aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86LowerAMXType.cpp
blob: 7368b64efd9aec451486b7e526183554d14ada83 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
//===- Target/X86/X86LowerAMXType.cpp - -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Pass to transform <256 x i32> load/store
/// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
/// provides simple operation on x86_amx. The basic elementwise operation
/// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
/// and only AMX intrinsics can operate on the type, we need transform
/// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
/// not be combined with load/store, we transform the bitcast to amx load/store
/// and <256 x i32> store/load.
///
/// If Front End not use O0 but the Mid/Back end use O0, (e.g. "Clang -O2 -S
/// -emit-llvm t.c" + "llc t.ll") we should make sure the amx data is volatile,
/// because that is necessary for AMX fast register allocation. (In Fast
/// registera allocation, register will be allocated before spill/reload, so
/// there is no additional register for amx to identify the step in spill.)
/// The volatileTileData() will handle this case.
/// e.g.
/// ----------------------------------------------------------
/// | def %td = ...                                          |
/// | ...                                                    |
/// | "use %td"                                              |
/// ----------------------------------------------------------
/// will transfer to -->
/// ----------------------------------------------------------
/// | def %td = ...                                          |
/// | call void @llvm.x86.tilestored64.internal(mem, %td)    |
/// | ...                                                    |
/// | %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)|
/// | "use %td2"                                             |
/// ----------------------------------------------------------
//
//===----------------------------------------------------------------------===//
//
#include "X86.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Transforms/Utils/Local.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "lower-amx-type"

static bool isAMXCast(Instruction *II) {
  return match(II,
               m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value())) ||
         match(II, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(m_Value()));
}

static AllocaInst *createAllocaInstAtEntry(IRBuilder<> &Builder, BasicBlock *BB,
                                           Type *Ty) {
  Function &F = *BB->getParent();
  Module *M = BB->getModule();
  const DataLayout &DL = M->getDataLayout();

  LLVMContext &Ctx = Builder.getContext();
  auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
  unsigned AllocaAS = DL.getAllocaAddrSpace();
  AllocaInst *AllocaRes =
      new AllocaInst(Ty, AllocaAS, "", &F.getEntryBlock().front());
  AllocaRes->setAlignment(AllocaAlignment);
  return AllocaRes;
}

static Instruction *getFirstNonAllocaInTheEntryBlock(Function &F) {
  for (Instruction &I : F.getEntryBlock())
    if (!isa<AllocaInst>(&I))
      return &I;
  llvm_unreachable("No terminator in the entry block!");
}

static std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo) {
  IRBuilder<> Builder(II);
  Value *Row = nullptr, *Col = nullptr;
  switch (II->getIntrinsicID()) {
  default:
    llvm_unreachable("Expect amx intrinsics");
  case Intrinsic::x86_tileloadd64_internal:
  case Intrinsic::x86_tileloaddt164_internal:
  case Intrinsic::x86_tilestored64_internal: {
    Row = II->getArgOperand(0);
    Col = II->getArgOperand(1);
    break;
  }
  // a * b + c
  // The shape depends on which operand.
  case Intrinsic::x86_tdpbssd_internal:
  case Intrinsic::x86_tdpbsud_internal:
  case Intrinsic::x86_tdpbusd_internal:
  case Intrinsic::x86_tdpbuud_internal:
  case Intrinsic::x86_tdpbf16ps_internal: {
    switch (OpNo) {
    case 3:
      Row = II->getArgOperand(0);
      Col = II->getArgOperand(1);
      break;
    case 4:
      Row = II->getArgOperand(0);
      Col = II->getArgOperand(2);
      break;
    case 5:
      if (isa<ConstantInt>(II->getArgOperand(2)))
        Row = Builder.getInt16(
            (cast<ConstantInt>(II->getOperand(2))->getSExtValue()) / 4);
      else if (isa<Instruction>(II->getArgOperand(2))) {
        // When it is not a const value and it is not a function argument, we
        // create Row after the definition of II->getOperand(2) instead of
        // before II. For example, II is %118, we try to getshape for %117:
        //   %117 = call x86_amx @llvm.x86.cast.vector.to.tile.v256i32(<256 x
        //   i32> %115).
        //   %118 = call x86_amx @llvm.x86.tdpbf16ps.internal(i16
        //   %104, i16 %105, i16 %106, x86_amx %110, x86_amx %114, x86_amx
        //   %117).
        // If we create %row = udiv i16 %106, 4 before %118(aka. II), then its
        // definition is after its user(new tileload for %117).
        // So, the best choice is to create %row right after the definition of
        // %106.
        Builder.SetInsertPoint(cast<Instruction>(II->getOperand(2)));
        Row = Builder.CreateUDiv(II->getOperand(2), Builder.getInt16(4));
        cast<Instruction>(Row)->moveAfter(cast<Instruction>(II->getOperand(2)));
      } else {
        // When it is not a const value and it is a function argument, we create
        // Row at the entry bb.
        IRBuilder<> NewBuilder(
            getFirstNonAllocaInTheEntryBlock(*II->getFunction()));
        Row = NewBuilder.CreateUDiv(II->getOperand(2), NewBuilder.getInt16(4));
      }
      Col = II->getArgOperand(1);
      break;
    }
    break;
  }
  }

