aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/StaticAnalyzer/Core/CoreEngine.cpp
blob: 525219846a93456c39109e37d70086aaa5c70e59 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file defines a generic engine for intraprocedural, path-sensitive,
//  dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "clang/Index/TranslationUnit.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtCXX.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
using namespace clang;
using namespace ento;

//===----------------------------------------------------------------------===//
// Worklist classes for exploration of reachable states.
//===----------------------------------------------------------------------===//

WorkList::Visitor::~Visitor() {}

namespace {
class DFS : public WorkList {
  SmallVector<WorkListUnit,20> Stack;
public:
  virtual bool hasWork() const {
    return !Stack.empty();
  }

  virtual void enqueue(const WorkListUnit& U) {
    Stack.push_back(U);
  }

  virtual WorkListUnit dequeue() {
    assert (!Stack.empty());
    const WorkListUnit& U = Stack.back();
    Stack.pop_back(); // This technically "invalidates" U, but we are fine.
    return U;
  }
  
  virtual bool visitItemsInWorkList(Visitor &V) {
    for (SmallVectorImpl<WorkListUnit>::iterator
         I = Stack.begin(), E = Stack.end(); I != E; ++I) {
      if (V.visit(*I))
        return true;
    }
    return false;
  }
};

class BFS : public WorkList {
  std::deque<WorkListUnit> Queue;
public:
  virtual bool hasWork() const {
    return !Queue.empty();
  }

  virtual void enqueue(const WorkListUnit& U) {
    Queue.push_front(U);
  }

  virtual WorkListUnit dequeue() {
    WorkListUnit U = Queue.front();
    Queue.pop_front();
    return U;
  }
  
  virtual bool visitItemsInWorkList(Visitor &V) {
    for (std::deque<WorkListUnit>::iterator
         I = Queue.begin(), E = Queue.end(); I != E; ++I) {
      if (V.visit(*I))
        return true;
    }
    return false;
  }
};

} // end anonymous namespace

// Place the dstor for WorkList here because it contains virtual member
// functions, and we the code for the dstor generated in one compilation unit.
WorkList::~WorkList() {}

WorkList *WorkList::makeDFS() { return new DFS(); }
WorkList *WorkList::makeBFS() { return new BFS(); }

namespace {
  class BFSBlockDFSContents : public WorkList {
    std::deque<WorkListUnit> Queue;
    SmallVector<WorkListUnit,20> Stack;
  public:
    virtual bool hasWork() const {
      return !Queue.empty() || !Stack.empty();
    }

    virtual void enqueue(const WorkListUnit& U) {
      if (isa<BlockEntrance>(U.getNode()->getLocation()))
        Queue.push_front(U);
      else
        Stack.push_back(U);
    }

    virtual WorkListUnit dequeue() {
      // Process all basic blocks to completion.
      if (!Stack.empty()) {
        const WorkListUnit& U = Stack.back();
        Stack.pop_back(); // This technically "invalidates" U, but we are fine.
        return U;
      }

      assert(!Queue.empty());
      // Don't use const reference.  The subsequent pop_back() might make it
      // unsafe.
      WorkListUnit U = Queue.front();
      Queue.pop_front();
      return U;
    }
    virtual bool visitItemsInWorkList(Visitor &V) {
      for (SmallVectorImpl<WorkListUnit>::iterator
           I = Stack.begin(), E = Stack.end(); I != E; ++I) {
        if (V.visit(*I))
          return true;
      }
      for (std::deque<WorkListUnit>::iterator
           I = Queue.begin(), E = Queue.end(); I != E; ++I) {
        if (V.visit(*I))
          return true;
      }
      return false;
    }

  };
} // end anonymous namespace

WorkList* WorkList::makeBFSBlockDFSContents() {
  return new BFSBlockDFSContents();
}

//===----------------------------------------------------------------------===//
// Core analysis engine.
//===----------------------------------------------------------------------===//

/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
                                   const ProgramState *InitState) {

  if (G->num_roots() == 0) { // Initialize the analysis by constructing
    // the root if none exists.

