aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/include/llvm/Analysis/ScalarEvolution.h
blob: c08335de3e7deb1b210eda435a37415d13559dc4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
// categorize scalar expressions in loops.  It specializes in recognizing
// general induction variables, representing them with the abstract and opaque
// SCEV class.  Given this analysis, trip counts of loops and other important
// properties can be obtained.
//
// This analysis is primarily useful for induction variable substitution and
// strength reduction.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
#define LLVM_ANALYSIS_SCALAREVOLUTION_H

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DataTypes.h"
#include <map>

namespace llvm {
  class APInt;
  class AssumptionCache;
  class Constant;
  class ConstantInt;
  class DominatorTree;
  class Type;
  class ScalarEvolution;
  class DataLayout;
  class TargetLibraryInfo;
  class LLVMContext;
  class Operator;
  class SCEV;
  class SCEVAddRecExpr;
  class SCEVConstant;
  class SCEVExpander;
  class SCEVPredicate;
  class SCEVUnknown;

  template <> struct FoldingSetTrait<SCEV>;
  template <> struct FoldingSetTrait<SCEVPredicate>;

  /// This class represents an analyzed expression in the program.  These are
  /// opaque objects that the client is not allowed to do much with directly.
  ///
  class SCEV : public FoldingSetNode {
    friend struct FoldingSetTrait<SCEV>;

    /// A reference to an Interned FoldingSetNodeID for this node.  The
    /// ScalarEvolution's BumpPtrAllocator holds the data.
    FoldingSetNodeIDRef FastID;

    // The SCEV baseclass this node corresponds to
    const unsigned short SCEVType;

  protected:
    /// This field is initialized to zero and may be used in subclasses to store
    /// miscellaneous information.
    unsigned short SubclassData;

  private:
    SCEV(const SCEV &) = delete;
    void operator=(const SCEV &) = delete;

  public:
    /// NoWrapFlags are bitfield indices into SubclassData.
    ///
    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
    /// no-signed-wrap <NSW> properties, which are derived from the IR
    /// operator. NSW is a misnomer that we use to mean no signed overflow or
    /// underflow.
    ///
    /// AddRec expressions may have a no-self-wraparound <NW> property if, in
    /// the integer domain, abs(step) * max-iteration(loop) <=
    /// unsigned-max(bitwidth).  This means that the recurrence will never reach
    /// its start value if the step is non-zero.  Computing the same value on
    /// each iteration is not considered wrapping, and recurrences with step = 0
    /// are trivially <NW>.  <NW> is independent of the sign of step and the
    /// value the add recurrence starts with.
    ///
    /// Note that NUW and NSW are also valid properties of a recurrence, and
    /// either implies NW. For convenience, NW will be set for a recurrence
    /// whenever either NUW or NSW are set.
    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
                       FlagNW      = (1 << 0),   // No self-wrap.
                       FlagNUW     = (1 << 1),   // No unsigned wrap.
                       FlagNSW     = (1 << 2),   // No signed wrap.
                       NoWrapMask  = (1 << 3) -1 };

    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}

    unsigned getSCEVType() const { return SCEVType; }

    /// Return the LLVM type of this SCEV expression.
    ///
    Type *getType() const;

    /// Return true if the expression is a constant zero.
    ///
    bool isZero() const;

    /// Return true if the expression is a constant one.
    ///
    bool isOne() const;

    /// Return true if the expression is a constant all-ones value.
    ///
    bool isAllOnesValue() const;

    /// Return true if the specified scev is negated, but not a constant.
    bool isNonConstantNegative() const;

    /// Print out the internal representation of this scalar to the specified
    /// stream.  This should really only be used for debugging purposes.
    void print(raw_ostream &OS) const;

    /// This method is used for debugging.
    ///
    void dump() const;
  };

  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
  // temporary FoldingSetNodeID values.
  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
      ID = X.FastID;
    }
    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
                       unsigned IDHash, FoldingSetNodeID &TempID) {
      return ID == X.FastID;
    }
    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
      return X.FastID.ComputeHash();
    }
  };

  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    S.print(OS);
    return OS;
  }

  /// An object of this class is returned by queries that could not be answered.
  /// For example, if you ask for the number of iterations of a linked-list
  /// traversal loop, you will get one of these.  None of the standard SCEV
  /// operations are valid on this class, it is just a marker.
  struct SCEVCouldNotCompute : public SCEV {
    SCEVCouldNotCompute();

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static bool classof(const SCEV *S);
  };

  /// SCEVPredicate - This class represents an assumption made using SCEV
  /// expressions which can be checked at run-time.
  class SCEVPredicate : public FoldingSetNode {
    friend struct FoldingSetTrait<SCEVPredicate>;

    /// A reference to an Interned FoldingSetNodeID for this node.  The
    /// ScalarEvolution's BumpPtrAllocator holds the data.
    FoldingSetNodeIDRef FastID;

  public:
    enum SCEVPredicateKind { P_Union, P_Equal };

  protected:
    SCEVPredicateKind Kind;
    ~SCEVPredicate() = default;
    SCEVPredicate(const SCEVPredicate&) = default;
    SCEVPredicate &operator=(const SCEVPredicate&) = default;

  public:
    SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);

    SCEVPredicateKind getKind() const { return Kind; }

    /// \brief Returns the estimated complexity of this predicate.
    /// This is roughly measured in the number of run-time checks required.
    virtual unsigned getComplexity() const { return 1; }

