1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/*
* Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/core_dispatch.h>
#include <openssl/core_names.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/params.h>
#include <openssl/proverr.h>
#include <openssl/rand.h>
#include "prov/implementations.h"
#include "prov/mlx_kem.h"
#include "prov/provider_ctx.h"
#include "prov/providercommon.h"
static OSSL_FUNC_kem_newctx_fn mlx_kem_newctx;
static OSSL_FUNC_kem_freectx_fn mlx_kem_freectx;
static OSSL_FUNC_kem_encapsulate_init_fn mlx_kem_encapsulate_init;
static OSSL_FUNC_kem_encapsulate_fn mlx_kem_encapsulate;
static OSSL_FUNC_kem_decapsulate_init_fn mlx_kem_decapsulate_init;
static OSSL_FUNC_kem_decapsulate_fn mlx_kem_decapsulate;
static OSSL_FUNC_kem_set_ctx_params_fn mlx_kem_set_ctx_params;
static OSSL_FUNC_kem_settable_ctx_params_fn mlx_kem_settable_ctx_params;
typedef struct {
OSSL_LIB_CTX *libctx;
MLX_KEY *key;
int op;
} PROV_MLX_KEM_CTX;
static void *mlx_kem_newctx(void *provctx)
{
PROV_MLX_KEM_CTX *ctx;
if ((ctx = OPENSSL_malloc(sizeof(*ctx))) == NULL)
return NULL;
ctx->libctx = PROV_LIBCTX_OF(provctx);
ctx->key = NULL;
ctx->op = 0;
return ctx;
}
static void mlx_kem_freectx(void *vctx)
{
OPENSSL_free(vctx);
}
static int mlx_kem_init(void *vctx, int op, void *key,
ossl_unused const OSSL_PARAM params[])
{
PROV_MLX_KEM_CTX *ctx = vctx;
if (!ossl_prov_is_running())
return 0;
ctx->key = key;
ctx->op = op;
return 1;
}
static int
mlx_kem_encapsulate_init(void *vctx, void *vkey, const OSSL_PARAM params[])
{
MLX_KEY *key = vkey;
if (!mlx_kem_have_pubkey(key)) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY);
return 0;
}
return mlx_kem_init(vctx, EVP_PKEY_OP_ENCAPSULATE, key, params);
}
static int
mlx_kem_decapsulate_init(void *vctx, void *vkey, const OSSL_PARAM params[])
{
MLX_KEY *key = vkey;
if (!mlx_kem_have_prvkey(key)) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY);
return 0;
}
return mlx_kem_init(vctx, EVP_PKEY_OP_DECAPSULATE, key, params);
}
static const OSSL_PARAM *mlx_kem_settable_ctx_params(ossl_unused void *vctx,
ossl_unused void *provctx)
{
static const OSSL_PARAM params[] = { OSSL_PARAM_END };
return params;
}
static int
mlx_kem_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
return 1;
}
static int mlx_kem_encapsulate(void *vctx, unsigned char *ctext, size_t *clen,
unsigned char *shsec, size_t *slen)
{
MLX_KEY *key = ((PROV_MLX_KEM_CTX *) vctx)->key;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *xkey = NULL;
size_t encap_clen;
size_t encap_slen;
uint8_t *cbuf;
uint8_t *sbuf;
int ml_kem_slot = key->xinfo->ml_kem_slot;
int ret = 0;
if (!mlx_kem_have_pubkey(key)) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY);
goto end;
}
encap_clen = key->minfo->ctext_bytes + key->xinfo->pubkey_bytes;
encap_slen = ML_KEM_SHARED_SECRET_BYTES + key->xinfo->shsec_bytes;
if (ctext == NULL) {
if (clen == NULL && slen == NULL)
return 0;
if (clen != NULL)
*clen = encap_clen;
if (slen != NULL)
*slen = encap_slen;
return 1;
}
if (shsec == NULL) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_OUTPUT_BUFFER,
"null shared-secret output buffer");
return 0;
}
if (clen == NULL) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_LENGTH_POINTER,
"null ciphertext input/output length pointer");
return 0;