    const CFGBlock *Entry = &(L->getCFG()->getEntry());

    assert (Entry->empty() &&
            "Entry block must be empty.");

    assert (Entry->succ_size() == 1 &&
            "Entry block must have 1 successor.");

    // Get the solitary successor.
    const CFGBlock *Succ = *(Entry->succ_begin());

    // Construct an edge representing the
    // starting location in the function.
    BlockEdge StartLoc(Entry, Succ, L);

    // Set the current block counter to being empty.
    WList->setBlockCounter(BCounterFactory.GetEmptyCounter());

    if (!InitState)
      // Generate the root.
      generateNode(StartLoc, SubEng.getInitialState(L), 0);
    else
      generateNode(StartLoc, InitState, 0);
  }

  // Check if we have a steps limit
  bool UnlimitedSteps = Steps == 0;

  while (WList->hasWork()) {
    if (!UnlimitedSteps) {
      if (Steps == 0)
        break;
      --Steps;
    }

    const WorkListUnit& WU = WList->dequeue();

    // Set the current block counter.
    WList->setBlockCounter(WU.getBlockCounter());

    // Retrieve the node.
    ExplodedNode *Node = WU.getNode();

    // Dispatch on the location type.
    switch (Node->getLocation().getKind()) {
      case ProgramPoint::BlockEdgeKind:
        HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
        break;

      case ProgramPoint::BlockEntranceKind:
        HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
        break;

      case ProgramPoint::BlockExitKind:
        assert (false && "BlockExit location never occur in forward analysis.");
        break;

      case ProgramPoint::CallEnterKind:
        HandleCallEnter(cast<CallEnter>(Node->getLocation()), WU.getBlock(), 
                        WU.getIndex(), Node);
        break;

      case ProgramPoint::CallExitKind:
        HandleCallExit(cast<CallExit>(Node->getLocation()), Node);
        break;

      default:
        assert(isa<PostStmt>(Node->getLocation()) || 
               isa<PostInitializer>(Node->getLocation()));
        HandlePostStmt(WU.getBlock(), WU.getIndex(), Node);
        break;
    }
  }

  SubEng.processEndWorklist(hasWorkRemaining());
  return WList->hasWork();
}

void CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, 
                                                 unsigned Steps,
                                                 const ProgramState *InitState, 
                                                 ExplodedNodeSet &Dst) {
  ExecuteWorkList(L, Steps, InitState);
  for (SmallVectorImpl<ExplodedNode*>::iterator I = G->EndNodes.begin(), 
                                           E = G->EndNodes.end(); I != E; ++I) {
    Dst.Add(*I);
  }
}

void CoreEngine::HandleCallEnter(const CallEnter &L, const CFGBlock *Block,
                                   unsigned Index, ExplodedNode *Pred) {
  CallEnterNodeBuilder Builder(*this, Pred, L.getCallExpr(), 
                                 L.getCalleeContext(), Block, Index);
  SubEng.processCallEnter(Builder);
}

void CoreEngine::HandleCallExit(const CallExit &L, ExplodedNode *Pred) {
  CallExitNodeBuilder Builder(*this, Pred);
  SubEng.processCallExit(Builder);
}

void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) {

  const CFGBlock *Blk = L.getDst();

  // Check if we are entering the EXIT block.
  if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {

    assert (L.getLocationContext()->getCFG()->getExit().size() == 0
            && "EXIT block cannot contain Stmts.");

    // Process the final state transition.
    EndOfFunctionNodeBuilder Builder(Blk, Pred, this);
    SubEng.processEndOfFunction(Builder);