    /// \brief Returns true if the predicate is always true. This means that no
    /// assumptions were made and nothing needs to be checked at run-time.
    virtual bool isAlwaysTrue() const = 0;

    /// \brief Returns true if this predicate implies \p N.
    virtual bool implies(const SCEVPredicate *N) const = 0;

    /// \brief Prints a textual representation of this predicate with an
    /// indentation of \p Depth.
    virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;

    /// \brief Returns the SCEV to which this predicate applies, or nullptr
    /// if this is a SCEVUnionPredicate.
    virtual const SCEV *getExpr() const = 0;
  };

  inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
    P.print(OS);
    return OS;
  }

  // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
  // temporary FoldingSetNodeID values.
  template <>
  struct FoldingSetTrait<SCEVPredicate>
      : DefaultFoldingSetTrait<SCEVPredicate> {

    static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
      ID = X.FastID;
    }

    static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
                       unsigned IDHash, FoldingSetNodeID &TempID) {
      return ID == X.FastID;
    }
    static unsigned ComputeHash(const SCEVPredicate &X,
                                FoldingSetNodeID &TempID) {
      return X.FastID.ComputeHash();
    }
  };

  /// SCEVEqualPredicate - This class represents an assumption that two SCEV
  /// expressions are equal, and this can be checked at run-time. We assume
  /// that the left hand side is a SCEVUnknown and the right hand side a
  /// constant.
  class SCEVEqualPredicate final : public SCEVPredicate {
    /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
    /// constant.
    const SCEVUnknown *LHS;
    const SCEVConstant *RHS;

  public:
    SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
                       const SCEVConstant *RHS);

    /// Implementation of the SCEVPredicate interface
    bool implies(const SCEVPredicate *N) const override;
    void print(raw_ostream &OS, unsigned Depth = 0) const override;
    bool isAlwaysTrue() const override;
    const SCEV *getExpr() const override;

    /// \brief Returns the left hand side of the equality.
    const SCEVUnknown *getLHS() const { return LHS; }

    /// \brief Returns the right hand side of the equality.
    const SCEVConstant *getRHS() const { return RHS; }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVPredicate *P) {
      return P->getKind() == P_Equal;
    }
  };

  /// SCEVUnionPredicate - This class represents a composition of other
  /// SCEV predicates, and is the class that most clients will interact with.
  /// This is equivalent to a logical "AND" of all the predicates in the union.
  class SCEVUnionPredicate final : public SCEVPredicate {
  private:
    typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
        PredicateMap;

    /// Vector with references to all predicates in this union.
    SmallVector<const SCEVPredicate *, 16> Preds;
    /// Maps SCEVs to predicates for quick look-ups.
    PredicateMap SCEVToPreds;

  public:
    SCEVUnionPredicate();

    const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
      return Preds;
    }

    /// \brief Adds a predicate to this union.
    void add(const SCEVPredicate *N);

    /// \brief Returns a reference to a vector containing all predicates
    /// which apply to \p Expr.
    ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);

    /// Implementation of the SCEVPredicate interface
    bool isAlwaysTrue() const override;
    bool implies(const SCEVPredicate *N) const override;
    void print(raw_ostream &OS, unsigned Depth) const override;
    const SCEV *getExpr() const override;

    /// \brief We estimate the complexity of a union predicate as the size
    /// number of predicates in the union.
    unsigned getComplexity() const override { return Preds.size(); }

    /// Methods for support type inquiry through isa, cast, and dyn_cast:
    static inline bool classof(const SCEVPredicate *P) {
      return P->getKind() == P_Union;
    }
  };

  /// The main scalar evolution driver. Because client code (intentionally)
  /// can't do much with the SCEV objects directly, they must ask this class
  /// for services.
  class ScalarEvolution {
  public:
    /// An enum describing the relationship between a SCEV and a loop.
    enum LoopDisposition {
      LoopVariant,    ///< The SCEV is loop-variant (unknown).
      LoopInvariant,  ///< The SCEV is loop-invariant.
      LoopComputable  ///< The SCEV varies predictably with the loop.
    };

    /// An enum describing the relationship between a SCEV and a basic block.
    enum BlockDisposition {
      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
      DominatesBlock,        ///< The SCEV dominates the block.
      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    };

    /// Convenient NoWrapFlags manipulation that hides enum casts and is
    /// visible in the ScalarEvolution name space.
    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
      return (SCEV::NoWrapFlags)(Flags & Mask);
    }
    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
      return (SCEV::NoWrapFlags)(Flags | OnFlags);
    }
    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    }

  private:
    /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
    /// Value is deleted.
    class SCEVCallbackVH final : public CallbackVH {
      ScalarEvolution *SE;
      void deleted() override;
      void allUsesReplacedWith(Value *New) override;
    public:
      SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
    };

    friend class SCEVCallbackVH;
    friend class SCEVExpander;
    friend class SCEVUnknown;

    /// The function we are analyzing.
    ///
    Function &F;

    /// The target library information for the target we are targeting.
    ///
    TargetLibraryInfo &TLI;

    /// The tracker for @llvm.assume intrinsics in this function.
    AssumptionCache &AC;

    /// The dominator tree.
    ///
    DominatorTree &DT;

    /// The loop information for the function we are currently analyzing.
    ///
    LoopInfo &LI;

    /// This SCEV is used to represent unknown trip counts and things.
    std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;

    /// The typedef for ValueExprMap.
    ///
    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
      ValueExprMapType;

