aboutsummaryrefslogtreecommitdiff
path: root/crypto/openssl/crypto/rc4/asm/rc4-586.pl
blob: 3a936de1f9a79b9ac61a25fd7fb37ee28709048a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#! /usr/bin/env perl
# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html


# ====================================================================
# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================

# At some point it became apparent that the original SSLeay RC4
# assembler implementation performs suboptimally on latest IA-32
# microarchitectures. After re-tuning performance has changed as
# following:
#
# Pentium	-10%
# Pentium III	+12%
# AMD		+50%(*)
# P4		+250%(**)
#
# (*)	This number is actually a trade-off:-) It's possible to
#	achieve	+72%, but at the cost of -48% off PIII performance.
#	In other words code performing further 13% faster on AMD
#	would perform almost 2 times slower on Intel PIII...
#	For reference! This code delivers ~80% of rc4-amd64.pl
#	performance on the same Opteron machine.
# (**)	This number requires compressed key schedule set up by
#	RC4_set_key [see commentary below for further details].

# May 2011
#
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
# performance in cycles per processed byte (less is better) and
# improvement relative to previous version of this module is:
#
# Pentium	10.2			# original numbers
# Pentium III	7.8(*)
# Intel P4	7.5
#
# Opteron	6.1/+20%		# new MMX numbers
# Core2		5.3/+67%(**)
# Westmere	5.1/+94%(**)
# Sandy Bridge	5.0/+8%
# Atom		12.6/+6%
# VIA Nano	6.4/+9%
# Ivy Bridge	4.9/±0%
# Bulldozer	4.9/+15%
#
# (*)	PIII can actually deliver 6.6 cycles per byte with MMX code,
#	but this specific code performs poorly on Core2. And vice
#	versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
#	poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
#	[anymore], I chose to discard PIII-specific code path and opt
#	for original IALU-only code, which is why MMX/SSE code path
#	is guarded by SSE2 bit (see below), not MMX/SSE.
# (**)	Performance vs. block size on Core2 and Westmere had a maximum
#	at ... 64 bytes block size. And it was quite a maximum, 40-60%
#	in comparison to largest 8KB block size. Above improvement
#	coefficients are for the largest block size.

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

$output=pop;
open STDOUT,">$output";

&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");

$xx="eax";
$yy="ebx";
$tx="ecx";
$ty="edx";
$inp="esi";
$out="ebp";
$dat="edi";

sub RC4_loop {
  my $i=shift;
  my $func = ($i==0)?*mov:*or;

	&add	(&LB($yy),&LB($tx));
	&mov	($ty,&DWP(0,$dat,$yy,4));
	&mov	(&DWP(0,$dat,$yy,4),$tx);
	&mov	(&DWP(0,$dat,$xx,4),$ty);
	&add	($ty,$tx);
	&inc	(&LB($xx));
	&and	($ty,0xff);
	&ror	($out,8)	if ($i!=0);
	if ($i<3) {
	  &mov	($tx,&DWP(0,$dat,$xx,4));
	} else {
	  &mov	($tx,&wparam(3));	# reload [re-biased] out
	}
	&$func	($out,&DWP(0,$dat,$ty,4));
}

if ($alt=0) {
  # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
  # but ~40% slower on Core2 and Westmere... Attempt to add movz
  # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
  # on Core2 with movz it's almost 20% slower than below alternative
  # code... Yes, it's a total mess...
  my @XX=($xx,$out);
  $RC4_loop_mmx = sub {		# SSE actually...
    my $i=shift;
    my $j=$i<=0?0:$i>>1;
    my $mm=$i<=0?"mm0":"mm".($i&1);