    // This path is done. Don't enqueue any more nodes.
    return;
  }

  // Call into the subengine to process entering the CFGBlock.
  ExplodedNodeSet dstNodes;
  BlockEntrance BE(Blk, Pred->getLocationContext());
  GenericNodeBuilder<BlockEntrance> nodeBuilder(*this, Pred, BE);
  SubEng.processCFGBlockEntrance(dstNodes, nodeBuilder);

  if (dstNodes.empty()) {
    if (!nodeBuilder.hasGeneratedNode) {
      // Auto-generate a node and enqueue it to the worklist.
      generateNode(BE, Pred->State, Pred);    
    }
  }
  else {
    for (ExplodedNodeSet::iterator I = dstNodes.begin(), E = dstNodes.end();
         I != E; ++I) {
      WList->enqueue(*I);
    }
  }

  for (SmallVectorImpl<ExplodedNode*>::const_iterator
       I = nodeBuilder.sinks().begin(), E = nodeBuilder.sinks().end();
       I != E; ++I) {
    blocksExhausted.push_back(std::make_pair(L, *I));
  }
}

void CoreEngine::HandleBlockEntrance(const BlockEntrance &L,
                                       ExplodedNode *Pred) {

  // Increment the block counter.
  BlockCounter Counter = WList->getBlockCounter();
  Counter = BCounterFactory.IncrementCount(Counter, 
                             Pred->getLocationContext()->getCurrentStackFrame(),
                                           L.getBlock()->getBlockID());
  WList->setBlockCounter(Counter);

  // Process the entrance of the block.
  if (CFGElement E = L.getFirstElement()) {
    StmtNodeBuilder Builder(L.getBlock(), 0, Pred, this);
    SubEng.processCFGElement(E, Builder);
  }
  else
    HandleBlockExit(L.getBlock(), Pred);
}

void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) {

  if (const Stmt *Term = B->getTerminator()) {
    switch (Term->getStmtClass()) {
      default:
        llvm_unreachable("Analysis for this terminator not implemented.");

      case Stmt::BinaryOperatorClass: // '&&' and '||'
        HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
        return;

      case Stmt::BinaryConditionalOperatorClass:
      case Stmt::ConditionalOperatorClass:
        HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(),
                     Term, B, Pred);
        return;

        // FIXME: Use constant-folding in CFG construction to simplify this
        // case.

      case Stmt::ChooseExprClass:
        HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
        return;

      case Stmt::DoStmtClass:
        HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
        return;

      case Stmt::CXXForRangeStmtClass:
        HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred);
        return;

      case Stmt::ForStmtClass:
        HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
        return;

      case Stmt::ContinueStmtClass:
      case Stmt::BreakStmtClass:
      case Stmt::GotoStmtClass:
        break;

      case Stmt::IfStmtClass:
        HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
        return;

      case Stmt::IndirectGotoStmtClass: {
        // Only 1 successor: the indirect goto dispatch block.
        assert (B->succ_size() == 1);

        IndirectGotoNodeBuilder
           builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
                   *(B->succ_begin()), this);

        SubEng.processIndirectGoto(builder);
        return;
      }

      case Stmt::ObjCForCollectionStmtClass: {
        // In the case of ObjCForCollectionStmt, it appears twice in a CFG:
        //
        //  (1) inside a basic block, which represents the binding of the
        //      'element' variable to a value.
        //  (2) in a terminator, which represents the branch.
        //
        // For (1), subengines will bind a value (i.e., 0 or 1) indicating
        // whether or not collection contains any more elements.  We cannot
        // just test to see if the element is nil because a container can
        // contain nil elements.
        HandleBranch(Term, Term, B, Pred);
        return;
      }

      case Stmt::SwitchStmtClass: {
        SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
                                    this);

        SubEng.processSwitch(builder);
        return;
      }

      case Stmt::WhileStmtClass:
        HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
        return;
    }
  }

  assert (B->succ_size() == 1 &&
          "Blocks with no terminator should have at most 1 successor.");

  generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
               Pred->State, Pred);
}

void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, 
                                const CFGBlock * B, ExplodedNode *Pred) {
  assert(B->succ_size() == 2);
  BranchNodeBuilder Builder(B, *(B->succ_begin()), *(B->succ_begin()+1),
                            Pred, this);
  SubEng.processBranch(Cond, Term, Builder);
}

void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, 
                                  ExplodedNode *Pred) {
  assert (!B->empty());

  if (StmtIdx == B->size())
    HandleBlockExit(B, Pred);
  else {
    StmtNodeBuilder Builder(B, StmtIdx, Pred, this);
    SubEng.processCFGElement((*B)[StmtIdx], Builder);
  }
}

