aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Support/GenericDomTreeConstruction.h
blob: a0fec668e05ca7dc2200a026e76e46115f057169 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// Semi-NCA algorithm described in this dissertation:
///
///   Linear-Time Algorithms for Dominators and Related Problems
///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/GenericDomTree.h"

namespace llvm {
namespace DomTreeBuilder {

template <typename NodePtr, bool Inverse>
struct ChildrenGetter {
  static auto Get(NodePtr N) -> decltype(reverse(children<NodePtr>(N))) {
    return reverse(children<NodePtr>(N));
  }
};

template <typename NodePtr>
struct ChildrenGetter<NodePtr, true> {
  static auto Get(NodePtr N) -> decltype(inverse_children<NodePtr>(N)) {
    return inverse_children<NodePtr>(N);
  }
};

// Information record used by Semi-NCA during tree construction.
template <typename NodeT>
struct SemiNCAInfo {
  using NodePtr = NodeT *;
  using DomTreeT = DominatorTreeBase<NodeT>;
  using TreeNodePtr = DomTreeNodeBase<NodeT> *;

  struct InfoRec {
    unsigned DFSNum = 0;
    unsigned Parent = 0;
    unsigned Semi = 0;
    NodePtr Label = nullptr;
    NodePtr IDom = nullptr;
    SmallVector<NodePtr, 2> ReverseChildren;
  };

  std::vector<NodePtr> NumToNode;
  DenseMap<NodePtr, InfoRec> NodeToInfo;

  void clear() {
    NumToNode.clear();
    NodeToInfo.clear();
  }

  NodePtr getIDom(NodePtr BB) const {
    auto InfoIt = NodeToInfo.find(BB);
    if (InfoIt == NodeToInfo.end()) return nullptr;

    return InfoIt->second.IDom;
  }

  TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
    if (TreeNodePtr Node = DT.getNode(BB)) return Node;

    // Haven't calculated this node yet?  Get or calculate the node for the
    // immediate dominator.
    NodePtr IDom = getIDom(BB);

    assert(IDom || DT.DomTreeNodes[nullptr]);
    TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);

    // Add a new tree node for this NodeT, and link it as a child of
    // IDomNode
    return (DT.DomTreeNodes[BB] = IDomNode->addChild(
                llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
        .get();
  }

  static bool AlwaysDescend(NodePtr, NodePtr) { return true; }

  // Custom DFS implementation which can skip nodes based on a provided
  // predicate. It also collects ReverseChildren so that we don't have to spend
  // time getting predecessors in SemiNCA.
  template <bool Inverse, typename DescendCondition>
  unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
                  unsigned AttachToNum) {
    assert(V);
    SmallVector<NodePtr, 64> WorkList = {V};
    if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;

    while (!WorkList.empty()) {
      const NodePtr BB = WorkList.pop_back_val();
      auto &BBInfo = NodeToInfo[BB];

      // Visited nodes always have positive DFS numbers.
      if (BBInfo.DFSNum != 0) continue;
      BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
      BBInfo.Label = BB;
      NumToNode.push_back(BB);

      for (const NodePtr Succ : ChildrenGetter<NodePtr, Inverse>::Get(BB)) {
        const auto SIT = NodeToInfo.find(Succ);
        // Don't visit nodes more than once but remember to collect
        // RerverseChildren.
        if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
          if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
          continue;
        }

        if (!Condition(BB, Succ)) continue;

        // It's fine to add Succ to the map, because we know that it will be
        // visited later.
        auto &SuccInfo = NodeToInfo[Succ];
        WorkList.push_back(Succ);
        SuccInfo.Parent = LastNum;
        SuccInfo.ReverseChildren.push_back(BB);
      }
    }

    return LastNum;
  }

  NodePtr eval(NodePtr VIn, unsigned LastLinked) {
    auto &VInInfo = NodeToInfo[VIn];
    if (VInInfo.DFSNum < LastLinked)
      return VIn;