	&add	(&LB($yy),&LB($tx));
	&lea	(@XX[1],&DWP(1,@XX[0]));
	&pxor	("mm2","mm0")				if ($i==0);
	&psllq	("mm1",8)				if ($i==0);
	&and	(@XX[1],0xff);
	&pxor	("mm0","mm0")				if ($i<=0);
	&mov	($ty,&DWP(0,$dat,$yy,4));
	&mov	(&DWP(0,$dat,$yy,4),$tx);
	&pxor	("mm1","mm2")				if ($i==0);
	&mov	(&DWP(0,$dat,$XX[0],4),$ty);
	&add	(&LB($ty),&LB($tx));
	&movd	(@XX[0],"mm7")				if ($i==0);
	&mov	($tx,&DWP(0,$dat,@XX[1],4));
	&pxor	("mm1","mm1")				if ($i==1);
	&movq	("mm2",&QWP(0,$inp))			if ($i==1);
	&movq	(&QWP(-8,(@XX[0],$inp)),"mm1")		if ($i==0);
	&pinsrw	($mm,&DWP(0,$dat,$ty,4),$j);

	push	(@XX,shift(@XX))			if ($i>=0);
  }
} else {
  # Using pinsrw here improves performance on Intel CPUs by 2-3%, but
  # brings down AMD by 7%...
  $RC4_loop_mmx = sub {
    my $i=shift;

	&add	(&LB($yy),&LB($tx));
	&psllq	("mm1",8*(($i-1)&7))			if (abs($i)!=1);
	&mov	($ty,&DWP(0,$dat,$yy,4));
	&mov	(&DWP(0,$dat,$yy,4),$tx);
	&mov	(&DWP(0,$dat,$xx,4),$ty);
	&inc	($xx);
	&add	($ty,$tx);
	&movz	($xx,&LB($xx));				# (*)
	&movz	($ty,&LB($ty));				# (*)
	&pxor	("mm2",$i==1?"mm0":"mm1")		if ($i>=0);
	&movq	("mm0",&QWP(0,$inp))			if ($i<=0);
	&movq	(&QWP(-8,($out,$inp)),"mm2")		if ($i==0);
	&mov	($tx,&DWP(0,$dat,$xx,4));
	&movd	($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));

	# (*)	This is the key to Core2 and Westmere performance.
	#	Without movz out-of-order execution logic confuses
	#	itself and fails to reorder loads and stores. Problem
	#	appears to be fixed in Sandy Bridge...
  }
}

&external_label("OPENSSL_ia32cap_P");

# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
&function_begin("RC4");
	&mov	($dat,&wparam(0));	# load key schedule pointer
	&mov	($ty, &wparam(1));	# load len
	&mov	($inp,&wparam(2));	# load inp
	&mov	($out,&wparam(3));	# load out

	&xor	($xx,$xx);		# avoid partial register stalls
	&xor	($yy,$yy);

	&cmp	($ty,0);		# safety net
	&je	(&label("abort"));

	&mov	(&LB($xx),&BP(0,$dat));	# load key->x
	&mov	(&LB($yy),&BP(4,$dat));	# load key->y
	&add	($dat,8);

	&lea	($tx,&DWP(0,$inp,$ty));
	&sub	($out,$inp);		# re-bias out
	&mov	(&wparam(1),$tx);	# save input+len

	&inc	(&LB($xx));

	# detect compressed key schedule...
	&cmp	(&DWP(256,$dat),-1);
	&je	(&label("RC4_CHAR"));

	&mov	($tx,&DWP(0,$dat,$xx,4));

	&and	($ty,-4);		# how many 4-byte chunks?
	&jz	(&label("loop1"));

	&mov	(&wparam(3),$out);	# $out as accumulator in these loops
					if ($x86only) {
	&jmp	(&label("go4loop4"));
					} else {
	&test	($ty,-8);
	&jz	(&label("go4loop4"));

	&picmeup($out,"OPENSSL_ia32cap_P");
	&bt	(&DWP(0,$out),26);	# check SSE2 bit [could have been MMX]
	&jnc	(&label("go4loop4"));

	&mov	($out,&wparam(3))	if (!$alt);
	&movd	("mm7",&wparam(3))	if ($alt);
	&and	($ty,-8);
	&lea	($ty,&DWP(-8,$inp,$ty));
	&mov	(&DWP(-4,$dat),$ty);	# save input+(len/8)*8-8

	&$RC4_loop_mmx(-1);
	&jmp(&label("loop_mmx_enter"));

