (ORI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sll $rd, $rs1, $shamt",
                (SLLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"srl $rd, $rs1, $shamt",
                (SRLI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
def : InstAlias<"sra $rd, $rs1, $shamt",
                (SRAI  GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
let Predicates = [IsRV64] in {
def : InstAlias<"lwu $rd, (${rs1})",
                (LWU  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"ld $rd, (${rs1})",
                (LD  GPR:$rd, GPR:$rs1, 0)>;
def : InstAlias<"sd $rs2, (${rs1})",
                (SD  GPR:$rs2, GPR:$rs1, 0)>;

def : InstAlias<"addw $rd, $rs1, $imm12",
                (ADDIW  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sllw $rd, $rs1, $shamt",
                (SLLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"srlw $rd, $rs1, $shamt",
                (SRLIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
def : InstAlias<"sraw $rd, $rs1, $shamt",
                (SRAIW  GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
} // Predicates = [IsRV64]
def : InstAlias<"slt $rd, $rs1, $imm12",
                (SLTI  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
def : InstAlias<"sltu $rd, $rs1, $imm12",
                (SLTIU  GPR:$rd, GPR:$rs1, simm12:$imm12)>;
}

def : MnemonicAlias<"move", "mv">;

// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
// the old name for backwards compatibility.
def : MnemonicAlias<"scall", "ecall">;
def : MnemonicAlias<"sbreak", "ebreak">;

// This alias was added to the spec in December 2020. Don't print it by default
// to allow assembly we print to be compatible with versions of GNU assembler
// that don't support this alias.
def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF), 0>;

let Predicates = [HasStdExtZicfilp] in {
def : InstAlias<"lpad $imm20", (AUIPC X0, uimm20:$imm20)>;
}

//===----------------------------------------------------------------------===//
// .insn directive instructions
//===----------------------------------------------------------------------===//

def AnyRegOperand : AsmOperandClass {
  let Name = "AnyRegOperand";
  let RenderMethod = "addRegOperands";
  let PredicateMethod = "isAnyReg";
}

def AnyReg : Operand<XLenVT> {
  let OperandType = "OPERAND_REGISTER";
  let ParserMatchClass = AnyRegOperand;
}

// isCodeGenOnly = 1 to hide them from the tablegened assembly parser.
let isCodeGenOnly = 1, hasSideEffects = 1, mayLoad = 1, mayStore = 1,
    hasNoSchedulingInfo = 1 in {
def InsnR : DirectiveInsnR<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3,
                                                   uimm7:$funct7, AnyReg:$rs1,
                                                   AnyReg:$rs2),
                           "$opcode, $funct3, $funct7, $rd, $rs1, $rs2">;
def InsnR4 : DirectiveInsnR4<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
                                                     uimm3:$funct3,
                                                     uimm2:$funct2,
                                                     AnyReg:$rs1, AnyReg:$rs2,
                                                     AnyReg:$rs3),
                            "$opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3">;
def InsnI : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode, uimm3:$funct3,
                                                   AnyReg:$rs1, simm12:$imm12),
                           "$opcode, $funct3, $rd, $rs1, $imm12">;
def InsnI_Mem : DirectiveInsnI<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
                                                       uimm3:$funct3,
                                                       AnyReg:$rs1,
                                                       simm12:$imm12),
                               "$opcode, $funct3, $rd, ${imm12}(${rs1})">;
def InsnB : DirectiveInsnB<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3,
                                        AnyReg:$rs1, AnyReg:$rs2,
                                        simm13_lsb0:$imm12),
                           "$opcode, $funct3, $rs1, $rs2, $imm12">;
def InsnU : DirectiveInsnU<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
                                                   uimm20_lui:$imm20),
                           "$opcode, $rd, $imm20">;
def InsnJ : DirectiveInsnJ<(outs AnyReg:$rd), (ins uimm7_opcode:$opcode,
                                                   simm21_lsb0_jal:$imm20),
                           "$opcode, $rd, $imm20">;
def InsnS : DirectiveInsnS<(outs), (ins uimm7_opcode:$opcode, uimm3:$funct3,
                                        AnyReg:$rs2, AnyReg:$rs1,
                                        simm12:$imm12),
                           "$opcode, $funct3, $rs2, ${imm12}(${rs1})">;
}

// Use InstAliases to match these so that we can combine the insn and format
// into a mnemonic to use as the key for the tablegened asm matcher table. The
// parser will take care of creating these fake mnemonics and will only do it
// for known formats.
let EmitPriority = 0 in {
def : InstAlias<".insn_r $opcode, $funct3, $funct7, $rd, $rs1, $rs2",
                (InsnR AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm7:$funct7,
                       AnyReg:$rs1, AnyReg:$rs2)>;
// Accept 4 register form of ".insn r" as alias for ".insn r4".
def : InstAlias<".insn_r $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3",
                (InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2,
                        AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>;
def : InstAlias<".insn_r4 $opcode, $funct3, $funct2, $rd, $rs1, $rs2, $rs3",
                (InsnR4 AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, uimm2:$funct2,
                        AnyReg:$rs1, AnyReg:$rs2, AnyReg:$rs3)>;
def : InstAlias<".insn_i $opcode, $funct3, $rd, $rs1, $imm12",
                (InsnI AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
                       simm12:$imm12)>;
def : InstAlias<".insn_i $opcode, $funct3, $rd, ${imm12}(${rs1})",
                (InsnI_Mem AnyReg:$rd, uimm7_opcode:$opcode, uimm3:$funct3,
                           AnyReg:$rs1, simm12:$imm12)>;
def : InstAlias<".insn_b $opcode, $funct3, $rs1, $rs2, $imm12",
                (InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
                       AnyReg:$rs2, simm13_lsb0:$imm12)>;
// Accept sb as an alias for b.
def : InstAlias<".insn_sb $opcode, $funct3, $rs1, $rs2, $imm12",
                (InsnB uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs1,
                       AnyReg:$rs2, simm13_lsb0:$imm12)>;
def : InstAlias<".insn_u $opcode, $rd, $imm20",
                (InsnU AnyReg:$rd, uimm7_opcode:$opcode, uimm20_lui:$imm20)>;
def : InstAlias<".insn_j $opcode, $rd, $imm20",
                (InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>;
// Accept uj as an alias for j.
def : InstAlias<".insn_uj $opcode, $rd, $imm20",
                (InsnJ AnyReg:$rd, uimm7_opcode:$opcode, simm21_lsb0_jal:$imm20)>;
def : InstAlias<".insn_s $opcode, $funct3, $rs2, ${imm12}(${rs1})",
                (InsnS uimm7_opcode:$opcode, uimm3:$funct3, AnyReg:$rs2,
                       AnyReg:$rs1, simm12:$imm12)>;
}