    /// This is a cache of the values we have analyzed so far.
    ///
    ValueExprMapType ValueExprMap;

    /// Mark predicate values currently being processed by isImpliedCond.
    DenseSet<Value*> PendingLoopPredicates;

    /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
    /// conditions dominating the backedge of a loop.
    bool WalkingBEDominatingConds;

    /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
    /// predicate by splitting it into a set of independent predicates.
    bool ProvingSplitPredicate;

    /// Information about the number of loop iterations for which a loop exit's
    /// branch condition evaluates to the not-taken path.  This is a temporary
    /// pair of exact and max expressions that are eventually summarized in
    /// ExitNotTakenInfo and BackedgeTakenInfo.
    struct ExitLimit {
      const SCEV *Exact;
      const SCEV *Max;

      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}

      ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}

      /// Test whether this ExitLimit contains any computed information, or
      /// whether it's all SCEVCouldNotCompute values.
      bool hasAnyInfo() const {
        return !isa<SCEVCouldNotCompute>(Exact) ||
          !isa<SCEVCouldNotCompute>(Max);
      }
    };

    /// Information about the number of times a particular loop exit may be
    /// reached before exiting the loop.
    struct ExitNotTakenInfo {
      AssertingVH<BasicBlock> ExitingBlock;
      const SCEV *ExactNotTaken;
      PointerIntPair<ExitNotTakenInfo*, 1> NextExit;

      ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}

      /// Return true if all loop exits are computable.
      bool isCompleteList() const {
        return NextExit.getInt() == 0;
      }

      void setIncomplete() { NextExit.setInt(1); }

      /// Return a pointer to the next exit's not-taken info.
      ExitNotTakenInfo *getNextExit() const {
        return NextExit.getPointer();
      }

      void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    };

    /// Information about the backedge-taken count of a loop. This currently
    /// includes an exact count and a maximum count.
    ///
    class BackedgeTakenInfo {
      /// A list of computable exits and their not-taken counts.  Loops almost
      /// never have more than one computable exit.
      ExitNotTakenInfo ExitNotTaken;

      /// An expression indicating the least maximum backedge-taken count of the
      /// loop that is known, or a SCEVCouldNotCompute.
      const SCEV *Max;

    public:
      BackedgeTakenInfo() : Max(nullptr) {}

      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
      BackedgeTakenInfo(
        SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
        bool Complete, const SCEV *MaxCount);

      /// Test whether this BackedgeTakenInfo contains any computed information,
      /// or whether it's all SCEVCouldNotCompute values.
      bool hasAnyInfo() const {
        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
      }

      /// Return an expression indicating the exact backedge-taken count of the
      /// loop if it is known, or SCEVCouldNotCompute otherwise. This is the
      /// number of times the loop header can be guaranteed to execute, minus
      /// one.
      const SCEV *getExact(ScalarEvolution *SE) const;

      /// Return the number of times this loop exit may fall through to the back
      /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
      /// this block before this number of iterations, but may exit via another
      /// block.
      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;

      /// Get the max backedge taken count for the loop.
      const SCEV *getMax(ScalarEvolution *SE) const;

      /// Return true if any backedge taken count expressions refer to the given
      /// subexpression.
      bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;

      /// Invalidate this result and free associated memory.
      void clear();
    };

    /// Cache the backedge-taken count of the loops for this function as they
    /// are computed.
    DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;

    /// This map contains entries for all of the PHI instructions that we
    /// attempt to compute constant evolutions for.  This allows us to avoid
    /// potentially expensive recomputation of these properties.  An instruction
    /// maps to null if we are unable to compute its exit value.
    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;

    /// This map contains entries for all the expressions that we attempt to
    /// compute getSCEVAtScope information for, which can be expensive in
    /// extreme cases.
    DenseMap<const SCEV *,
             SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;

    /// Memoized computeLoopDisposition results.
    DenseMap<const SCEV *,
             SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
        LoopDispositions;

    /// Compute a LoopDisposition value.
    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);

    /// Memoized computeBlockDisposition results.
    DenseMap<
        const SCEV *,
        SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
        BlockDispositions;

    /// Compute a BlockDisposition value.
    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);

    /// Memoized results from getRange
    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;

    /// Memoized results from getRange
    DenseMap<const SCEV *, ConstantRange> SignedRanges;

    /// Used to parameterize getRange
    enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };

    /// Set the memoized range for the given SCEV.
    const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
                                  const ConstantRange &CR) {
      DenseMap<const SCEV *, ConstantRange> &Cache =
          Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;

      std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
          Cache.insert(std::make_pair(S, CR));
      if (!Pair.second)
        Pair.first->second = CR;
      return Pair.first->second;
    }

    /// Determine the range for a particular SCEV.
    ConstantRange getRange(const SCEV *S, RangeSignHint Hint);

    /// We know that there is no SCEV for the specified value.  Analyze the
    /// expression.
    const SCEV *createSCEV(Value *V);

    /// Provide the special handling we need to analyze PHI SCEVs.
    const SCEV *createNodeForPHI(PHINode *PN);

    /// Helper function called from createNodeForPHI.
    const SCEV *createAddRecFromPHI(PHINode *PN);

    /// Helper function called from createNodeForPHI.
    const SCEV *createNodeFromSelectLikePHI(PHINode *PN);

    /// Provide special handling for a select-like instruction (currently this
    /// is either a select instruction or a phi node).  \p I is the instruction
    /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
    /// FalseVal".
    const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
                                         Value *TrueVal, Value *FalseVal);