  return std::make_pair(Row, Col);
}

namespace {
class X86LowerAMXType {
  Function &Func;

  // In AMX intrinsics we let Shape = {Row, Col}, but the
  // RealCol = Col / ElementSize. We may use the RealCol
  // as a new Row for other new created AMX intrinsics.
  std::map<Value *, Value *> Col2Row;

public:
  X86LowerAMXType(Function &F) : Func(F) {}
  bool visit();
  void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast);
  void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST);
  bool transformBitcast(BitCastInst *Bitcast);
};

// %src = load <256 x i32>, <256 x i32>* %addr, align 64
// %2 = bitcast <256 x i32> %src to x86_amx
// -->
// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
// i8* %addr, i64 %stride64)
void X86LowerAMXType::combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
  Value *Row = nullptr, *Col = nullptr;
  Use &U = *(Bitcast->use_begin());
  unsigned OpNo = U.getOperandNo();
  auto *II = cast<IntrinsicInst>(U.getUser());
  std::tie(Row, Col) = getShape(II, OpNo);
  IRBuilder<> Builder(Bitcast);
  // Use the maximun column as stride.
  Value *Stride = Builder.getInt64(64);
  Value *I8Ptr =
      Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
  std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};

  Value *NewInst =
      Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
  Bitcast->replaceAllUsesWith(NewInst);
}

// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
//                                                    %stride);
// %13 = bitcast x86_amx %src to <256 x i32>
// store <256 x i32> %13, <256 x i32>* %addr, align 64
// -->
// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
//                                           %stride64, %13)
void X86LowerAMXType::combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {

  Value *Tile = Bitcast->getOperand(0);
  auto *II = cast<IntrinsicInst>(Tile);
  // Tile is output from AMX intrinsic. The first operand of the
  // intrinsic is row, the second operand of the intrinsic is column.
  Value *Row = II->getOperand(0);
  Value *Col = II->getOperand(1);
  IRBuilder<> Builder(ST);
  // Use the maximum column as stride. It must be the same with load
  // stride.
  Value *Stride = Builder.getInt64(64);
  Value *I8Ptr =
      Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
  std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
  Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
  if (Bitcast->hasOneUse())
    return;
  // %13 = bitcast x86_amx %src to <256 x i32>
  // store <256 x i32> %13, <256 x i32>* %addr, align 64
  // %add = <256 x i32> %13, <256 x i32> %src2
  // -->
  // %13 = bitcast x86_amx %src to <256 x i32>
  // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
  //                                           %stride64, %13)
  // %14 = load <256 x i32>, %addr
  // %add = <256 x i32> %14, <256 x i32> %src2
  Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
  Bitcast->replaceAllUsesWith(Vec);
}

// transform bitcast to <store, load> instructions.
bool X86LowerAMXType::transformBitcast(BitCastInst *Bitcast) {
  IRBuilder<> Builder(Bitcast);
  AllocaInst *AllocaAddr;
  Value *I8Ptr, *Stride;
  auto *Src = Bitcast->getOperand(0);

  auto Prepare = [&](Type *MemTy) {
    AllocaAddr = createAllocaInstAtEntry(Builder, Bitcast->getParent(), MemTy);
    I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
    Stride = Builder.getInt64(64);
  };