//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//
// Naming convention: For 'generic' pattern classes, we use the naming
// convention PatTy1Ty2. For pattern classes which offer a more complex
// expansion, prefix the class name, e.g. BccPat.
//===----------------------------------------------------------------------===//

/// Generic pattern classes

class PatGpr<SDPatternOperator OpNode, RVInst Inst, ValueType vt = XLenVT>
    : Pat<(vt (OpNode (vt GPR:$rs1))), (Inst GPR:$rs1)>;
class PatGprGpr<SDPatternOperator OpNode, RVInst Inst, ValueType vt1 = XLenVT,
                ValueType vt2 = XLenVT>
    : Pat<(vt1 (OpNode (vt1 GPR:$rs1), (vt2 GPR:$rs2))), (Inst GPR:$rs1, GPR:$rs2)>;

class PatGprImm<SDPatternOperator OpNode, RVInst Inst, ImmLeaf ImmType,
                ValueType vt = XLenVT>
    : Pat<(vt (OpNode (vt GPR:$rs1), ImmType:$imm)),
          (Inst GPR:$rs1, ImmType:$imm)>;
class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
    : PatGprImm<OpNode, Inst, simm12>;
class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
    : PatGprImm<OpNode, Inst, uimmlog2xlen>;

/// Predicates

def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
}]>;
def sexti16 : ComplexPattern<XLenVT, 1, "selectSExtBits<16>">;
def sexti32 : ComplexPattern<i64, 1, "selectSExtBits<32>">;
def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
  return cast<VTSDNode>(N->getOperand(1))->getVT().bitsLE(MVT::i32);
}]>;
def zexti32 : ComplexPattern<i64, 1, "selectZExtBits<32>">;
def zexti16 : ComplexPattern<XLenVT, 1, "selectZExtBits<16>">;
def zexti16i32 : ComplexPattern<i32, 1, "selectZExtBits<16>">;
def zexti8 : ComplexPattern<XLenVT, 1, "selectZExtBits<8>">;
def zexti8i32 : ComplexPattern<i32, 1, "selectZExtBits<8>">;

def ext : PatFrags<(ops node:$A), [(sext node:$A), (zext node:$A)]>;

class binop_oneuse<SDPatternOperator operator>
    : PatFrag<(ops node:$A, node:$B),
              (operator node:$A, node:$B), [{
  return N->hasOneUse();
}]>;

def and_oneuse : binop_oneuse<and>;
def mul_oneuse : binop_oneuse<mul>;

def mul_const_oneuse : PatFrag<(ops node:$A, node:$B),
                               (mul node:$A, node:$B), [{
  if (auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
    return N1C->hasOneUse();
  return false;
}]>;

class unop_oneuse<SDPatternOperator operator>
    : PatFrag<(ops node:$A),
              (operator node:$A), [{
  return N->hasOneUse();
}]>;

def sext_oneuse   : unop_oneuse<sext>;
def zext_oneuse   : unop_oneuse<zext>;
def anyext_oneuse : unop_oneuse<anyext>;
def ext_oneuse    : unop_oneuse<ext>;
def fpext_oneuse  : unop_oneuse<any_fpextend>;

def 33signbits_node : PatLeaf<(i64 GPR:$src), [{
  return CurDAG->ComputeNumSignBits(SDValue(N, 0)) > 32;
}]>;

/// Simple arithmetic operations

def : PatGprGpr<add, ADD>;
def : PatGprSimm12<add, ADDI>;
def : PatGprGpr<sub, SUB>;
def : PatGprGpr<or, OR>;
def : PatGprSimm12<or, ORI>;
def : PatGprGpr<and, AND>;
def : PatGprSimm12<and, ANDI>;
def : PatGprGpr<xor, XOR>;
def : PatGprSimm12<xor, XORI>;
def : PatGprUimmLog2XLen<shl, SLLI>;
def : PatGprUimmLog2XLen<srl, SRLI>;
def : PatGprUimmLog2XLen<sra, SRAI>;

// Select 'or' as ADDI if the immediate bits are known to be 0 in $rs1. This
// can improve compressibility.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
  KnownBits Known0 = CurDAG->computeKnownBits(N->getOperand(0), 0);
  KnownBits Known1 = CurDAG->computeKnownBits(N->getOperand(1), 0);
  return KnownBits::haveNoCommonBitsSet(Known0, Known1);
}]>;
def : PatGprSimm12<or_is_add, ADDI>;

// negate of low bit can be done via two (compressible) shifts.  The negate
// is never compressible since rs1 and rd can't be the same register.
def : Pat<(XLenVT (sub 0, (and_oneuse GPR:$rs, 1))),
          (SRAI (SLLI $rs, (ImmSubFromXLen (XLenVT 1))),
                (ImmSubFromXLen (XLenVT 1)))>;