    /// Provide the special handling we need to analyze GEP SCEVs.
    const SCEV *createNodeForGEP(GEPOperator *GEP);

    /// Implementation code for getSCEVAtScope; called at most once for each
    /// SCEV+Loop pair.
    ///
    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);

    /// This looks up computed SCEV values for all instructions that depend on
    /// the given instruction and removes them from the ValueExprMap map if they
    /// reference SymName. This is used during PHI resolution.
    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);

    /// Return the BackedgeTakenInfo for the given loop, lazily computing new
    /// values if the loop hasn't been analyzed yet.
    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);

    /// Compute the number of times the specified loop will iterate.
    BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L);

    /// Compute the number of times the backedge of the specified loop will
    /// execute if it exits via the specified block.
    ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock);

    /// Compute the number of times the backedge of the specified loop will
    /// execute if its exit condition were a conditional branch of ExitCond,
    /// TBB, and FBB.
    ExitLimit computeExitLimitFromCond(const Loop *L,
                                       Value *ExitCond,
                                       BasicBlock *TBB,
                                       BasicBlock *FBB,
                                       bool IsSubExpr);

    /// Compute the number of times the backedge of the specified loop will
    /// execute if its exit condition were a conditional branch of the ICmpInst
    /// ExitCond, TBB, and FBB.
    ExitLimit computeExitLimitFromICmp(const Loop *L,
                                       ICmpInst *ExitCond,
                                       BasicBlock *TBB,
                                       BasicBlock *FBB,
                                       bool IsSubExpr);

    /// Compute the number of times the backedge of the specified loop will
    /// execute if its exit condition were a switch with a single exiting case
    /// to ExitingBB.
    ExitLimit
    computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
                               BasicBlock *ExitingBB, bool IsSubExpr);

    /// Given an exit condition of 'icmp op load X, cst', try to see if we can
    /// compute the backedge-taken count.
    ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
                                                  Constant *RHS,
                                                  const Loop *L,
                                                  ICmpInst::Predicate p);

    /// Compute the exit limit of a loop that is controlled by a
    /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
    /// count in these cases (since SCEV has no way of expressing them), but we
    /// can still sometimes compute an upper bound.
    ///
    /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
    /// RHS`.
    ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
                                           const Loop *L,
                                           ICmpInst::Predicate Pred);

    /// If the loop is known to execute a constant number of times (the
    /// condition evolves only from constants), try to evaluate a few iterations
    /// of the loop until we get the exit condition gets a value of ExitWhen
    /// (true or false).  If we cannot evaluate the exit count of the loop,
    /// return CouldNotCompute.
    const SCEV *computeExitCountExhaustively(const Loop *L,
                                             Value *Cond,
                                             bool ExitWhen);

    /// Return the number of times an exit condition comparing the specified
    /// value to zero will execute.  If not computable, return CouldNotCompute.
    ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);

    /// Return the number of times an exit condition checking the specified
    /// value for nonzero will execute.  If not computable, return
    /// CouldNotCompute.
    ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);

    /// Return the number of times an exit condition containing the specified
    /// less-than comparison will execute.  If not computable, return
    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
    ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
                               const Loop *L, bool isSigned, bool IsSubExpr);
    ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
                                  const Loop *L, bool isSigned, bool IsSubExpr);

    /// Return a predecessor of BB (which may not be an immediate predecessor)
    /// which has exactly one successor from which BB is reachable, or null if
    /// no such block is found.
    std::pair<BasicBlock *, BasicBlock *>
    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);

    /// Test whether the condition described by Pred, LHS, and RHS is true
    /// whenever the given FoundCondValue value evaluates to true.
    bool isImpliedCond(ICmpInst::Predicate Pred,
                       const SCEV *LHS, const SCEV *RHS,
                       Value *FoundCondValue,
                       bool Inverse);

    /// Test whether the condition described by Pred, LHS, and RHS is true
    /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
    /// true.
    bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
                       const SCEV *RHS, ICmpInst::Predicate FoundPred,
                       const SCEV *FoundLHS, const SCEV *FoundRHS);

    /// Test whether the condition described by Pred, LHS, and RHS is true
    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    /// true.
    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
                               const SCEV *LHS, const SCEV *RHS,
                               const SCEV *FoundLHS, const SCEV *FoundRHS);

    /// Test whether the condition described by Pred, LHS, and RHS is true
    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    /// true.
    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
                                     const SCEV *LHS, const SCEV *RHS,
                                     const SCEV *FoundLHS,
                                     const SCEV *FoundRHS);

    /// Test whether the condition described by Pred, LHS, and RHS is true
    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    /// true.  Utility function used by isImpliedCondOperands.
    bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
                                        const SCEV *LHS, const SCEV *RHS,
                                        const SCEV *FoundLHS,
                                        const SCEV *FoundRHS);

    /// Test whether the condition described by Pred, LHS, and RHS is true
    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    /// true.
    ///
    /// This routine tries to rule out certain kinds of integer overflow, and
    /// then tries to reason about arithmetic properties of the predicates.
    bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
                                            const SCEV *LHS, const SCEV *RHS,
                                            const SCEV *FoundLHS,
                                            const SCEV *FoundRHS);

    /// If we know that the specified Phi is in the header of its containing
    /// loop, we know the loop executes a constant number of times, and the PHI
    /// node is just a recurrence involving constants, fold it.
    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
                                                const Loop *L);