  if (Bitcast->getType()->isX86_AMXTy()) {
    // %2 = bitcast <256 x i32> %src to x86_amx
    // -->
    // %addr = alloca <256 x i32>, align 64
    // store <256 x i32> %src, <256 x i32>* %addr, align 64
    // %addr2 = bitcast <256 x i32>* to i8*
    // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
    //                                                  i8* %addr2,
    //                                                  i64 64)
    Use &U = *(Bitcast->use_begin());
    unsigned OpNo = U.getOperandNo();
    auto *II = dyn_cast<IntrinsicInst>(U.getUser());
    if (!II)
      return false; // May be bitcast from x86amx to <256 x i32>.
    Prepare(Bitcast->getOperand(0)->getType());
    Builder.CreateStore(Src, AllocaAddr);
    // TODO we can pick an constant operand for the shape.
    Value *Row = nullptr, *Col = nullptr;
    std::tie(Row, Col) = getShape(II, OpNo);
    std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
    Value *NewInst = Builder.CreateIntrinsic(
        Intrinsic::x86_tileloadd64_internal, None, Args);
    Bitcast->replaceAllUsesWith(NewInst);
  } else {
    // %2 = bitcast x86_amx %src to <256 x i32>
    // -->
    // %addr = alloca <256 x i32>, align 64
    // %addr2 = bitcast <256 x i32>* to i8*
    // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
    //                                           i8* %addr2, i64 %stride)
    // %2 = load <256 x i32>, <256 x i32>* %addr, align 64
    auto *II = dyn_cast<IntrinsicInst>(Src);
    if (!II)
      return false; // May be bitcast from <256 x i32> to x86amx.
    Prepare(Bitcast->getType());
    Value *Row = II->getOperand(0);
    Value *Col = II->getOperand(1);
    std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
    Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
    Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
    Bitcast->replaceAllUsesWith(NewInst);
  }

  return true;
}

bool X86LowerAMXType::visit() {
  SmallVector<Instruction *, 8> DeadInsts;
  Col2Row.clear();

  for (BasicBlock *BB : post_order(&Func)) {
    for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*BB))) {
      auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
      if (!Bitcast)
        continue;

      Value *Src = Bitcast->getOperand(0);
      if (Bitcast->getType()->isX86_AMXTy()) {
        if (Bitcast->user_empty()) {
          DeadInsts.push_back(Bitcast);
          continue;
        }
        LoadInst *LD = dyn_cast<LoadInst>(Src);
        if (!LD) {
          if (transformBitcast(Bitcast))
            DeadInsts.push_back(Bitcast);
          continue;
        }
        // If load has mutli-user, duplicate a vector load.
        // %src = load <256 x i32>, <256 x i32>* %addr, align 64
        // %2 = bitcast <256 x i32> %src to x86_amx
        // %add = add <256 x i32> %src, <256 x i32> %src2
        // -->
        // %src = load <256 x i32>, <256 x i32>* %addr, align 64
        // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
        //                                            i8* %addr, i64 %stride64)
        // %add = add <256 x i32> %src, <256 x i32> %src2

        // If load has one user, the load will be eliminated in DAG ISel.
        // %src = load <256 x i32>, <256 x i32>* %addr, align 64
        // %2 = bitcast <256 x i32> %src to x86_amx
        // -->
        // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
        //                                            i8* %addr, i64 %stride64)
        combineLoadBitcast(LD, Bitcast);
        DeadInsts.push_back(Bitcast);
        if (LD->hasOneUse())
          DeadInsts.push_back(LD);
      } else if (Src->getType()->isX86_AMXTy()) {
        if (Bitcast->user_empty()) {
          DeadInsts.push_back(Bitcast);
          continue;
        }
        StoreInst *ST = nullptr;
        for (Use &U : Bitcast->uses()) {
          ST = dyn_cast<StoreInst>(U.getUser());
          if (ST)
            break;
        }
        if (!ST) {
          if (transformBitcast(Bitcast))
            DeadInsts.push_back(Bitcast);
          continue;
        }
        // If bitcast (%13) has one use, combine bitcast and store to amx store.
        // %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
        //                                                    %stride);
        // %13 = bitcast x86_amx %src to <256 x i32>
        // store <256 x i32> %13, <256 x i32>* %addr, align 64
        // -->
        // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
        //                                           %stride64, %13)
        //
        // If bitcast (%13) has multi-use, transform as below.
        // %13 = bitcast x86_amx %src to <256 x i32>
        // store <256 x i32> %13, <256 x i32>* %addr, align 64
        // %add = <256 x i32> %13, <256 x i32> %src2
        // -->
        // %13 = bitcast x86_amx %src to <256 x i32>
        // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
        //                                           %stride64, %13)
        // %14 = load <256 x i32>, %addr
        // %add = <256 x i32> %14, <256 x i32> %src2
        //
        combineBitcastStore(Bitcast, ST);
        // Delete user first.
        DeadInsts.push_back(ST);
        DeadInsts.push_back(Bitcast);
      }
    }
  }

  bool C = !DeadInsts.empty();

  for (auto *Inst : DeadInsts)
    Inst->eraseFromParent();