// AND with leading/trailing ones mask exceeding simm32/simm12.
def : Pat<(i64 (and GPR:$rs, LeadingOnesMask:$mask)),
          (SLLI (SRLI $rs, LeadingOnesMask:$mask), LeadingOnesMask:$mask)>;
def : Pat<(XLenVT (and GPR:$rs, TrailingOnesMask:$mask)),
          (SRLI (SLLI $rs, TrailingOnesMask:$mask), TrailingOnesMask:$mask)>;

// Match both a plain shift and one where the shift amount is masked (this is
// typically introduced when the legalizer promotes the shift amount and
// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
def shiftMaskXLen : ComplexPattern<XLenVT, 1, "selectShiftMaskXLen", [], [], 0>;
def shiftMask32   : ComplexPattern<i64, 1, "selectShiftMask32", [], [], 0>;

class shiftop<SDPatternOperator operator>
    : PatFrag<(ops node:$val, node:$count),
              (operator node:$val, (XLenVT (shiftMaskXLen node:$count)))>;
class shiftopw<SDPatternOperator operator>
    : PatFrag<(ops node:$val, node:$count),
              (operator node:$val, (i64 (shiftMask32 node:$count)))>;

def : PatGprGpr<shiftop<shl>, SLL>;
def : PatGprGpr<shiftop<srl>, SRL>;
def : PatGprGpr<shiftop<sra>, SRA>;

// This is a special case of the ADD instruction used to facilitate the use of a
// fourth operand to emit a relocation on a symbol relating to this instruction.
// The relocation does not affect any bits of the instruction itself but is used
// as a hint to the linker.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
                            (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
                            "add", "$rd, $rs1, $rs2, $src">;

/// FrameIndex calculations

def : Pat<(FrameAddrRegImm (iPTR GPR:$rs1), simm12:$imm12),
          (ADDI GPR:$rs1, simm12:$imm12)>;

/// HI and ADD_LO address nodes.

def : Pat<(riscv_hi tglobaladdr:$in), (LUI tglobaladdr:$in)>;
def : Pat<(riscv_hi tblockaddress:$in), (LUI tblockaddress:$in)>;
def : Pat<(riscv_hi tjumptable:$in), (LUI tjumptable:$in)>;
def : Pat<(riscv_hi tconstpool:$in), (LUI tconstpool:$in)>;

def : Pat<(riscv_add_lo GPR:$hi, tglobaladdr:$lo),
          (ADDI GPR:$hi, tglobaladdr:$lo)>;
def : Pat<(riscv_add_lo GPR:$hi, tblockaddress:$lo),
          (ADDI GPR:$hi, tblockaddress:$lo)>;
def : Pat<(riscv_add_lo GPR:$hi, tjumptable:$lo),
          (ADDI GPR:$hi, tjumptable:$lo)>;
def : Pat<(riscv_add_lo GPR:$hi, tconstpool:$lo),
          (ADDI GPR:$hi, tconstpool:$lo)>;

/// TLS address nodes.

def : Pat<(riscv_hi tglobaltlsaddr:$in), (LUI tglobaltlsaddr:$in)>;
def : Pat<(riscv_add_tprel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src),
          (PseudoAddTPRel GPR:$rs1, GPR:$rs2, tglobaltlsaddr:$src)>;
def : Pat<(riscv_add_lo GPR:$src, tglobaltlsaddr:$lo),
          (ADDI GPR:$src, tglobaltlsaddr:$lo)>;

/// Setcc

def : PatGprGpr<setlt, SLT>;
def : PatGprSimm12<setlt, SLTI>;
def : PatGprGpr<setult, SLTU>;
def : PatGprSimm12<setult, SLTIU>;

// RISC-V doesn't have general instructions for integer setne/seteq, but we can
// check for equality with 0. These ComplexPatterns rewrite the setne/seteq into
// something that can be compared with 0.
// These ComplexPatterns must be used in pairs.
def riscv_setne : ComplexPattern<XLenVT, 1, "selectSETNE", [setcc]>;
def riscv_seteq : ComplexPattern<XLenVT, 1, "selectSETEQ", [setcc]>;

// Define pattern expansions for setcc operations that aren't directly
// handled by a RISC-V instruction.
def : Pat<(riscv_seteq (XLenVT GPR:$rs1)), (SLTIU GPR:$rs1, 1)>;
def : Pat<(riscv_setne (XLenVT GPR:$rs1)), (SLTU (XLenVT X0), GPR:$rs1)>;
def : Pat<(XLenVT (setne (XLenVT GPR:$rs1), -1)), (SLTIU GPR:$rs1, -1)>;

def IntCCtoRISCVCC : SDNodeXForm<riscv_selectcc, [{
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
  RISCVCC::CondCode BrCC = getRISCVCCForIntCC(CC);
  return CurDAG->getTargetConstant(BrCC, SDLoc(N), Subtarget->getXLenVT());
}]>;

def riscv_selectcc_frag : PatFrag<(ops node:$lhs, node:$rhs, node:$cc,
                                       node:$truev, node:$falsev),
                                  (riscv_selectcc node:$lhs, node:$rhs,
                                                  node:$cc, node:$truev,
                                                  node:$falsev), [{}],
                                  IntCCtoRISCVCC>;

let Predicates = [HasShortForwardBranchOpt], isSelect = 1,
    Constraints = "$dst = $falsev", isCommutable = 1, Size = 8 in {
// This instruction moves $truev to $dst when the condition is true. It will
// be expanded to control flow in RISCVExpandPseudoInsts.
def PseudoCCMOVGPR : Pseudo<(outs GPR:$dst),
                            (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                             GPR:$falsev, GPR:$truev),
                            [(set GPR:$dst,
                              (riscv_selectcc_frag:$cc (XLenVT GPR:$lhs),
                                                       GPR:$rhs, cond,
                                                       (XLenVT GPR:$truev),
                                                       GPR:$falsev))]>,
                     Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                            ReadSFBALU, ReadSFBALU]>;
}