    /// Test if the given expression is known to satisfy the condition described
    /// by Pred and the known constant ranges of LHS and RHS.
    ///
    bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
                                    const SCEV *LHS, const SCEV *RHS);

    /// Try to prove the condition described by "LHS Pred RHS" by ruling out
    /// integer overflow.
    ///
    /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
    /// positive.
    bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
                                       const SCEV *LHS, const SCEV *RHS);

    /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
    /// prove them individually.
    bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
                                      const SCEV *RHS);

    /// Try to match the Expr as "(L + R)<Flags>".
    bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
                        SCEV::NoWrapFlags &Flags);

    /// Return true if More == (Less + C), where C is a constant.  This is
    /// intended to be used as a cheaper substitute for full SCEV subtraction.
    bool computeConstantDifference(const SCEV *Less, const SCEV *More,
                                   APInt &C);

    /// Drop memoized information computed for S.
    void forgetMemoizedResults(const SCEV *S);

    /// Return an existing SCEV for V if there is one, otherwise return nullptr.
    const SCEV *getExistingSCEV(Value *V);

    /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
    /// pointer.
    bool checkValidity(const SCEV *S) const;

    /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
    /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
    /// equivalent to proving no signed (resp. unsigned) wrap in
    /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
    /// (resp. `SCEVZeroExtendExpr`).
    ///
    template<typename ExtendOpTy>
    bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
                                   const Loop *L);

    bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
                                  ICmpInst::Predicate Pred, bool &Increasing);

    /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
    /// is monotonically increasing or decreasing.  In the former case set
    /// `Increasing` to true and in the latter case set `Increasing` to false.
    ///
    /// A predicate is said to be monotonically increasing if may go from being
    /// false to being true as the loop iterates, but never the other way
    /// around.  A predicate is said to be monotonically decreasing if may go
    /// from being true to being false as the loop iterates, but never the other
    /// way around.
    bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
                              ICmpInst::Predicate Pred, bool &Increasing);

    // Return SCEV no-wrap flags that can be proven based on reasoning
    // about how poison produced from no-wrap flags on this value
    // (e.g. a nuw add) would trigger undefined behavior on overflow.
    SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);

  public:
    ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
                    DominatorTree &DT, LoopInfo &LI);
    ~ScalarEvolution();
    ScalarEvolution(ScalarEvolution &&Arg);

    LLVMContext &getContext() const { return F.getContext(); }

    /// Test if values of the given type are analyzable within the SCEV
    /// framework. This primarily includes integer types, and it can optionally
    /// include pointer types if the ScalarEvolution class has access to
    /// target-specific information.
    bool isSCEVable(Type *Ty) const;

    /// Return the size in bits of the specified type, for which isSCEVable must
    /// return true.
    uint64_t getTypeSizeInBits(Type *Ty) const;

    /// Return a type with the same bitwidth as the given type and which
    /// represents how SCEV will treat the given type, for which isSCEVable must
    /// return true. For pointer types, this is the pointer-sized integer type.
    Type *getEffectiveSCEVType(Type *Ty) const;

    /// Return a SCEV expression for the full generality of the specified
    /// expression.
    const SCEV *getSCEV(Value *V);

    const SCEV *getConstant(ConstantInt *V);
    const SCEV *getConstant(const APInt& Val);
    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
      return getAddExpr(Ops, Flags);
    }
    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
      return getAddExpr(Ops, Flags);
    }
    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
      return getMulExpr(Ops, Flags);
    }
    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
      SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
      return getMulExpr(Ops, Flags);
    }
    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
                              const Loop *L, SCEV::NoWrapFlags Flags);
    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
                              const Loop *L, SCEV::NoWrapFlags Flags);
    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
                              const Loop *L, SCEV::NoWrapFlags Flags) {
      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
      return getAddRecExpr(NewOp, L, Flags);
    }
    /// \brief Returns an expression for a GEP
    ///
    /// \p PointeeType The type used as the basis for the pointer arithmetics
    /// \p BaseExpr The expression for the pointer operand.
    /// \p IndexExprs The expressions for the indices.
    /// \p InBounds Whether the GEP is in bounds.
    const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
                           const SmallVectorImpl<const SCEV *> &IndexExprs,
                           bool InBounds = false);
    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    const SCEV *getUnknown(Value *V);
    const SCEV *getCouldNotCompute();

    /// \brief Return a SCEV for the constant 0 of a specific type.
    const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }

    /// \brief Return a SCEV for the constant 1 of a specific type.
    const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }

    /// Return an expression for sizeof AllocTy that is type IntTy
    ///
    const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);

    /// Return an expression for offsetof on the given field with type IntTy
    ///
    const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);

    /// Return the SCEV object corresponding to -V.
    ///
    const SCEV *getNegativeSCEV(const SCEV *V,
                                SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);

    /// Return the SCEV object corresponding to ~V.
    ///
    const SCEV *getNotSCEV(const SCEV *V);

    /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);

    /// Return a SCEV corresponding to a conversion of the input value to the
    /// specified type.  If the type must be extended, it is zero extended.
    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);

    /// Return a SCEV corresponding to a conversion of the input value to the
    /// specified type.  If the type must be extended, it is sign extended.
    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);

    /// Return a SCEV corresponding to a conversion of the input value to the
    /// specified type.  If the type must be extended, it is zero extended.  The
    /// conversion must not be narrowing.
    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);

    /// Return a SCEV corresponding to a conversion of the input value to the
    /// specified type.  If the type must be extended, it is sign extended.  The
    /// conversion must not be narrowing.
    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);