  return C;
}
} // anonymous namespace

static Value *getAllocaPos(BasicBlock *BB) {
  Module *M = BB->getModule();
  Function *F = BB->getParent();
  IRBuilder<> Builder(&F->getEntryBlock().front());
  const DataLayout &DL = M->getDataLayout();
  unsigned AllocaAS = DL.getAllocaAddrSpace();
  Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
  AllocaInst *AllocaRes =
      new AllocaInst(V256I32Ty, AllocaAS, "", &F->getEntryBlock().front());
  BasicBlock::iterator Iter = AllocaRes->getIterator();
  ++Iter;
  Builder.SetInsertPoint(&*Iter);
  Value *I8Ptr = Builder.CreateBitCast(AllocaRes, Builder.getInt8PtrTy());
  return I8Ptr;
}

static Instruction *createTileStore(Instruction *TileDef, Value *Ptr) {
  assert(TileDef->getType()->isX86_AMXTy() && "Not define tile!");
  auto *II = cast<IntrinsicInst>(TileDef);
  assert(II && "Not tile intrinsic!");
  Value *Row = II->getOperand(0);
  Value *Col = II->getOperand(1);

  BasicBlock *BB = TileDef->getParent();
  BasicBlock::iterator Iter = TileDef->getIterator();
  IRBuilder<> Builder(BB, ++Iter);
  Value *Stride = Builder.getInt64(64);
  std::array<Value *, 5> Args = {Row, Col, Ptr, Stride, TileDef};

  Instruction *TileStore =
      Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
  return TileStore;
}

static void replaceWithTileLoad(Use &U, Value *Ptr, bool IsPHI = false) {
  Value *V = U.get();
  assert(V->getType()->isX86_AMXTy() && "Not define tile!");

  // Get tile shape.
  IntrinsicInst *II = nullptr;
  if (IsPHI) {
    Value *PhiOp = dyn_cast<PHINode>(V)->getIncomingValue(0);
    II = cast<IntrinsicInst>(PhiOp);
  } else {
    II = cast<IntrinsicInst>(V);
  }
  Value *Row = II->getOperand(0);
  Value *Col = II->getOperand(1);

  Instruction *UserI = dyn_cast<Instruction>(U.getUser());
  IRBuilder<> Builder(UserI);
  Value *Stride = Builder.getInt64(64);
  std::array<Value *, 4> Args = {Row, Col, Ptr, Stride};

  Value *TileLoad =
      Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
  UserI->replaceUsesOfWith(V, TileLoad);
}

static bool isIncomingOfPHI(Instruction *I) {
  for (Use &U : I->uses()) {
    User *V = U.getUser();
    if (isa<PHINode>(V))
      return true;
  }
  return false;
}

// Let all AMX tile data become volatile data, shorten the life range
// of each tile register before fast register allocation.
namespace {
class X86VolatileTileData {
  Function &F;

public:
  X86VolatileTileData(Function &Func) : F(Func) {}
  Value *updatePhiIncomings(BasicBlock *BB,
                            SmallVector<Instruction *, 2> &Incomings);
  void replacePhiDefWithLoad(Instruction *PHI, Value *StorePtr);
  bool volatileTileData();
  void volatileTilePHI(PHINode *Inst);
  void volatileTileNonPHI(Instruction *I);
};

Value *X86VolatileTileData::updatePhiIncomings(
    BasicBlock *BB, SmallVector<Instruction *, 2> &Incomings) {
  Value *I8Ptr = getAllocaPos(BB);

  for (auto *I : Incomings) {
    User *Store = createTileStore(I, I8Ptr);

    // All its uses (except phi) should load from stored mem.
    for (Use &U : I->uses()) {
      User *V = U.getUser();
      if (isa<PHINode>(V) || V == Store)
        continue;
      replaceWithTileLoad(U, I8Ptr);
    }
  }
  return I8Ptr;
}

void X86VolatileTileData::replacePhiDefWithLoad(Instruction *PHI,
                                                Value *StorePtr) {
  for (Use &U : PHI->uses())
    replaceWithTileLoad(U, StorePtr, true);
  PHI->eraseFromParent();
}