/// generateNode - Utility method to generate nodes, hook up successors,
///  and add nodes to the worklist.
void CoreEngine::generateNode(const ProgramPoint &Loc,
                              const ProgramState *State,
                              ExplodedNode *Pred) {

  bool IsNew;
  ExplodedNode *Node = G->getNode(Loc, State, &IsNew);

  if (Pred)
    Node->addPredecessor(Pred, *G);  // Link 'Node' with its predecessor.
  else {
    assert (IsNew);
    G->addRoot(Node);  // 'Node' has no predecessor.  Make it a root.
  }

  // Only add 'Node' to the worklist if it was freshly generated.
  if (IsNew) WList->enqueue(Node);
}

ExplodedNode *
GenericNodeBuilderImpl::generateNodeImpl(const ProgramState *state,
                                         ExplodedNode *pred,
                                         ProgramPoint programPoint,
                                         bool asSink) {
  
  hasGeneratedNode = true;
  bool isNew;
  ExplodedNode *node = engine.getGraph().getNode(programPoint, state, &isNew);
  if (pred)
    node->addPredecessor(pred, engine.getGraph());
  if (isNew) {
    if (asSink) {
      node->markAsSink();
      sinksGenerated.push_back(node);
    }
    return node;
  }
  return 0;
}

StmtNodeBuilder::StmtNodeBuilder(const CFGBlock *b,
                                 unsigned idx,
                                 ExplodedNode *N,
                                 CoreEngine* e)
  : Eng(*e), B(*b), Idx(idx), Pred(N),
    PurgingDeadSymbols(false), BuildSinks(false), hasGeneratedNode(false),
    PointKind(ProgramPoint::PostStmtKind), Tag(0) {
  Deferred.insert(N);
}

StmtNodeBuilder::~StmtNodeBuilder() {
  for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
    if (!(*I)->isSink())
      GenerateAutoTransition(*I);
}

void StmtNodeBuilder::GenerateAutoTransition(ExplodedNode *N) {
  assert (!N->isSink());

  // Check if this node entered a callee.
  if (isa<CallEnter>(N->getLocation())) {
    // Still use the index of the CallExpr. It's needed to create the callee
    // StackFrameContext.
    Eng.WList->enqueue(N, &B, Idx);
    return;
  }

  // Do not create extra nodes. Move to the next CFG element.
  if (isa<PostInitializer>(N->getLocation())) {
    Eng.WList->enqueue(N, &B, Idx+1);
    return;
  }

  PostStmt Loc(getStmt(), N->getLocationContext());

  if (Loc == N->getLocation()) {
    // Note: 'N' should be a fresh node because otherwise it shouldn't be
    // a member of Deferred.
    Eng.WList->enqueue(N, &B, Idx+1);
    return;
  }

  bool IsNew;
  ExplodedNode *Succ = Eng.G->getNode(Loc, N->State, &IsNew);
  Succ->addPredecessor(N, *Eng.G);

  if (IsNew)
    Eng.WList->enqueue(Succ, &B, Idx+1);
}

ExplodedNode *StmtNodeBuilder::MakeNode(ExplodedNodeSet &Dst,
                                        const Stmt *S, 
                                        ExplodedNode *Pred,
                                        const ProgramState *St,
                                        ProgramPoint::Kind K) {

  ExplodedNode *N = generateNode(S, St, Pred, K);

  if (N) {
    if (BuildSinks)
      N->markAsSink();
    else
      Dst.Add(N);
  }
  
  return N;
}

ExplodedNode*
StmtNodeBuilder::generateNodeInternal(const Stmt *S,
                                      const ProgramState *state,
                                      ExplodedNode *Pred,
                                      ProgramPoint::Kind K,
                                      const ProgramPointTag *tag) {
  
  const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
                                        Pred->getLocationContext(), tag);
  return generateNodeInternal(L, state, Pred);
}