// Conditional binops, that updates update $dst to (op rs1, rs2) when condition
// is true. Returns $falsev otherwise. Selected by optimizeSelect.
// TODO: Can we use DefaultOperands on the regular binop to accomplish this more
// like how ARM does predication?
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8,
    Constraints = "$dst = $falsev" in {
def PseudoCCADD : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
def PseudoCCSUB : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
def PseudoCCSLL : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                         ReadSFBALU, ReadSFBALU]>;
def PseudoCCSRL : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                         ReadSFBALU, ReadSFBALU]>;
def PseudoCCSRA : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                         ReadSFBALU, ReadSFBALU]>;
def PseudoCCAND : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
def PseudoCCOR  : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
def PseudoCCXOR : Pseudo<(outs GPR:$dst),
                         (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                          GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                  Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                         ReadSFBALU, ReadSFBALU, ReadSFBALU]>;

def PseudoCCADDI : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;
def PseudoCCSLLI : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;
def PseudoCCSRLI : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;
def PseudoCCSRAI : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;
def PseudoCCANDI : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;
def PseudoCCORI  : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;
def PseudoCCXORI : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU]>;

// RV64I instructions
def PseudoCCADDW : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                          ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
def PseudoCCSUBW : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp,
                          ReadSFBALU, ReadSFBALU, ReadSFBALU]>;
def PseudoCCSLLW : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU, ReadSFBALU]>;
def PseudoCCSRLW : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU, ReadSFBALU]>;
def PseudoCCSRAW : Pseudo<(outs GPR:$dst),
                          (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                           GPR:$falsev, GPR:$rs1, GPR:$rs2), []>,
                   Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                          ReadSFBALU, ReadSFBALU]>;

def PseudoCCADDIW : Pseudo<(outs GPR:$dst),
                           (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                            GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                    Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                           ReadSFBALU]>;
def PseudoCCSLLIW : Pseudo<(outs GPR:$dst),
                           (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                            GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                    Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                           ReadSFBALU]>;
def PseudoCCSRLIW : Pseudo<(outs GPR:$dst),
                           (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                            GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                    Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                           ReadSFBALU]>;
def PseudoCCSRAIW : Pseudo<(outs GPR:$dst),
                           (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                            GPR:$falsev, GPR:$rs1, simm12:$rs2), []>,
                    Sched<[WriteSFB, ReadSFBJmp, ReadSFBJmp, ReadSFBALU,
                           ReadSFBALU]>;
}

multiclass SelectCC_GPR_rrirr<DAGOperand valty, ValueType vt> {
  let usesCustomInserter = 1 in
  def _Using_CC_GPR : Pseudo<(outs valty:$dst),
                             (ins GPR:$lhs, GPR:$rhs, ixlenimm:$cc,
                              valty:$truev, valty:$falsev),
                             [(set valty:$dst,
                               (riscv_selectcc_frag:$cc (XLenVT GPR:$lhs), GPR:$rhs, cond,
                                                        (vt valty:$truev), valty:$falsev))]>;
  // Explicitly select 0 in the condition to X0. The register coalescer doesn't
  // always do it.
  def : Pat<(riscv_selectcc_frag:$cc (XLenVT GPR:$lhs), 0, cond, (vt valty:$truev),
                                     valty:$falsev),
            (!cast<Instruction>(NAME#"_Using_CC_GPR") GPR:$lhs, (XLenVT X0),
             (IntCCtoRISCVCC $cc), valty:$truev, valty:$falsev)>;
}

let Predicates = [NoShortForwardBranchOpt] in
defm Select_GPR : SelectCC_GPR_rrirr<GPR, XLenVT>;

class SelectCompressOpt<CondCode Cond>
    : Pat<(riscv_selectcc_frag:$select (XLenVT GPR:$lhs), simm12_no6:$Constant, Cond,
                                       (XLenVT GPR:$truev), GPR:$falsev),
    (Select_GPR_Using_CC_GPR (ADDI GPR:$lhs, (NegImm simm12:$Constant)), (XLenVT X0),
                          (IntCCtoRISCVCC $select), GPR:$truev, GPR:$falsev)>;

def OptForMinSize : Predicate<"MF ? MF->getFunction().hasMinSize() : false">;

let Predicates = [HasStdExtC, OptForMinSize] in {
  def : SelectCompressOpt<SETEQ>;
  def : SelectCompressOpt<SETNE>;
}

/// Branches and jumps

// Match `riscv_brcc` and lower to the appropriate RISC-V branch instruction.
multiclass BccPat<CondCode Cond, RVInstB Inst> {
  def : Pat<(riscv_brcc (XLenVT GPR:$rs1), GPR:$rs2, Cond, bb:$imm12),
            (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
  // Explicitly select 0 to X0. The register coalescer doesn't always do it.
  def : Pat<(riscv_brcc (XLenVT GPR:$rs1), 0, Cond, bb:$imm12),
            (Inst GPR:$rs1, (XLenVT X0), simm13_lsb0:$imm12)>;
}

class BrccCompressOpt<CondCode Cond, RVInstB Inst>
    : Pat<(riscv_brcc GPR:$lhs, simm12_no6:$Constant, Cond, bb:$place),
          (Inst (ADDI GPR:$lhs, (NegImm simm12:$Constant)), (XLenVT X0), bb:$place)>;

defm : BccPat<SETEQ, BEQ>;
defm : BccPat<SETNE, BNE>;
defm : BccPat<SETLT, BLT>;
defm : BccPat<SETGE, BGE>;
defm : BccPat<SETULT, BLTU>;
defm : BccPat<SETUGE, BGEU>;