// Smilar with volatileTileNonPHI, this function only handle PHI Nodes
// and their related AMX intrinsics.
// 1) PHI Def should change to tileload.
// 2) PHI Incoming Values should tilestored in just after their def.
// 3) The mem of these tileload and tilestores should be same.
// e.g.
// ------------------------------------------------------
// bb_dom:
//   ...
//   br i1 %bool.cond, label %if.else, label %if.then
//
// if.then:
//   def %t0 = ...
//   ...
//   use %t0
//   ...
//   br label %if.end
//
// if.else:
//   def %t1 = ...
//   br label %if.end
//
// if.end:
//   %td = phi x86_amx [ %t1, %if.else ], [ %t0, %if.then ]
//   ...
//   use %td
// ------------------------------------------------------
// -->
// ------------------------------------------------------
// bb_entry:
//   %mem = alloca <256 x i32>, align 1024                  *
//   ...
// bb_dom:
//   ...
//   br i1 %bool.cond, label %if.else, label %if.then
//
// if.then:
//   def %t0 = ...
//   call void @llvm.x86.tilestored64.internal(mem, %t0)    *
//   ...
//   %t0` = call x86_amx @llvm.x86.tileloadd64.internal(mem)*
//   use %t0`                                               *
//   ...
//   br label %if.end
//
// if.else:
//   def %t1 = ...
//   call void @llvm.x86.tilestored64.internal(mem, %t1)    *
//   br label %if.end
//
// if.end:
//   ...
//   %td = call x86_amx @llvm.x86.tileloadd64.internal(mem) *
//   use %td
// ------------------------------------------------------
void X86VolatileTileData::volatileTilePHI(PHINode *PHI) {
  BasicBlock *BB = PHI->getParent();
  SmallVector<Instruction *, 2> Incomings;

  for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
    Value *Op = PHI->getIncomingValue(I);
    Instruction *Inst = dyn_cast<Instruction>(Op);
    assert(Inst && "We shouldn't fold AMX instrution!");
    Incomings.push_back(Inst);
  }

  Value *StorePtr = updatePhiIncomings(BB, Incomings);
  replacePhiDefWithLoad(PHI, StorePtr);
}

// Store the defined tile and load it before use.
// All its users are not PHI.
// e.g.
// ------------------------------------------------------
// def %td = ...
// ...
// "use %td"
// ------------------------------------------------------
// -->
// ------------------------------------------------------
// def %td = ...
// call void @llvm.x86.tilestored64.internal(mem, %td)
// ...
// %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)
// "use %td2"
// ------------------------------------------------------
void X86VolatileTileData::volatileTileNonPHI(Instruction *I) {
  BasicBlock *BB = I->getParent();
  Value *I8Ptr = getAllocaPos(BB);
  User *Store = createTileStore(I, I8Ptr);

  // All its uses should load from stored mem.
  for (Use &U : I->uses()) {
    User *V = U.getUser();
    assert(!isa<PHINode>(V) && "PHI Nodes should be excluded!");
    if (V != Store)
      replaceWithTileLoad(U, I8Ptr);
  }
}

// Volatile Tile Model:
// 1) All the uses of tile data comes from tileload in time.
// 2) All the defs of tile data tilestore into mem immediately.
// For example:
// --------------------------------------------------------------------------
// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...)          key
// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...)          amx
// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
// call void @llvm.x86.tilestored64.internal(... td)                     area
// --------------------------------------------------------------------------
// 3) No terminator, call or other amx instructions in the key amx area.
bool X86VolatileTileData::volatileTileData() {
  bool Changed = false;
  for (BasicBlock &BB : F) {
    SmallVector<Instruction *, 2> PHIInsts;
    SmallVector<Instruction *, 8> AMXDefInsts;

    for (Instruction &I : BB) {
      if (!I.getType()->isX86_AMXTy())
        continue;
      if (isa<PHINode>(&I))
        PHIInsts.push_back(&I);
      else
        AMXDefInsts.push_back(&I);
    }

    // First we "volatile" the non-phi related amx intrinsics.
    for (Instruction *I : AMXDefInsts) {
      if (isIncomingOfPHI(I))
        continue;
      volatileTileNonPHI(I);
      Changed = true;
    }

    for (Instruction *I : PHIInsts) {
      volatileTilePHI(dyn_cast<PHINode>(I));
      Changed = true;
    }
  }
  return Changed;
}

} // anonymous namespace

namespace {

class X86LowerAMXCast {
  Function &Func;

public:
  X86LowerAMXCast(Function &F) : Func(F) {}
  bool combineAMXcast(TargetLibraryInfo *TLI);
  bool transformAMXCast(IntrinsicInst *AMXCast);
  bool transformAllAMXCast();
  bool optimizeAMXCastFromPhi(IntrinsicInst *CI, PHINode *PN,
                              SmallSetVector<Instruction *, 16> &DeadInst);
};

static bool DCEInstruction(Instruction *I,
                           SmallSetVector<Instruction *, 16> &WorkList,
                           const TargetLibraryInfo *TLI) {
  if (isInstructionTriviallyDead(I, TLI)) {
    salvageDebugInfo(*I);
    salvageKnowledge(I);