    SmallVector<NodePtr, 32> Work;
    SmallPtrSet<NodePtr, 32> Visited;

    if (VInInfo.Parent >= LastLinked)
      Work.push_back(VIn);

    while (!Work.empty()) {
      NodePtr V = Work.back();
      auto &VInfo = NodeToInfo[V];
      NodePtr VAncestor = NumToNode[VInfo.Parent];

      // Process Ancestor first
      if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
        Work.push_back(VAncestor);
        continue;
      }
      Work.pop_back();

      // Update VInfo based on Ancestor info
      if (VInfo.Parent < LastLinked)
        continue;

      auto &VAInfo = NodeToInfo[VAncestor];
      NodePtr VAncestorLabel = VAInfo.Label;
      NodePtr VLabel = VInfo.Label;
      if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
        VInfo.Label = VAncestorLabel;
      VInfo.Parent = VAInfo.Parent;
    }

    return VInInfo.Label;
  }

  template <typename NodeType>
  void runSemiNCA(DomTreeT &DT, unsigned NumBlocks) {
    // Step #1: Number blocks in depth-first order and initialize variables used
    // in later stages of the algorithm.
    const unsigned N = doFullDFSWalk(DT, AlwaysDescend);

    // It might be that some blocks did not get a DFS number (e.g., blocks of
    // infinite loops). In these cases an artificial exit node is required.
    const bool MultipleRoots =
        DT.Roots.size() > 1 || (DT.isPostDominator() && N != NumBlocks);

    // Initialize IDoms to spanning tree parents.
    for (unsigned i = 1; i <= N; ++i) {
      const NodePtr V = NumToNode[i];
      auto &VInfo = NodeToInfo[V];
      VInfo.IDom = NumToNode[VInfo.Parent];
    }

    // Step #2: Calculate the semidominators of all vertices.
    for (unsigned i = N; i >= 2; --i) {
      NodePtr W = NumToNode[i];
      auto &WInfo = NodeToInfo[W];

      // Initialize the semi dominator to point to the parent node.
      WInfo.Semi = WInfo.Parent;
      for (const auto &N : WInfo.ReverseChildren)
        if (NodeToInfo.count(N)) {  // Only if this predecessor is reachable!
          unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
          if (SemiU < WInfo.Semi)
            WInfo.Semi = SemiU;
        }
    }

    // Step #3: Explicitly define the immediate dominator of each vertex.
    //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
    // Note that the parents were stored in IDoms and later got invalidated
    // during path compression in Eval.
    for (unsigned i = 2; i <= N; ++i) {
      const NodePtr W = NumToNode[i];
      auto &WInfo = NodeToInfo[W];
      const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
      NodePtr WIDomCandidate = WInfo.IDom;
      while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
        WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;

      WInfo.IDom = WIDomCandidate;
    }

    if (DT.Roots.empty()) return;

    // Add a node for the root.  This node might be the actual root, if there is
    // one exit block, or it may be the virtual exit (denoted by
    // (BasicBlock *)0) which postdominates all real exits if there are multiple
    // exit blocks, or an infinite loop.
    NodePtr Root = !MultipleRoots ? DT.Roots[0] : nullptr;

    DT.RootNode =
        (DT.DomTreeNodes[Root] =
             llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
            .get();

    // Loop over all of the reachable blocks in the function...
    for (unsigned i = 2; i <= N; ++i) {
      NodePtr W = NumToNode[i];

      // Don't replace this with 'count', the insertion side effect is important
      if (DT.DomTreeNodes[W])
        continue; // Haven't calculated this node yet?