let Predicates = [HasStdExtC, OptForMinSize] in {
  def : BrccCompressOpt<SETEQ, BEQ>;
  def : BrccCompressOpt<SETNE, BNE>;
}

class LongBccPseudo : Pseudo<(outs),
                             (ins GPR:$rs1, GPR:$rs2, simm21_lsb0_jal:$imm20),
                             []> {
  let Size = 8;
  let isBarrier = 1;
  let isBranch = 1;
  let hasSideEffects = 0;
  let mayStore = 0;
  let mayLoad = 0;
  let isAsmParserOnly = 1;
  let hasNoSchedulingInfo = 1;
}

def PseudoLongBEQ : LongBccPseudo;
def PseudoLongBNE : LongBccPseudo;
def PseudoLongBLT : LongBccPseudo;
def PseudoLongBGE : LongBccPseudo;
def PseudoLongBLTU : LongBccPseudo;
def PseudoLongBGEU : LongBccPseudo;

let isBarrier = 1, isBranch = 1, isTerminator = 1 in
def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
               PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;

let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
def PseudoBRIND : Pseudo<(outs), (ins GPRJALR:$rs1, simm12:$imm12), []>,
                  PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;

def : Pat<(brind GPRJALR:$rs1), (PseudoBRIND GPRJALR:$rs1, 0)>;
def : Pat<(brind (add GPRJALR:$rs1, simm12:$imm12)),
          (PseudoBRIND GPRJALR:$rs1, simm12:$imm12)>;

// PseudoCALLReg is a generic pseudo instruction for calls which will eventually
// expand to auipc and jalr while encoding, with any given register used as the
// destination.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, Size = 8, hasSideEffects = 0,
    mayStore = 0, mayLoad = 0 in
def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), [],
                           "call", "$rd, $func">,
                    Sched<[WriteIALU, WriteJalr, ReadJalr]>;

// PseudoCALL is a pseudo instruction which will eventually expand to auipc
// and jalr while encoding. This is desirable, as an auipc+jalr pair with
// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
// if the offset fits in a signed 21-bit immediate.
// Define AsmString to print "call" when compile with -S flag.
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
let isCall = 1, Defs = [X1], isCodeGenOnly = 0, Size = 8 in
def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), [],
                        "call", "$func">,
                 Sched<[WriteIALU, WriteJalr, ReadJalr]>;

def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;

def : Pat<(riscv_sret_glue), (SRET (XLenVT X0), (XLenVT X0))>;
def : Pat<(riscv_mret_glue), (MRET (XLenVT X0), (XLenVT X0))>;

let isCall = 1, Defs = [X1] in
def PseudoCALLIndirect : Pseudo<(outs), (ins GPRJALR:$rs1),
                                [(riscv_call GPRJALR:$rs1)]>,
                         PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;

let isBarrier = 1, isReturn = 1, isTerminator = 1 in
def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_glue)]>,
                PseudoInstExpansion<(JALR X0, X1, 0)>;

// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
// expand to auipc and jalr while encoding.
// Define AsmString to print "tail" when compile with -S flag.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
    Size = 8, isCodeGenOnly = 0 in
def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), [],
                        "tail", "$dst">,
                 Sched<[WriteIALU, WriteJalr, ReadJalr]>;

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
                                [(riscv_tail GPRTC:$rs1)]>,
                         PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;

def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
          (PseudoTAIL tglobaladdr:$dst)>;
def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
          (PseudoTAIL texternalsym:$dst)>;

let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1, Size = 8,
    isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in
def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), [],
                        "jump", "$target, $rd">,
                 Sched<[WriteIALU, WriteJalr, ReadJalr]>;

// Pseudo for a rematerializable constant materialization sequence.
// This is an experimental feature enabled by
// -riscv-use-rematerializable-movimm in RISCVISelDAGToDAG.cpp
// It will be expanded after register allocation.
// FIXME: The scheduling information does not reflect the multiple instructions.
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 1,
    isPseudo = 1, isReMaterializable = 1, IsSignExtendingOpW = 1 in
def PseudoMovImm : Pseudo<(outs GPR:$dst), (ins i32imm:$imm), []>,
                   Sched<[WriteIALU]>;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                       "lla", "$dst, $src">;

// Refer to comment on PseudoLI for explanation of Size=32
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLLAImm : Pseudo<(outs GPR:$dst), (ins ixlenimm_li_restricted:$imm), [],
                          "lla", "$dst, $imm">;
def : Pat<(riscv_lla tglobaladdr:$in), (PseudoLLA tglobaladdr:$in)>;
def : Pat<(riscv_lla tblockaddress:$in), (PseudoLLA tblockaddress:$in)>;
def : Pat<(riscv_lla tjumptable:$in), (PseudoLLA tjumptable:$in)>;
def : Pat<(riscv_lla tconstpool:$in), (PseudoLLA tconstpool:$in)>;

let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLGA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                       "lga", "$dst, $src">;

let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                      "la", "$dst, $src">;

// Refer to comment on PseudoLI for explanation of Size=32
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
    isCodeGenOnly = 0, isAsmParserOnly = 1 in
def PseudoLAImm : Pseudo<(outs GPR:$rd), (ins ixlenimm_li_restricted:$imm), [],
                         "la", "$rd, $imm">;

let hasSideEffects = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                             "la.tls.ie", "$dst, $src">;

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 8, isCodeGenOnly = 0,
    isAsmParserOnly = 1 in
def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
                             "la.tls.gd", "$dst, $src">;


/// Sign/Zero Extends

// There are single-instruction versions of these in Zbb, so disable these
// Pseudos if that extension is present.
let hasSideEffects = 0, mayLoad = 0,
    mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in {
def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">;
def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">;
// rv64's sext.w is defined above, using InstAlias<"sext.w ...
// zext.b is defined above, using InstAlias<"zext.b ...
def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">;
} // hasSideEffects = 0, ...

let Predicates = [IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0,
  isCodeGenOnly = 0, isAsmParserOnly = 1 in {
def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">;
} // Predicates = [IsRV64], ...