	&set_label("loop_mmx",16);
		&$RC4_loop_mmx(0);
	&set_label("loop_mmx_enter");
		for 	($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
		&mov	($ty,$yy);
		&xor	($yy,$yy);		# this is second key to Core2
		&mov	(&LB($yy),&LB($ty));	# and Westmere performance...
		&cmp	($inp,&DWP(-4,$dat));
		&lea	($inp,&DWP(8,$inp));
	&jb	(&label("loop_mmx"));

    if ($alt) {
	&movd	($out,"mm7");
	&pxor	("mm2","mm0");
	&psllq	("mm1",8);
	&pxor	("mm1","mm2");
	&movq	(&QWP(-8,$out,$inp),"mm1");
    } else {
	&psllq	("mm1",56);
	&pxor	("mm2","mm1");
	&movq	(&QWP(-8,$out,$inp),"mm2");
    }
	&emms	();

	&cmp	($inp,&wparam(1));	# compare to input+len
	&je	(&label("done"));
	&jmp	(&label("loop1"));
					}

&set_label("go4loop4",16);
	&lea	($ty,&DWP(-4,$inp,$ty));
	&mov	(&wparam(2),$ty);	# save input+(len/4)*4-4

	&set_label("loop4");
		for ($i=0;$i<4;$i++) { RC4_loop($i); }
		&ror	($out,8);
		&xor	($out,&DWP(0,$inp));
		&cmp	($inp,&wparam(2));	# compare to input+(len/4)*4-4
		&mov	(&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
		&lea	($inp,&DWP(4,$inp));
		&mov	($tx,&DWP(0,$dat,$xx,4));
	&jb	(&label("loop4"));

	&cmp	($inp,&wparam(1));	# compare to input+len
	&je	(&label("done"));
	&mov	($out,&wparam(3));	# restore $out

	&set_label("loop1",16);
		&add	(&LB($yy),&LB($tx));
		&mov	($ty,&DWP(0,$dat,$yy,4));
		&mov	(&DWP(0,$dat,$yy,4),$tx);
		&mov	(&DWP(0,$dat,$xx,4),$ty);
		&add	($ty,$tx);
		&inc	(&LB($xx));
		&and	($ty,0xff);
		&mov	($ty,&DWP(0,$dat,$ty,4));
		&xor	(&LB($ty),&BP(0,$inp));
		&lea	($inp,&DWP(1,$inp));
		&mov	($tx,&DWP(0,$dat,$xx,4));
		&cmp	($inp,&wparam(1));	# compare to input+len
		&mov	(&BP(-1,$out,$inp),&LB($ty));
	&jb	(&label("loop1"));

	&jmp	(&label("done"));

# this is essentially Intel P4 specific codepath...
&set_label("RC4_CHAR",16);
	&movz	($tx,&BP(0,$dat,$xx));
	# strangely enough unrolled loop performs over 20% slower...
	&set_label("cloop1");
		&add	(&LB($yy),&LB($tx));
		&movz	($ty,&BP(0,$dat,$yy));
		&mov	(&BP(0,$dat,$yy),&LB($tx));
		&mov	(&BP(0,$dat,$xx),&LB($ty));
		&add	(&LB($ty),&LB($tx));
		&movz	($ty,&BP(0,$dat,$ty));
		&add	(&LB($xx),1);
		&xor	(&LB($ty),&BP(0,$inp));
		&lea	($inp,&DWP(1,$inp));
		&movz	($tx,&BP(0,$dat,$xx));
		&cmp	($inp,&wparam(1));
		&mov	(&BP(-1,$out,$inp),&LB($ty));
	&jb	(&label("cloop1"));

&set_label("done");
	&dec	(&LB($xx));
	&mov	(&DWP(-4,$dat),$yy);		# save key->y
	&mov	(&BP(-8,$dat),&LB($xx));	# save key->x
&set_label("abort");
&function_end("RC4");

########################################################################

$inp="esi";
$out="edi";
$idi="ebp";
$ido="ecx";
$idx="edx";

# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
&function_begin("RC4_set_key");
	&mov	($out,&wparam(0));		# load key
	&mov	($idi,&wparam(1));		# load len
	&mov	($inp,&wparam(2));		# load data
	&picmeup($idx,"OPENSSL_ia32cap_P");