    // Null out all of the instruction's operands to see if any operand becomes
    // dead as we go.
    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
      Value *OpV = I->getOperand(i);
      I->setOperand(i, nullptr);

      if (!OpV->use_empty() || I == OpV)
        continue;

      // If the operand is an instruction that became dead as we nulled out the
      // operand, and if it is 'trivially' dead, delete it in a future loop
      // iteration.
      if (Instruction *OpI = dyn_cast<Instruction>(OpV)) {
        if (isInstructionTriviallyDead(OpI, TLI)) {
          WorkList.insert(OpI);
        }
      }
    }
    I->eraseFromParent();
    return true;
  }
  return false;
}

/// This function handles following case
///
///     A  ->  B    amxcast
///     PHI
///     B  ->  A    amxcast
///
/// All the related PHI nodes can be replaced by new PHI nodes with type A.
/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
bool X86LowerAMXCast::optimizeAMXCastFromPhi(
    IntrinsicInst *CI, PHINode *PN,
    SmallSetVector<Instruction *, 16> &DeadInst) {
  IRBuilder<> Builder(CI);
  Value *Src = CI->getOperand(0);
  Type *SrcTy = Src->getType(); // Type B
  Type *DestTy = CI->getType(); // Type A

  SmallVector<PHINode *, 4> PhiWorklist;
  SmallSetVector<PHINode *, 4> OldPhiNodes;

  // Find all of the A->B casts and PHI nodes.
  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
  // OldPhiNodes is used to track all known PHI nodes, before adding a new
  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
  PhiWorklist.push_back(PN);
  OldPhiNodes.insert(PN);
  while (!PhiWorklist.empty()) {
    auto *OldPN = PhiWorklist.pop_back_val();
    for (Value *IncValue : OldPN->incoming_values()) {
      // TODO: currently, We ignore cases where it is a const. In the future, we
      // might support const.
      if (isa<Constant>(IncValue))
        return false;

      if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
        if (OldPhiNodes.insert(PNode))
          PhiWorklist.push_back(PNode);
        continue;
      }
      Instruction *ACI = dyn_cast<Instruction>(IncValue);
      if (ACI && isAMXCast(ACI)) {
        // Verify it's a A->B cast.
        Type *TyA = ACI->getOperand(0)->getType();
        Type *TyB = ACI->getType();
        if (TyA != DestTy || TyB != SrcTy)
          return false;
        continue;
      }
      return false;
    }
  }

  // Check that each user of each old PHI node is something that we can
  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
  for (auto *OldPN : OldPhiNodes) {
    for (User *V : OldPN->users()) {
      Instruction *ACI = dyn_cast<Instruction>(V);
      if (ACI && isAMXCast(ACI)) {
        // Verify it's a B->A cast.
        Type *TyB = ACI->getOperand(0)->getType();
        Type *TyA = ACI->getType();
        if (TyA != DestTy || TyB != SrcTy)
          return false;
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
        // As long as the user is another old PHI node, then even if we don't
        // rewrite it, the PHI web we're considering won't have any users
        // outside itself, so it'll be dead.
        // example:
        //   bb.0:
        //      %0 = amxcast ...
        //   bb.1:
        //      %1 = amxcast ...
        //   bb.2:
        //      %goodphi = phi %0, %1
        //      %3 = amxcast %goodphi
        //   bb.3:
        //      %goodphi2 = phi %0, %goodphi
        //      %4 = amxcast %goodphi2
        // When optimizeAMXCastFromPhi process %3 and %goodphi, %goodphi2 is
        // outside the phi-web, so the combination stop When
        // optimizeAMXCastFromPhi process %4 and %goodphi2, the optimization
        // will be done.
        if (OldPhiNodes.count(PHI) == 0)
          return false;
      } else
        return false;
    }
  }

  // For each old PHI node, create a corresponding new PHI node with a type A.
  SmallDenseMap<PHINode *, PHINode *> NewPNodes;
  for (auto *OldPN : OldPhiNodes) {
    Builder.SetInsertPoint(OldPN);
    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
    NewPNodes[OldPN] = NewPN;
  }

  // Fill in the operands of new PHI nodes.
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
      Value *V = OldPN->getOperand(j);
      Value *NewV = nullptr;
      Instruction *ACI = dyn_cast<Instruction>(V);
      // There should not be a AMXcast from a const.
      if (ACI && isAMXCast(ACI))
        NewV = ACI->getOperand(0);
      else if (auto *PrevPN = dyn_cast<PHINode>(V))
        NewV = NewPNodes[PrevPN];
      assert(NewV);
      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
    }
  }

  // Traverse all accumulated PHI nodes and process its users,
  // which are Stores and BitcCasts. Without this processing
  // NewPHI nodes could be replicated and could lead to extra
  // moves generated after DeSSA.
  // If there is a store with type B, change it to type A.