} else if (*clen < encap_clen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL,
"ciphertext buffer too small");
return 0;
} else {
*clen = encap_clen;
}
if (slen == NULL) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_NULL_LENGTH_POINTER,
"null shared secret input/output length pointer");
return 0;
} else if (*slen < encap_slen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL,
"shared-secret buffer too small");
return 0;
} else {
*slen = encap_slen;
}
/* ML-KEM encapsulation */
encap_clen = key->minfo->ctext_bytes;
encap_slen = ML_KEM_SHARED_SECRET_BYTES;
cbuf = ctext + ml_kem_slot * key->xinfo->pubkey_bytes;
sbuf = shsec + ml_kem_slot * key->xinfo->shsec_bytes;
ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->mkey, key->propq);
if (ctx == NULL
|| EVP_PKEY_encapsulate_init(ctx, NULL) <= 0
|| EVP_PKEY_encapsulate(ctx, cbuf, &encap_clen, sbuf, &encap_slen) <= 0)
goto end;
if (encap_clen != key->minfo->ctext_bytes) {
ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR,
"unexpected %s ciphertext output size: %lu",
key->minfo->algorithm_name, (unsigned long) encap_clen);
goto end;
}
if (encap_slen != ML_KEM_SHARED_SECRET_BYTES) {
ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR,
"unexpected %s shared secret output size: %lu",
key->minfo->algorithm_name, (unsigned long) encap_slen);
goto end;
}
EVP_PKEY_CTX_free(ctx);
/*-
* ECDHE encapsulation
*
* Generate own ephemeral private key and add its public key to ctext.
*
* Note, we could support a settable parameter that sets an extant ECDH
* keypair as the keys to use in encap, making it possible to reuse the
* same (TLS client) ECDHE keypair for both the classical EC keyshare and a
* corresponding ECDHE + ML-KEM keypair. But the TLS layer would then need
* know that this is a hybrid, and that it can partly reuse the same keys
* as another group for which a keyshare will be sent. Deferred until we
* support generating multiple keyshares, there's a workable keyshare
* prediction specification, and the optimisation is justified.
*/
cbuf = ctext + (1 - ml_kem_slot) * key->minfo->ctext_bytes;
encap_clen = key->xinfo->pubkey_bytes;
ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->xkey, key->propq);
if (ctx == NULL
|| EVP_PKEY_keygen_init(ctx) <= 0
|| EVP_PKEY_keygen(ctx, &xkey) <= 0
|| EVP_PKEY_get_octet_string_param(xkey, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY,
cbuf, encap_clen, &encap_clen) <= 0)
goto end;
if (encap_clen != key->xinfo->pubkey_bytes) {
ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR,
"unexpected %s public key output size: %lu",
key->xinfo->algorithm_name, (unsigned long) encap_clen);
goto end;
}
EVP_PKEY_CTX_free(ctx);
/* Derive the ECDH shared secret */
encap_slen = key->xinfo->shsec_bytes;
sbuf = shsec + (1 - ml_kem_slot) * ML_KEM_SHARED_SECRET_BYTES;
ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, xkey, key->propq);
if (ctx == NULL
|| EVP_PKEY_derive_init(ctx) <= 0
|| EVP_PKEY_derive_set_peer(ctx, key->xkey) <= 0
|| EVP_PKEY_derive(ctx, sbuf, &encap_slen) <= 0)
goto end;
if (encap_slen != key->xinfo->shsec_bytes) {
ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR,
"unexpected %s shared secret output size: %lu",
key->xinfo->algorithm_name, (unsigned long) encap_slen);
goto end;
}
ret = 1;
end:
EVP_PKEY_free(xkey);
EVP_PKEY_CTX_free(ctx);
return ret;
}