ExplodedNode*
StmtNodeBuilder::generateNodeInternal(const ProgramPoint &Loc,
                                      const ProgramState *State,
                                      ExplodedNode *Pred) {
  bool IsNew;
  ExplodedNode *N = Eng.G->getNode(Loc, State, &IsNew);
  N->addPredecessor(Pred, *Eng.G);
  Deferred.erase(Pred);

  if (IsNew) {
    Deferred.insert(N);
    return N;
  }

  return NULL;
}

// This function generate a new ExplodedNode but not a new branch(block edge).
ExplodedNode *BranchNodeBuilder::generateNode(const Stmt *Condition,
                                              const ProgramState *State) {
  bool IsNew;
  
  ExplodedNode *Succ 
    = Eng.G->getNode(PostCondition(Condition, Pred->getLocationContext()), State,
                     &IsNew);
  
  Succ->addPredecessor(Pred, *Eng.G);
  
  Pred = Succ;
  
  if (IsNew) 
    return Succ;
  
  return NULL;
}

ExplodedNode *BranchNodeBuilder::generateNode(const ProgramState *State,
                                              bool branch) {

  // If the branch has been marked infeasible we should not generate a node.
  if (!isFeasible(branch))
    return NULL;

  bool IsNew;

  ExplodedNode *Succ =
    Eng.G->getNode(BlockEdge(Src,branch ? DstT:DstF,Pred->getLocationContext()),
                   State, &IsNew);

  Succ->addPredecessor(Pred, *Eng.G);

  if (branch)
    GeneratedTrue = true;
  else
    GeneratedFalse = true;

  if (IsNew) {
    Deferred.push_back(Succ);
    return Succ;
  }

  return NULL;
}

BranchNodeBuilder::~BranchNodeBuilder() {
  if (!GeneratedTrue) generateNode(Pred->State, true);
  if (!GeneratedFalse) generateNode(Pred->State, false);

  for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
    if (!(*I)->isSink()) Eng.WList->enqueue(*I);
}


ExplodedNode*
IndirectGotoNodeBuilder::generateNode(const iterator &I,
                                      const ProgramState *St,
                                      bool isSink) {
  bool IsNew;

  ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
                                      Pred->getLocationContext()), St, &IsNew);

  Succ->addPredecessor(Pred, *Eng.G);

  if (IsNew) {

    if (isSink)
      Succ->markAsSink();
    else
      Eng.WList->enqueue(Succ);

    return Succ;
  }

  return NULL;
}


ExplodedNode*
SwitchNodeBuilder::generateCaseStmtNode(const iterator &I,
                                        const ProgramState *St) {

  bool IsNew;
  ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
                                      Pred->getLocationContext()),
                                      St, &IsNew);
  Succ->addPredecessor(Pred, *Eng.G);
  if (IsNew) {
    Eng.WList->enqueue(Succ);
    return Succ;
  }
  return NULL;
}


ExplodedNode*
SwitchNodeBuilder::generateDefaultCaseNode(const ProgramState *St,
                                           bool isSink) {
  // Get the block for the default case.
  assert(Src->succ_rbegin() != Src->succ_rend());
  CFGBlock *DefaultBlock = *Src->succ_rbegin();

  // Sanity check for default blocks that are unreachable and not caught
  // by earlier stages.
  if (!DefaultBlock)
    return NULL;
  
  bool IsNew;

  ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
                                      Pred->getLocationContext()), St, &IsNew);
  Succ->addPredecessor(Pred, *Eng.G);

  if (IsNew) {
    if (isSink)
      Succ->markAsSink();
    else
      Eng.WList->enqueue(Succ);

    return Succ;
  }

  return NULL;
}

EndOfFunctionNodeBuilder::~EndOfFunctionNodeBuilder() {
  // Auto-generate an EOP node if one has not been generated.
  if (!hasGeneratedNode) {
    // If we are in an inlined call, generate CallExit node.
    if (Pred->getLocationContext()->getParent())
      GenerateCallExitNode(Pred->State);
    else
      generateNode(Pred->State);
  }
}

ExplodedNode*
EndOfFunctionNodeBuilder::generateNode(const ProgramState *State,
                                       ExplodedNode *P,
                                       const ProgramPointTag *tag) {
  hasGeneratedNode = true;
  bool IsNew;