  // Replace users of BitCast B->A with NewPHI. These will help
  // later to get rid of a closure formed by OldPHI nodes.
  for (auto *OldPN : OldPhiNodes) {
    PHINode *NewPN = NewPNodes[OldPN];
    for (User *V : make_early_inc_range(OldPN->users())) {
      Instruction *ACI = dyn_cast<Instruction>(V);
      if (ACI && isAMXCast(ACI)) {
        Type *TyB = ACI->getOperand(0)->getType();
        Type *TyA = ACI->getType();
        assert(TyA == DestTy && TyB == SrcTy);
        (void)TyA;
        (void)TyB;
        ACI->replaceAllUsesWith(NewPN);
        DeadInst.insert(ACI);
      } else if (auto *PHI = dyn_cast<PHINode>(V)) {
        // We don't need to push PHINode into DeadInst since they are operands
        // of rootPN DCE can safely delete rootPN's operands if rootPN is dead.
        assert(OldPhiNodes.contains(PHI));
        (void)PHI;
      } else
        llvm_unreachable("all uses should be handled");
    }
  }
  return true;
}

bool X86LowerAMXCast::combineAMXcast(TargetLibraryInfo *TLI) {
  bool Change = false;
  // Collect tile cast instruction.
  SmallVector<Instruction *, 8> Vec2TileInsts;
  SmallVector<Instruction *, 8> Tile2VecInsts;
  SmallVector<Instruction *, 8> PhiCastWorkList;
  SmallSetVector<Instruction *, 16> DeadInst;
  for (BasicBlock &BB : Func) {
    for (Instruction &I : BB) {
      Value *Vec;
      if (match(&I,
                m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value(Vec))))
        Vec2TileInsts.push_back(&I);
      else if (match(&I, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(
                             m_Value(Vec))))
        Tile2VecInsts.push_back(&I);
    }
  }

  auto Convert = [&](SmallVectorImpl<Instruction *> &Insts, Intrinsic::ID IID) {
    for (auto *Inst : Insts) {
      for (User *U : Inst->users()) {
        IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
        if (!II || II->getIntrinsicID() != IID)
          continue;
        // T1 = vec2tile V0
        // V2 = tile2vec T1
        // V3 = OP V2
        // -->
        // T1 = vec2tile V0
        // V2 = tile2vec T1
        // V3 = OP V0
        II->replaceAllUsesWith(Inst->getOperand(0));
        Change = true;
      }
    }
  };

  Convert(Vec2TileInsts, Intrinsic::x86_cast_tile_to_vector);
  Convert(Tile2VecInsts, Intrinsic::x86_cast_vector_to_tile);

  auto EraseInst = [&](SmallVectorImpl<Instruction *> &Insts) {
    for (auto *Inst : Insts) {
      if (Inst->use_empty()) {
        Inst->eraseFromParent();
        Change = true;
      }
    }
  };

  EraseInst(Vec2TileInsts);
  EraseInst(Tile2VecInsts);

  // Handle the A->B->A cast, and there is an intervening PHI node.
  for (BasicBlock &BB : Func) {
    for (Instruction &I : BB) {
      if (isAMXCast(&I)) {
        if (isa<PHINode>(I.getOperand(0)))
          PhiCastWorkList.push_back(&I);
      }
    }
  }
  for (auto *I : PhiCastWorkList) {
    // We skip the dead Amxcast.
    if (DeadInst.contains(I))
      continue;
    PHINode *PN = cast<PHINode>(I->getOperand(0));
    if (optimizeAMXCastFromPhi(cast<IntrinsicInst>(I), PN, DeadInst)) {
      DeadInst.insert(PN);
      Change = true;
    }
  }

  // Since we create new phi and merge AMXCast, some old phis and AMXCast might
  // have no uses. We do some DeadCodeElimination for them.
  while (!DeadInst.empty()) {
    Instruction *I = DeadInst.pop_back_val();
    Change |= DCEInstruction(I, DeadInst, TLI);
  }
  return Change;
}