	&lea	($out,&DWP(2*4,$out));		# &key->data
	&lea	($inp,&DWP(0,$inp,$idi));	# $inp to point at the end
	&neg	($idi);
	&xor	("eax","eax");
	&mov	(&DWP(-4,$out),$idi);		# borrow key->y

	&bt	(&DWP(0,$idx),20);		# check for bit#20
	&jc	(&label("c1stloop"));

&set_label("w1stloop",16);
	&mov	(&DWP(0,$out,"eax",4),"eax");	# key->data[i]=i;
	&add	(&LB("eax"),1);			# i++;
	&jnc	(&label("w1stloop"));

	&xor	($ido,$ido);
	&xor	($idx,$idx);

&set_label("w2ndloop",16);
	&mov	("eax",&DWP(0,$out,$ido,4));
	&add	(&LB($idx),&BP(0,$inp,$idi));
	&add	(&LB($idx),&LB("eax"));
	&add	($idi,1);
	&mov	("ebx",&DWP(0,$out,$idx,4));
	&jnz	(&label("wnowrap"));
	  &mov	($idi,&DWP(-4,$out));
	&set_label("wnowrap");
	&mov	(&DWP(0,$out,$idx,4),"eax");
	&mov	(&DWP(0,$out,$ido,4),"ebx");
	&add	(&LB($ido),1);
	&jnc	(&label("w2ndloop"));
&jmp	(&label("exit"));

# Unlike all other x86 [and x86_64] implementations, Intel P4 core
# [including EM64T] was found to perform poorly with above "32-bit" key
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
# schedule for x86[_64], because non-P4 implementations suffer from
# significant performance losses then, e.g. PIII exhibits >2x
# deterioration, and so does Opteron. In order to assure optimal
# all-round performance, we detect P4 at run-time and set up compressed
# key schedule, which is recognized by RC4 procedure.

&set_label("c1stloop",16);
	&mov	(&BP(0,$out,"eax"),&LB("eax"));	# key->data[i]=i;
	&add	(&LB("eax"),1);			# i++;
	&jnc	(&label("c1stloop"));

	&xor	($ido,$ido);
	&xor	($idx,$idx);
	&xor	("ebx","ebx");

&set_label("c2ndloop",16);
	&mov	(&LB("eax"),&BP(0,$out,$ido));
	&add	(&LB($idx),&BP(0,$inp,$idi));
	&add	(&LB($idx),&LB("eax"));
	&add	($idi,1);
	&mov	(&LB("ebx"),&BP(0,$out,$idx));
	&jnz	(&label("cnowrap"));
	  &mov	($idi,&DWP(-4,$out));
	&set_label("cnowrap");
	&mov	(&BP(0,$out,$idx),&LB("eax"));
	&mov	(&BP(0,$out,$ido),&LB("ebx"));
	&add	(&LB($ido),1);
	&jnc	(&label("c2ndloop"));

	&mov	(&DWP(256,$out),-1);		# mark schedule as compressed

&set_label("exit");
	&xor	("eax","eax");
	&mov	(&DWP(-8,$out),"eax");		# key->x=0;
	&mov	(&DWP(-4,$out),"eax");		# key->y=0;
&function_end("RC4_set_key");

# const char *RC4_options(void);
&function_begin_B("RC4_options");
	&call	(&label("pic_point"));
&set_label("pic_point");
	&blindpop("eax");
	&lea	("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
	&picmeup("edx","OPENSSL_ia32cap_P");
	&mov	("edx",&DWP(0,"edx"));
	&bt	("edx",20);
	&jc	(&label("1xchar"));
	&bt	("edx",26);
	&jnc	(&label("ret"));
	&add	("eax",25);
	&ret	();
&set_label("1xchar");
	&add	("eax",12);
&set_label("ret");
	&ret	();
&set_label("opts",64);
&asciz	("rc4(4x,int)");
&asciz	("rc4(1x,char)");
&asciz	("rc4(8x,mmx)");
&asciz	("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
&align	(64);
&function_end_B("RC4_options");

&asm_finish();

close STDOUT or die "error closing STDOUT: $!";