/// Loads

class LdPat<PatFrag LoadOp, RVInst Inst, ValueType vt = XLenVT>
    : Pat<(vt (LoadOp (AddrRegImm (XLenVT GPR:$rs1), simm12:$imm12))),
          (Inst GPR:$rs1, simm12:$imm12)>;

def : LdPat<sextloadi8, LB>;
def : LdPat<extloadi8, LBU>; // Prefer unsigned due to no c.lb in Zcb.
def : LdPat<sextloadi16, LH>;
def : LdPat<extloadi16, LH>;
def : LdPat<load, LW, i32>;
def : LdPat<zextloadi8, LBU>;
def : LdPat<zextloadi16, LHU>;

/// Stores

class StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy,
            ValueType vt>
    : Pat<(StoreOp (vt StTy:$rs2), (AddrRegImm (XLenVT GPR:$rs1),
                   simm12:$imm12)),
          (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;

def : StPat<truncstorei8, SB, GPR, XLenVT>;
def : StPat<truncstorei16, SH, GPR, XLenVT>;
def : StPat<store, SW, GPR, i32>;

/// Fences

// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
// Manual: Volume I.

// fence acquire -> fence r, rw
def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>;
// fence release -> fence rw, w
def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>;
// fence acq_rel -> fence.tso
def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>;
// fence seq_cst -> fence rw, rw
def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>;

// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
// Although these are lowered to fence+load/store instructions defined in the
// base RV32I/RV64I ISA, this lowering is only used when the A extension is
// present. This is necessary as it isn't valid to mix __atomic_* libcalls
// with inline atomic operations for the same object.

/// Access to system registers

// Helpers for defining specific operations. They are defined for each system
// register separately. Side effect is not used because dependencies are
// expressed via use-def properties.

class ReadSysReg<SysReg SR, list<Register> Regs>
  : Pseudo<(outs GPR:$rd), (ins),
           [(set GPR:$rd, (XLenVT (riscv_read_csr (XLenVT SR.Encoding))))]>,
    PseudoInstExpansion<(CSRRS GPR:$rd, SR.Encoding, X0)> {
  let hasSideEffects = 0;
  let Uses = Regs;
}

class WriteSysReg<SysReg SR, list<Register> Regs>
  : Pseudo<(outs), (ins GPR:$val),
           [(riscv_write_csr (XLenVT SR.Encoding), (XLenVT GPR:$val))]>,
    PseudoInstExpansion<(CSRRW X0, SR.Encoding, GPR:$val)> {
  let hasSideEffects = 0;
  let Defs = Regs;
}

class WriteSysRegImm<SysReg SR, list<Register> Regs>
  : Pseudo<(outs), (ins uimm5:$val),
           [(riscv_write_csr (XLenVT SR.Encoding), uimm5:$val)]>,
    PseudoInstExpansion<(CSRRWI X0, SR.Encoding, uimm5:$val)> {
  let hasSideEffects = 0;
  let Defs = Regs;
}

class SwapSysReg<SysReg SR, list<Register> Regs>
  : Pseudo<(outs GPR:$rd), (ins GPR:$val),
           [(set GPR:$rd, (riscv_swap_csr (XLenVT SR.Encoding), (XLenVT GPR:$val)))]>,
    PseudoInstExpansion<(CSRRW GPR:$rd, SR.Encoding, GPR:$val)> {
  let hasSideEffects = 0;
  let Uses = Regs;
  let Defs = Regs;
}

class SwapSysRegImm<SysReg SR, list<Register> Regs>
  : Pseudo<(outs GPR:$rd), (ins uimm5:$val),
           [(set GPR:$rd, (XLenVT (riscv_swap_csr (XLenVT SR.Encoding), uimm5:$val)))]>,
    PseudoInstExpansion<(CSRRWI GPR:$rd, SR.Encoding, uimm5:$val)> {
  let hasSideEffects = 0;
  let Uses = Regs;
  let Defs = Regs;
}

def ReadFRM : ReadSysReg<SysRegFRM, [FRM]>;
def WriteFRM : WriteSysReg<SysRegFRM, [FRM]>;
def WriteFRMImm : WriteSysRegImm<SysRegFRM, [FRM]>;
def SwapFRMImm : SwapSysRegImm<SysRegFRM, [FRM]>;

def WriteVXRMImm : WriteSysRegImm<SysRegVXRM, [VXRM]>;

let hasSideEffects = true in {
def ReadFFLAGS : ReadSysReg<SysRegFFLAGS, [FFLAGS]>;
def WriteFFLAGS : WriteSysReg<SysRegFFLAGS, [FFLAGS]>;
}
/// Other pseudo-instructions

// Pessimistically assume the stack pointer will be clobbered
let Defs = [X2], Uses = [X2] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP   : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(callseq_end timm:$amt1, timm:$amt2)]>;
} // Defs = [X2], Uses = [X2]

/// RV64 patterns

let Predicates = [IsRV64, NotHasStdExtZba] in {
def : Pat<(i64 (and GPR:$rs1, 0xffffffff)), (SRLI (SLLI GPR:$rs1, 32), 32)>;

// If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2
// shifts instead of 3. This can occur when unsigned is used to index an array.
def : Pat<(i64 (shl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
          (SRLI (SLLI GPR:$rs1, 32), (ImmSubFrom32 uimm5:$shamt))>;
}

class binop_allhusers<SDPatternOperator operator>
    : PatFrag<(ops node:$lhs, node:$rhs),
              (XLenVT (operator node:$lhs, node:$rhs)), [{
  return hasAllHUsers(Node);
}]>;