    /// Return a SCEV corresponding to a conversion of the input value to the
    /// specified type. If the type must be extended, it is extended with
    /// unspecified bits. The conversion must not be narrowing.
    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);

    /// Return a SCEV corresponding to a conversion of the input value to the
    /// specified type.  The conversion must not be widening.
    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);

    /// Promote the operands to the wider of the types using zero-extension, and
    /// then perform a umax operation with them.
    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
                                           const SCEV *RHS);

    /// Promote the operands to the wider of the types using zero-extension, and
    /// then perform a umin operation with them.
    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
                                           const SCEV *RHS);

    /// Transitively follow the chain of pointer-type operands until reaching a
    /// SCEV that does not have a single pointer operand. This returns a
    /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
    /// cases do exist.
    const SCEV *getPointerBase(const SCEV *V);

    /// Return a SCEV expression for the specified value at the specified scope
    /// in the program.  The L value specifies a loop nest to evaluate the
    /// expression at, where null is the top-level or a specified loop is
    /// immediately inside of the loop.
    ///
    /// This method can be used to compute the exit value for a variable defined
    /// in a loop by querying what the value will hold in the parent loop.
    ///
    /// In the case that a relevant loop exit value cannot be computed, the
    /// original value V is returned.
    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);

    /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
    const SCEV *getSCEVAtScope(Value *V, const Loop *L);

    /// Test whether entry to the loop is protected by a conditional between LHS
    /// and RHS.  This is used to help avoid max expressions in loop trip
    /// counts, and to eliminate casts.
    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                  const SCEV *LHS, const SCEV *RHS);

    /// Test whether the backedge of the loop is protected by a conditional
    /// between LHS and RHS.  This is used to to eliminate casts.
    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                                     const SCEV *LHS, const SCEV *RHS);

    /// \brief Returns the maximum trip count of the loop if it is a single-exit
    /// loop and we can compute a small maximum for that loop.
    ///
    /// Implemented in terms of the \c getSmallConstantTripCount overload with
    /// the single exiting block passed to it. See that routine for details.
    unsigned getSmallConstantTripCount(Loop *L);

    /// Returns the maximum trip count of this loop as a normal unsigned
    /// value. Returns 0 if the trip count is unknown or not constant. This
    /// "trip count" assumes that control exits via ExitingBlock. More
    /// precisely, it is the number of times that control may reach ExitingBlock
    /// before taking the branch. For loops with multiple exits, it may not be
    /// the number times that the loop header executes if the loop exits
    /// prematurely via another branch.
    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);

    /// \brief Returns the largest constant divisor of the trip count of the
    /// loop if it is a single-exit loop and we can compute a small maximum for
    /// that loop.
    ///
    /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
    /// the single exiting block passed to it. See that routine for details.
    unsigned getSmallConstantTripMultiple(Loop *L);

    /// Returns the largest constant divisor of the trip count of this loop as a
    /// normal unsigned value, if possible. This means that the actual trip
    /// count is always a multiple of the returned value (don't forget the trip
    /// count could very well be zero as well!). As explained in the comments
    /// for getSmallConstantTripCount, this assumes that control exits the loop
    /// via ExitingBlock.
    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);

    /// Get the expression for the number of loop iterations for which this loop
    /// is guaranteed not to exit via ExitingBlock. Otherwise return
    /// SCEVCouldNotCompute.
    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);

    /// If the specified loop has a predictable backedge-taken count, return it,
    /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
    /// is the number of times the loop header will be branched to from within
    /// the loop. This is one less than the trip count of the loop, since it
    /// doesn't count the first iteration, when the header is branched to from
    /// outside the loop.
    ///
    /// Note that it is not valid to call this method on a loop without a
    /// loop-invariant backedge-taken count (see
    /// hasLoopInvariantBackedgeTakenCount).
    ///
    const SCEV *getBackedgeTakenCount(const Loop *L);

    /// Similar to getBackedgeTakenCount, except return the least SCEV value
    /// that is known never to be less than the actual backedge taken count.
    const SCEV *getMaxBackedgeTakenCount(const Loop *L);

    /// Return true if the specified loop has an analyzable loop-invariant
    /// backedge-taken count.
    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);

    /// This method should be called by the client when it has changed a loop in
    /// a way that may effect ScalarEvolution's ability to compute a trip count,
    /// or if the loop is deleted.  This call is potentially expensive for large
    /// loop bodies.
    void forgetLoop(const Loop *L);

    /// This method should be called by the client when it has changed a value
    /// in a way that may effect its value, or which may disconnect it from a
    /// def-use chain linking it to a loop.
    void forgetValue(Value *V);

    /// \brief Called when the client has changed the disposition of values in
    /// this loop.
    ///
    /// We don't have a way to invalidate per-loop dispositions. Clear and
    /// recompute is simpler.
    void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }

    /// Determine the minimum number of zero bits that S is guaranteed to end in
    /// (at every loop iteration).  It is, at the same time, the minimum number
    /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
    /// If S is guaranteed to be 0, it returns the bitwidth of S.
    uint32_t GetMinTrailingZeros(const SCEV *S);

    /// Determine the unsigned range for a particular SCEV.
    ///
    ConstantRange getUnsignedRange(const SCEV *S) {
      return getRange(S, HINT_RANGE_UNSIGNED);
    }

    /// Determine the signed range for a particular SCEV.
    ///
    ConstantRange getSignedRange(const SCEV *S) {
      return getRange(S, HINT_RANGE_SIGNED);
    }