static int mlx_kem_decapsulate(void *vctx, uint8_t *shsec, size_t *slen,
const uint8_t *ctext, size_t clen)
{
MLX_KEY *key = ((PROV_MLX_KEM_CTX *) vctx)->key;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *xkey = NULL;
const uint8_t *cbuf;
uint8_t *sbuf;
size_t decap_slen = ML_KEM_SHARED_SECRET_BYTES + key->xinfo->shsec_bytes;
size_t decap_clen = key->minfo->ctext_bytes + key->xinfo->pubkey_bytes;
int ml_kem_slot = key->xinfo->ml_kem_slot;
int ret = 0;
if (!mlx_kem_have_prvkey(key)) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_KEY);
return 0;
}
if (shsec == NULL) {
if (slen == NULL)
return 0;
*slen = decap_slen;
return 1;
}
/* For now tolerate newly-deprecated NULL length pointers. */
if (slen == NULL) {
slen = &decap_slen;
} else if (*slen < decap_slen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL,
"shared-secret buffer too small");
return 0;
} else {
*slen = decap_slen;
}
if (clen != decap_clen) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_WRONG_CIPHERTEXT_SIZE,
"wrong decapsulation input ciphertext size: %lu",
(unsigned long) clen);
return 0;
}
/* ML-KEM decapsulation */
decap_clen = key->minfo->ctext_bytes;
decap_slen = ML_KEM_SHARED_SECRET_BYTES;
cbuf = ctext + ml_kem_slot * key->xinfo->pubkey_bytes;
sbuf = shsec + ml_kem_slot * key->xinfo->shsec_bytes;
ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->mkey, key->propq);
if (ctx == NULL
|| EVP_PKEY_decapsulate_init(ctx, NULL) <= 0
|| EVP_PKEY_decapsulate(ctx, sbuf, &decap_slen, cbuf, decap_clen) <= 0)
goto end;
if (decap_slen != ML_KEM_SHARED_SECRET_BYTES) {
ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR,
"unexpected %s shared secret output size: %lu",
key->minfo->algorithm_name, (unsigned long) decap_slen);
goto end;
}
EVP_PKEY_CTX_free(ctx);
/* ECDH decapsulation */
decap_clen = key->xinfo->pubkey_bytes;
decap_slen = key->xinfo->shsec_bytes;
cbuf = ctext + (1 - ml_kem_slot) * key->minfo->ctext_bytes;
sbuf = shsec + (1 - ml_kem_slot) * ML_KEM_SHARED_SECRET_BYTES;
ctx = EVP_PKEY_CTX_new_from_pkey(key->libctx, key->xkey, key->propq);
if (ctx == NULL
|| (xkey = EVP_PKEY_new()) == NULL
|| EVP_PKEY_copy_parameters(xkey, key->xkey) <= 0
|| EVP_PKEY_set1_encoded_public_key(xkey, cbuf, decap_clen) <= 0
|| EVP_PKEY_derive_init(ctx) <= 0
|| EVP_PKEY_derive_set_peer(ctx, xkey) <= 0
|| EVP_PKEY_derive(ctx, sbuf, &decap_slen) <= 0)
goto end;
if (decap_slen != key->xinfo->shsec_bytes) {
ERR_raise_data(ERR_LIB_PROV, ERR_R_INTERNAL_ERROR,
"unexpected %s shared secret output size: %lu",
key->xinfo->algorithm_name, (unsigned long) decap_slen);
goto end;
}
ret = 1;
end:
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(xkey);
return ret;
}
const OSSL_DISPATCH ossl_mlx_kem_asym_kem_functions[] = {
{ OSSL_FUNC_KEM_NEWCTX, (OSSL_FUNC) mlx_kem_newctx },
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT, (OSSL_FUNC) mlx_kem_encapsulate_init },
{ OSSL_FUNC_KEM_ENCAPSULATE, (OSSL_FUNC) mlx_kem_encapsulate },
{ OSSL_FUNC_KEM_DECAPSULATE_INIT, (OSSL_FUNC) mlx_kem_decapsulate_init },
{ OSSL_FUNC_KEM_DECAPSULATE, (OSSL_FUNC) mlx_kem_decapsulate },
{ OSSL_FUNC_KEM_FREECTX, (OSSL_FUNC) mlx_kem_freectx },
{ OSSL_FUNC_KEM_SET_CTX_PARAMS, (OSSL_FUNC) mlx_kem_set_ctx_params },
{ OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS, (OSSL_FUNC) mlx_kem_settable_ctx_params },
OSSL_DISPATCH_END
};
|