// PatFrag to allow ADDW/SUBW/MULW/SLLW to be selected from i64 add/sub/mul/shl
// if only the lower 32 bits of their result is used.
class binop_allwusers<SDPatternOperator operator>
    : PatFrag<(ops node:$lhs, node:$rhs),
              (i64 (operator node:$lhs, node:$rhs)), [{
  return hasAllWUsers(Node);
}]>;

def sexti32_allwusers : PatFrag<(ops node:$src),
                                (sext_inreg node:$src, i32), [{
  return hasAllWUsers(Node);
}]>;

def ImmSExt32 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(SignExtend64<32>(N->getSExtValue()),
                                   SDLoc(N), N->getValueType(0));
}]>;
// Look for constants where the upper 32 bits are 0, but sign extending bit 31
// would be an simm12.
def u32simm12 : ImmLeaf<XLenVT, [{
  return isUInt<32>(Imm) && isInt<12>(SignExtend64<32>(Imm));
}], ImmSExt32>;

let Predicates = [IsRV64] in {

def : Pat<(i64 (and GPR:$rs, LeadingOnesWMask:$mask)),
          (SLLI (SRLIW $rs, LeadingOnesWMask:$mask), LeadingOnesWMask:$mask)>;

/// sext and zext

// Sign extend is not needed if all users are W instructions.
def : Pat<(sexti32_allwusers GPR:$rs1), (XLenVT GPR:$rs1)>;

def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;

/// ALU operations

def : Pat<(i64 (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt)),
          (SRLIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
          (SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
          (SRAIW GPR:$rs1, uimm5:$shamt)>;
def : Pat<(i64 (sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt)),
          (SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;

def : PatGprGpr<shiftopw<riscv_sllw>, SLLW>;
def : PatGprGpr<shiftopw<riscv_srlw>, SRLW>;
def : PatGprGpr<shiftopw<riscv_sraw>, SRAW>;

// Select W instructions if only the lower 32 bits of the result are used.
def : PatGprGpr<binop_allwusers<add>, ADDW>;
def : PatGprSimm12<binop_allwusers<add>, ADDIW>;
def : PatGprGpr<binop_allwusers<sub>, SUBW>;
def : PatGprImm<binop_allwusers<shl>, SLLIW, uimm5>;

// If this is a shr of a value sign extended from i32, and all the users only
// use the lower 32 bits, we can use an sraiw to remove the sext_inreg. This
// occurs because SimplifyDemandedBits prefers srl over sra.
def : Pat<(binop_allwusers<srl> (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
          (SRAIW GPR:$rs1, uimm5:$shamt)>;

// Use binop_allwusers to recover immediates that may have been broken by
// SimplifyDemandedBits.
def : Pat<(binop_allwusers<and> GPR:$rs1, u32simm12:$imm),
          (ANDI GPR:$rs1, u32simm12:$imm)>;

def : Pat<(binop_allwusers<or> GPR:$rs1, u32simm12:$imm),
          (ORI GPR:$rs1, u32simm12:$imm)>;

def : Pat<(binop_allwusers<xor> GPR:$rs1, u32simm12:$imm),
          (XORI GPR:$rs1, u32simm12:$imm)>;
/// Loads

def : LdPat<sextloadi32, LW, i64>;
def : LdPat<extloadi32, LW, i64>;
def : LdPat<zextloadi32, LWU, i64>;
def : LdPat<load, LD, i64>;

/// Stores

def : StPat<truncstorei32, SW, GPR, i64>;
def : StPat<store, SD, GPR, i64>;
} // Predicates = [IsRV64]

/// readcyclecounter
// On RV64, we can directly read the 64-bit "cycle" CSR.
let Predicates = [IsRV64] in
def : Pat<(i64 (readcyclecounter)), (CSRRS CYCLE.Encoding, (XLenVT X0))>;
// On RV32, ReadCycleWide will be expanded to the suggested loop reading both
// halves of the 64-bit "cycle" CSR.
let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins),
                           [(set GPR:$lo, GPR:$hi, (riscv_read_cycle_wide))],
                           "", "">;

/// traps

// We lower `trap` to `unimp`, as this causes a hard exception on nearly all
// systems.
def : Pat<(trap), (UNIMP)>;

// We lower `debugtrap` to `ebreak`, as this will get the attention of the
// debugger if possible.
def : Pat<(debugtrap), (EBREAK)>;

let Predicates = [IsRV64], Uses = [X5],
    Defs = [X1, X6, X7, X28, X29, X30, X31] in
def HWASAN_CHECK_MEMACCESS_SHORTGRANULES
  : Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$accessinfo),
           [(int_hwasan_check_memaccess_shortgranules (i64 X5), GPRJALR:$ptr,
                                                      (i32 timm:$accessinfo))]>;

// This gets lowered into a 20-byte instruction sequence (at most)
let hasSideEffects = 0, mayLoad = 1, mayStore = 0,
    Defs = [ X6, X7, X28, X29, X30, X31 ], Size = 20 in {
def KCFI_CHECK
  : Pseudo<(outs), (ins GPRJALR:$ptr, i32imm:$type), []>, Sched<[]>;
}