// There might be remaining AMXcast after combineAMXcast and they should be
// handled elegantly.
bool X86LowerAMXCast::transformAMXCast(IntrinsicInst *AMXCast) {
  IRBuilder<> Builder(AMXCast);
  AllocaInst *AllocaAddr;
  Value *I8Ptr, *Stride;
  auto *Src = AMXCast->getOperand(0);

  auto Prepare = [&](Type *MemTy) {
    AllocaAddr = createAllocaInstAtEntry(Builder, AMXCast->getParent(), MemTy);
    I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
    Stride = Builder.getInt64(64);
  };

  if (AMXCast->getType()->isX86_AMXTy()) {
    // %2 = amxcast <225 x i32> %src to x86_amx
    // call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
    //                                           i8* %addr3, i64 60, x86_amx %2)
    // -->
    // %addr = alloca <225 x i32>, align 64
    // store <225 x i32> %src, <225 x i32>* %addr, align 64
    // %addr2 = bitcast <225 x i32>* %addr to i8*
    // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 15, i16 60,
    //                                                  i8* %addr2,
    //                                                  i64 60)
    // call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
    //                                           i8* %addr3, i64 60, x86_amx %2)
    Use &U = *(AMXCast->use_begin());
    unsigned OpNo = U.getOperandNo();
    auto *II = dyn_cast<IntrinsicInst>(U.getUser());
    if (!II)
      return false; // May be bitcast from x86amx to <256 x i32>.
    Prepare(AMXCast->getOperand(0)->getType());
    Builder.CreateStore(Src, AllocaAddr);
    // TODO we can pick an constant operand for the shape.
    Value *Row = nullptr, *Col = nullptr;
    std::tie(Row, Col) = getShape(II, OpNo);
    std::array<Value *, 4> Args = {
        Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty())};
    Value *NewInst = Builder.CreateIntrinsic(
        Intrinsic::x86_tileloadd64_internal, None, Args);
    AMXCast->replaceAllUsesWith(NewInst);
    AMXCast->eraseFromParent();
  } else {
    // %2 = amxcast x86_amx %src to <225 x i32>
    // -->
    // %addr = alloca <225 x i32>, align 64
    // %addr2 = bitcast <225 x i32>* to i8*
    // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
    //                                           i8* %addr2, i64 %stride)
    // %2 = load <225 x i32>, <225 x i32>* %addr, align 64
    auto *II = dyn_cast<IntrinsicInst>(Src);
    if (!II)
      return false; // May be bitcast from <256 x i32> to x86amx.
    Prepare(AMXCast->getType());
    Value *Row = II->getOperand(0);
    Value *Col = II->getOperand(1);
    std::array<Value *, 5> Args = {
        Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty()), Src};
    Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
    Value *NewInst = Builder.CreateLoad(AMXCast->getType(), AllocaAddr);
    AMXCast->replaceAllUsesWith(NewInst);
    AMXCast->eraseFromParent();
  }

  return true;
}

bool X86LowerAMXCast::transformAllAMXCast() {
  bool Change = false;
  // Collect tile cast instruction.
  SmallVector<Instruction *, 8> WorkLists;
  for (BasicBlock &BB : Func) {
    for (Instruction &I : BB) {
      if (isAMXCast(&I))
        WorkLists.push_back(&I);
    }
  }

  for (auto *Inst : WorkLists) {
    Change |= transformAMXCast(cast<IntrinsicInst>(Inst));
  }

  return Change;
}

} // anonymous namespace

namespace {

class X86LowerAMXTypeLegacyPass : public FunctionPass {
public:
  static char ID;

  X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
    initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    bool C = false;
    TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
    TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    X86LowerAMXCast LAC(F);
    C |= LAC.combineAMXcast(TLI);
    // There might be remaining AMXcast after combineAMXcast and they should be
    // handled elegantly.
    C |= LAC.transformAllAMXCast();

    X86LowerAMXType LAT(F);
    C |= LAT.visit();

    // Prepare for fast register allocation at O0.
    // Todo: May better check the volatile model of AMX code, not just
    // by checking Attribute::OptimizeNone and CodeGenOpt::None.
    if (TM->getOptLevel() == CodeGenOpt::None) {
      // If Front End not use O0 but the Mid/Back end use O0, (e.g.
      // "Clang -O2 -S -emit-llvm t.c" + "llc t.ll") we should make
      // sure the amx data is volatile, that is nessary for AMX fast
      // register allocation.
      if (!F.hasFnAttribute(Attribute::OptimizeNone)) {
        X86VolatileTileData VTD(F);
        C = VTD.volatileTileData() || C;
      }
    }

    return C;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }
};

} // anonymous namespace

static const char PassName[] = "Lower AMX type for load/store";
char X86LowerAMXTypeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
                      false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,
                    false)

FunctionPass *llvm::createX86LowerAMXTypePass() {
  return new X86LowerAMXTypeLegacyPass();
}