  ExplodedNode *Node = Eng.G->getNode(BlockEntrance(&B,
                               Pred->getLocationContext(), tag ? tag : Tag),
                               State, &IsNew);

  Node->addPredecessor(P ? P : Pred, *Eng.G);

  if (IsNew) {
    Eng.G->addEndOfPath(Node);
    return Node;
  }

  return NULL;
}

void EndOfFunctionNodeBuilder::GenerateCallExitNode(const ProgramState *state) {
  hasGeneratedNode = true;
  // Create a CallExit node and enqueue it.
  const StackFrameContext *LocCtx
                         = cast<StackFrameContext>(Pred->getLocationContext());
  const Stmt *CE = LocCtx->getCallSite();

  // Use the the callee location context.
  CallExit Loc(CE, LocCtx);

  bool isNew;
  ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
  Node->addPredecessor(Pred, *Eng.G);

  if (isNew)
    Eng.WList->enqueue(Node);
}
                                                

void CallEnterNodeBuilder::generateNode(const ProgramState *state) {
  // Check if the callee is in the same translation unit.
  if (CalleeCtx->getTranslationUnit() != 
      Pred->getLocationContext()->getTranslationUnit()) {
    // Create a new engine. We must be careful that the new engine should not
    // reference data structures owned by the old engine.

    AnalysisManager &OldMgr = Eng.SubEng.getAnalysisManager();
    
    // Get the callee's translation unit.
    idx::TranslationUnit *TU = CalleeCtx->getTranslationUnit();

    // Create a new AnalysisManager with components of the callee's
    // TranslationUnit.
    // The Diagnostic is  actually shared when we create ASTUnits from AST files.
    AnalysisManager AMgr(TU->getASTContext(), TU->getDiagnostic(), OldMgr);

    // Create the new engine.
    // FIXME: This cast isn't really safe.
    bool GCEnabled = static_cast<ExprEngine&>(Eng.SubEng).isObjCGCEnabled();
    ExprEngine NewEng(AMgr, GCEnabled);

    // Create the new LocationContext.
    AnalysisContext *NewAnaCtx = AMgr.getAnalysisContext(CalleeCtx->getDecl(), 
                                               CalleeCtx->getTranslationUnit());
    const StackFrameContext *OldLocCtx = CalleeCtx;
    const StackFrameContext *NewLocCtx = AMgr.getStackFrame(NewAnaCtx, 
                                               OldLocCtx->getParent(),
                                               OldLocCtx->getCallSite(),
                                               OldLocCtx->getCallSiteBlock(), 
                                               OldLocCtx->getIndex());

    // Now create an initial state for the new engine.
    const ProgramState *NewState =
      NewEng.getStateManager().MarshalState(state, NewLocCtx);
    ExplodedNodeSet ReturnNodes;
    NewEng.ExecuteWorkListWithInitialState(NewLocCtx, AMgr.getMaxNodes(), 
                                           NewState, ReturnNodes);
    return;
  }

  // Get the callee entry block.
  const CFGBlock *Entry = &(CalleeCtx->getCFG()->getEntry());
  assert(Entry->empty());
  assert(Entry->succ_size() == 1);

  // Get the solitary successor.
  const CFGBlock *SuccB = *(Entry->succ_begin());

  // Construct an edge representing the starting location in the callee.
  BlockEdge Loc(Entry, SuccB, CalleeCtx);

  bool isNew;
  ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
  Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);

  if (isNew)
    Eng.WList->enqueue(Node);
}

void CallExitNodeBuilder::generateNode(const ProgramState *state) {
  // Get the callee's location context.
  const StackFrameContext *LocCtx 
                         = cast<StackFrameContext>(Pred->getLocationContext());
  // When exiting an implicit automatic obj dtor call, the callsite is the Stmt
  // that triggers the dtor.
  PostStmt Loc(LocCtx->getCallSite(), LocCtx->getParent());
  bool isNew;
  ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
  Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
  if (isNew)
    Eng.WList->enqueue(Node, LocCtx->getCallSiteBlock(),
                       LocCtx->getIndex() + 1);
}