/// Simple optimization
def : Pat<(XLenVT (add GPR:$rs1, (AddiPair:$rs2))),
          (ADDI (ADDI GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2)),
                (AddiPairImmSmall GPR:$rs2))>;

let Predicates = [IsRV64] in {
// Select W instructions if only the lower 32-bits of the result are used.
def : Pat<(binop_allwusers<add> GPR:$rs1, (AddiPair:$rs2)),
          (ADDIW (ADDIW GPR:$rs1, (AddiPairImmLarge AddiPair:$rs2)),
                 (AddiPairImmSmall AddiPair:$rs2))>;
}

let Predicates = [HasShortForwardBranchOpt] in
def : Pat<(XLenVT (abs GPR:$rs1)),
          (PseudoCCSUB (XLenVT GPR:$rs1), (XLenVT X0), /* COND_LT */ 2,
           (XLenVT GPR:$rs1), (XLenVT X0), (XLenVT GPR:$rs1))>;
let Predicates = [HasShortForwardBranchOpt, IsRV64] in
def : Pat<(sext_inreg (abs 33signbits_node:$rs1), i32),
          (PseudoCCSUBW (i64 GPR:$rs1), (i64 X0), /* COND_LT */ 2,
           (i64 GPR:$rs1), (i64 X0), (i64 GPR:$rs1))>;

//===----------------------------------------------------------------------===//
// Experimental RV64 i32 legalization patterns.
//===----------------------------------------------------------------------===//

def simm12i32 : ImmLeaf<i32, [{return isInt<12>(Imm);}]>;

// Convert from i32 immediate to i64 target immediate to make SelectionDAG type
// checking happy so we can use ADDIW which expects an XLen immediate.
def as_i64imm : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i64);
}]>;

def zext_is_sext : PatFrag<(ops node:$src), (zext node:$src), [{
  KnownBits Known = CurDAG->computeKnownBits(N->getOperand(0), 0);
  return Known.isNonNegative();
}]>;

let Predicates = [IsRV64] in {
def : LdPat<sextloadi8, LB, i32>;
def : LdPat<extloadi8, LBU, i32>; // Prefer unsigned due to no c.lb in Zcb.
def : LdPat<sextloadi16, LH, i32>;
def : LdPat<extloadi16, LH, i32>;
def : LdPat<zextloadi8, LBU, i32>;
def : LdPat<zextloadi16, LHU, i32>;

def : StPat<truncstorei8, SB, GPR, i32>;
def : StPat<truncstorei16, SH, GPR, i32>;

def : Pat<(anyext GPR:$src), (COPY GPR:$src)>;
def : Pat<(sext GPR:$src), (ADDIW GPR:$src, 0)>;
def : Pat<(trunc GPR:$src), (COPY GPR:$src)>;

def : PatGprGpr<add, ADDW, i32, i32>;
def : PatGprGpr<sub, SUBW, i32, i32>;
def : PatGprGpr<and, AND, i32, i32>;
def : PatGprGpr<or, OR, i32, i32>;
def : PatGprGpr<xor, XOR, i32, i32>;
def : PatGprGpr<shiftopw<shl>, SLLW, i32, i64>;
def : PatGprGpr<shiftopw<srl>, SRLW, i32, i64>;
def : PatGprGpr<shiftopw<sra>, SRAW, i32, i64>;

def : Pat<(i32 (add GPR:$rs1, simm12i32:$imm)),
          (ADDIW GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : Pat<(i32 (and GPR:$rs1, simm12i32:$imm)),
          (ANDI GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : Pat<(i32 (or GPR:$rs1, simm12i32:$imm)),
          (ORI GPR:$rs1, (i64 (as_i64imm $imm)))>;
def : Pat<(i32 (xor GPR:$rs1, simm12i32:$imm)),
          (XORI GPR:$rs1, (i64 (as_i64imm $imm)))>;

def : PatGprImm<shl, SLLIW, uimm5, i32>;
def : PatGprImm<srl, SRLIW, uimm5, i32>;
def : PatGprImm<sra, SRAIW, uimm5, i32>;

def : Pat<(i32 (and GPR:$rs, TrailingOnesMask:$mask)),
          (SRLI (SLLI $rs, (i64 (XLenSubTrailingOnes $mask))),
                (i64 (XLenSubTrailingOnes $mask)))>;

// Use sext if the sign bit of the input is 0.
def : Pat<(zext_is_sext GPR:$src), (ADDIW GPR:$src, 0)>;
}

let Predicates = [IsRV64, NotHasStdExtZba] in {
def : Pat<(zext GPR:$src), (SRLI (SLLI GPR:$src, 32), 32)>;

// If we're shifting a 32-bit zero extended value left by 0-31 bits, use 2
// shifts instead of 3. This can occur when unsigned is used to index an array.
def : Pat<(shl (zext GPR:$rs), uimm5:$shamt),
          (SRLI (SLLI GPR:$rs, 32), (ImmSubFrom32 uimm5:$shamt))>;
}

//===----------------------------------------------------------------------===//
// Standard extensions
//===----------------------------------------------------------------------===//

// Multiply and Division
include "RISCVInstrInfoM.td"

// Atomic
include "RISCVInstrInfoA.td"

// Scalar FP
include "RISCVInstrInfoF.td"
include "RISCVInstrInfoD.td"
include "RISCVInstrInfoZfh.td"
include "RISCVInstrInfoZfbfmin.td"
include "RISCVInstrInfoZfa.td"

// Scalar bitmanip and cryptography
include "RISCVInstrInfoZb.td"
include "RISCVInstrInfoZk.td"

// Vector
include "RISCVInstrInfoV.td"
include "RISCVInstrInfoZvk.td"

// Integer
include "RISCVInstrInfoZicbo.td"
include "RISCVInstrInfoZicond.td"

// Compressed
include "RISCVInstrInfoC.td"
include "RISCVInstrInfoZc.td"

//===----------------------------------------------------------------------===//
// Vendor extensions
//===----------------------------------------------------------------------===//

include "RISCVInstrInfoXVentana.td"
include "RISCVInstrInfoXTHead.td"
include "RISCVInstrInfoXSf.td"
include "RISCVInstrInfoXCV.td"

//===----------------------------------------------------------------------===//
// Global ISel
//===----------------------------------------------------------------------===//

include "RISCVInstrGISel.td"