    /// Test if the given expression is known to be negative.
    ///
    bool isKnownNegative(const SCEV *S);

    /// Test if the given expression is known to be positive.
    ///
    bool isKnownPositive(const SCEV *S);

    /// Test if the given expression is known to be non-negative.
    ///
    bool isKnownNonNegative(const SCEV *S);

    /// Test if the given expression is known to be non-positive.
    ///
    bool isKnownNonPositive(const SCEV *S);

    /// Test if the given expression is known to be non-zero.
    ///
    bool isKnownNonZero(const SCEV *S);

    /// Test if the given expression is known to satisfy the condition described
    /// by Pred, LHS, and RHS.
    ///
    bool isKnownPredicate(ICmpInst::Predicate Pred,
                          const SCEV *LHS, const SCEV *RHS);

    /// Return true if the result of the predicate LHS `Pred` RHS is loop
    /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
    /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
    /// loop invariant form of LHS `Pred` RHS.
    bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
                                  const SCEV *RHS, const Loop *L,
                                  ICmpInst::Predicate &InvariantPred,
                                  const SCEV *&InvariantLHS,
                                  const SCEV *&InvariantRHS);

    /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
    /// iff any changes were made. If the operands are provably equal or
    /// unequal, LHS and RHS are set to the same value and Pred is set to either
    /// ICMP_EQ or ICMP_NE.
    ///
    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
                              const SCEV *&LHS,
                              const SCEV *&RHS,
                              unsigned Depth = 0);

    /// Return the "disposition" of the given SCEV with respect to the given
    /// loop.
    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);

    /// Return true if the value of the given SCEV is unchanging in the
    /// specified loop.
    bool isLoopInvariant(const SCEV *S, const Loop *L);

    /// Return true if the given SCEV changes value in a known way in the
    /// specified loop.  This property being true implies that the value is
    /// variant in the loop AND that we can emit an expression to compute the
    /// value of the expression at any particular loop iteration.
    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);

    /// Return the "disposition" of the given SCEV with respect to the given
    /// block.
    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);

    /// Return true if elements that makes up the given SCEV dominate the
    /// specified basic block.
    bool dominates(const SCEV *S, const BasicBlock *BB);

    /// Return true if elements that makes up the given SCEV properly dominate
    /// the specified basic block.
    bool properlyDominates(const SCEV *S, const BasicBlock *BB);

    /// Test whether the given SCEV has Op as a direct or indirect operand.
    bool hasOperand(const SCEV *S, const SCEV *Op) const;

    /// Return the size of an element read or written by Inst.
    const SCEV *getElementSize(Instruction *Inst);

    /// Compute the array dimensions Sizes from the set of Terms extracted from
    /// the memory access function of this SCEVAddRecExpr.
    void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
                             SmallVectorImpl<const SCEV *> &Sizes,
                             const SCEV *ElementSize) const;

    void print(raw_ostream &OS) const;
    void verify() const;

    /// Collect parametric terms occurring in step expressions.
    void collectParametricTerms(const SCEV *Expr,
                                SmallVectorImpl<const SCEV *> &Terms);



    /// Return in Subscripts the access functions for each dimension in Sizes.
    void computeAccessFunctions(const SCEV *Expr,
                                SmallVectorImpl<const SCEV *> &Subscripts,
                                SmallVectorImpl<const SCEV *> &Sizes);

    /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
    /// subscripts and sizes of an array access.
    ///
    /// The delinearization is a 3 step process: the first two steps compute the
    /// sizes of each subscript and the third step computes the access functions
    /// for the delinearized array:
    ///
    /// 1. Find the terms in the step functions
    /// 2. Compute the array size
    /// 3. Compute the access function: divide the SCEV by the array size
    ///    starting with the innermost dimensions found in step 2. The Quotient
    ///    is the SCEV to be divided in the next step of the recursion. The
    ///    Remainder is the subscript of the innermost dimension. Loop over all
    ///    array dimensions computed in step 2.
    ///
    /// To compute a uniform array size for several memory accesses to the same
    /// object, one can collect in step 1 all the step terms for all the memory
    /// accesses, and compute in step 2 a unique array shape. This guarantees
    /// that the array shape will be the same across all memory accesses.
    ///
    /// FIXME: We could derive the result of steps 1 and 2 from a description of
    /// the array shape given in metadata.
    ///
    /// Example:
    ///
    /// A[][n][m]
    ///
    /// for i
    ///   for j
    ///     for k
    ///       A[j+k][2i][5i] =
    ///
    /// The initial SCEV:
    ///
    /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
    ///
    /// 1. Find the different terms in the step functions:
    /// -> [2*m, 5, n*m, n*m]
    ///
    /// 2. Compute the array size: sort and unique them
    /// -> [n*m, 2*m, 5]
    /// find the GCD of all the terms = 1
    /// divide by the GCD and erase constant terms
    /// -> [n*m, 2*m]
    /// GCD = m
    /// divide by GCD -> [n, 2]
    /// remove constant terms
    /// -> [n]
    /// size of the array is A[unknown][n][m]
    ///
    /// 3. Compute the access function
    /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
    /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
    /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
    /// The remainder is the subscript of the innermost array dimension: [5i].
    ///
    /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
    /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
    /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
    /// The Remainder is the subscript of the next array dimension: [2i].
    ///
    /// The subscript of the outermost dimension is the Quotient: [j+k].
    ///
    /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
    void delinearize(const SCEV *Expr,
                     SmallVectorImpl<const SCEV *> &Subscripts,
                     SmallVectorImpl<const SCEV *> &Sizes,
                     const SCEV *ElementSize);

    /// Return the DataLayout associated with the module this SCEV instance is
    /// operating on.
    const DataLayout &getDataLayout() const {
      return F.getParent()->getDataLayout();
    }

    const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
                                           const SCEVConstant *RHS);

    /// Re-writes the SCEV according to the Predicates in \p Preds.
    const SCEV *rewriteUsingPredicate(const SCEV *Scev, SCEVUnionPredicate &A);

  private:
    /// Compute the backedge taken count knowing the interval difference, the
    /// stride and presence of the equality in the comparison.
    const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
                               bool Equality);

    /// Verify if an linear IV with positive stride can overflow when in a
    /// less-than comparison, knowing the invariant term of the comparison,
    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
    bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
                            bool IsSigned, bool NoWrap);

    /// Verify if an linear IV with negative stride can overflow when in a
    /// greater-than comparison, knowing the invariant term of the comparison,
    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
    bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
                            bool IsSigned, bool NoWrap);

  private:
    FoldingSet<SCEV> UniqueSCEVs;
    FoldingSet<SCEVPredicate> UniquePreds;
    BumpPtrAllocator SCEVAllocator;

    /// The head of a linked list of all SCEVUnknown values that have been
    /// allocated. This is used by releaseMemory to locate them all and call
    /// their destructors.
    SCEVUnknown *FirstUnknown;
  };

  /// \brief Analysis pass that exposes the \c ScalarEvolution for a function.
  class ScalarEvolutionAnalysis {
    static char PassID;

  public:
    typedef ScalarEvolution Result;

    /// \brief Opaque, unique identifier for this analysis pass.
    static void *ID() { return (void *)&PassID; }

    /// \brief Provide a name for the analysis for debugging and logging.
    static StringRef name() { return "ScalarEvolutionAnalysis"; }

    ScalarEvolution run(Function &F, AnalysisManager<Function> *AM);
  };

  /// \brief Printer pass for the \c ScalarEvolutionAnalysis results.
  class ScalarEvolutionPrinterPass {
    raw_ostream &OS;

  public:
    explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
    PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);

    static StringRef name() { return "ScalarEvolutionPrinterPass"; }
  };

  class ScalarEvolutionWrapperPass : public FunctionPass {
    std::unique_ptr<ScalarEvolution> SE;

  public:
    static char ID;

    ScalarEvolutionWrapperPass();

    ScalarEvolution &getSE() { return *SE; }
    const ScalarEvolution &getSE() const { return *SE; }

    bool runOnFunction(Function &F) override;
    void releaseMemory() override;
    void getAnalysisUsage(AnalysisUsage &AU) const override;
    void print(raw_ostream &OS, const Module * = nullptr) const override;
    void verifyAnalysis() const override;
  };

  /// An interface layer with SCEV used to manage how we see SCEV expressions
  /// for values in the context of existing predicates. We can add new
  /// predicates, but we cannot remove them.
  ///
  /// This layer has multiple purposes:
  ///   - provides a simple interface for SCEV versioning.
  ///   - guarantees that the order of transformations applied on a SCEV
  ///     expression for a single Value is consistent across two different
  ///     getSCEV calls. This means that, for example, once we've obtained
  ///     an AddRec expression for a certain value through expression
  ///     rewriting, we will continue to get an AddRec expression for that
  ///     Value.
  ///   - lowers the number of expression rewrites.
  class PredicatedScalarEvolution {
  public:
    PredicatedScalarEvolution(ScalarEvolution &SE);
    const SCEVUnionPredicate &getUnionPredicate() const;
    /// \brief Returns the SCEV expression of V, in the context of the current
    /// SCEV predicate.
    /// The order of transformations applied on the expression of V returned
    /// by ScalarEvolution is guaranteed to be preserved, even when adding new
    /// predicates.
    const SCEV *getSCEV(Value *V);
    /// \brief Adds a new predicate.
    void addPredicate(const SCEVPredicate &Pred);
    /// \brief Returns the ScalarEvolution analysis used.
    ScalarEvolution *getSE() const { return &SE; }

  private:
    /// \brief Increments the version number of the predicate.
    /// This needs to be called every time the SCEV predicate changes.
    void updateGeneration();
    /// Holds a SCEV and the version number of the SCEV predicate used to
    /// perform the rewrite of the expression.
    typedef std::pair<unsigned, const SCEV *> RewriteEntry;
    /// Maps a SCEV to the rewrite result of that SCEV at a certain version
    /// number. If this number doesn't match the current Generation, we will
    /// need to do a rewrite. To preserve the transformation order of previous
    /// rewrites, we will rewrite the previous result instead of the original
    /// SCEV.
    DenseMap<const SCEV *, RewriteEntry> RewriteMap;
    /// The ScalarEvolution analysis.
    ScalarEvolution &SE;
    /// The SCEVPredicate that forms our context. We will rewrite all
    /// expressions assuming that this predicate true.
    SCEVUnionPredicate Preds;
    /// Marks the version of the SCEV predicate used. When rewriting a SCEV
    /// expression we mark it with the version of the predicate. We use this to
    /// figure out if the predicate has changed from the last rewrite of the
    /// SCEV. If so, we need to perform a new rewrite.
    unsigned Generation;
  };
}

#endif