      NodePtr ImmDom = getIDom(W);

      assert(ImmDom || DT.DomTreeNodes[nullptr]);

      // Get or calculate the node for the immediate dominator
      TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);

      // Add a new tree node for this BasicBlock, and link it as a child of
      // IDomNode
      DT.DomTreeNodes[W] = IDomNode->addChild(
          llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
    }
  }

  template <typename DescendCondition>
  unsigned doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
    unsigned Num = 0;
    NumToNode.push_back(nullptr);

    if (DT.Roots.size() > 1) {
      auto &BBInfo = NodeToInfo[nullptr];
      BBInfo.DFSNum = BBInfo.Semi = ++Num;
      BBInfo.Label = nullptr;

      NumToNode.push_back(nullptr);  // NumToNode[n] = V;
    }

    if (DT.isPostDominator()) {
      for (auto *Root : DT.Roots) Num = runDFS<true>(Root, Num, DC, 1);
    } else {
      assert(DT.Roots.size() == 1);
      Num = runDFS<false>(DT.Roots[0], Num, DC, Num);
    }

    return Num;
  }

  static void PrintBlockOrNullptr(raw_ostream &O, NodePtr Obj) {
    if (!Obj)
      O << "nullptr";
    else
      Obj->printAsOperand(O, false);
  }

  // Checks if the tree contains all reachable nodes in the input graph.
  bool verifyReachability(const DomTreeT &DT) {
    clear();
    doFullDFSWalk(DT, AlwaysDescend);

    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB) continue;

      if (NodeToInfo.count(BB) == 0) {
        errs() << "DomTree node ";
        PrintBlockOrNullptr(errs(), BB);
        errs() << " not found by DFS walk!\n";
        errs().flush();

        return false;
      }
    }

    return true;
  }

  // Check if for every parent with a level L in the tree all of its children
  // have level L + 1.
  static bool VerifyLevels(const DomTreeT &DT) {
    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB) continue;

      const TreeNodePtr IDom = TN->getIDom();
      if (!IDom && TN->getLevel() != 0) {
        errs() << "Node without an IDom ";
        PrintBlockOrNullptr(errs(), BB);
        errs() << " has a nonzero level " << TN->getLevel() << "!\n";
        errs().flush();

        return false;
      }

      if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
        errs() << "Node ";
        PrintBlockOrNullptr(errs(), BB);
        errs() << " has level " << TN->getLevel() << " while it's IDom ";
        PrintBlockOrNullptr(errs(), IDom->getBlock());
        errs() << " has level " << IDom->getLevel() << "!\n";
        errs().flush();

        return false;
      }
    }

    return true;
  }

  // Checks if for every edge From -> To in the graph
  //     NCD(From, To) == IDom(To) or To.
  bool verifyNCD(const DomTreeT &DT) {
    clear();
    doFullDFSWalk(DT, AlwaysDescend);

    for (auto &BlockToInfo : NodeToInfo) {
      auto &Info = BlockToInfo.second;

      const NodePtr From = NumToNode[Info.Parent];
      if (!From) continue;

      const NodePtr To = BlockToInfo.first;
      const TreeNodePtr ToTN = DT.getNode(To);
      assert(ToTN);

      const NodePtr NCD = DT.findNearestCommonDominator(From, To);
      const TreeNodePtr NCDTN = NCD ? DT.getNode(NCD) : nullptr;
      const TreeNodePtr ToIDom = ToTN->getIDom();
      if (NCDTN != ToTN && NCDTN != ToIDom) {
        errs() << "NearestCommonDominator verification failed:\n\tNCD(From:";
        PrintBlockOrNullptr(errs(), From);
        errs() << ", To:";
        PrintBlockOrNullptr(errs(), To);
        errs() << ") = ";
        PrintBlockOrNullptr(errs(), NCD);
        errs() << ",\t (should be To or IDom[To]: ";
        PrintBlockOrNullptr(errs(), ToIDom ? ToIDom->getBlock() : nullptr);
        errs() << ")\n";
        errs().flush();

        return false;
      }
    }

    return true;
  }

  // The below routines verify the correctness of the dominator tree relative to
  // the CFG it's coming from.  A tree is a dominator tree iff it has two
  // properties, called the parent property and the sibling property.  Tarjan
  // and Lengauer prove (but don't explicitly name) the properties as part of
  // the proofs in their 1972 paper, but the proofs are mostly part of proving
  // things about semidominators and idoms, and some of them are simply asserted
  // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
  // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
  // directed bipolar orders, and independent spanning trees" by Loukas
  // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
  // and Vertex-Disjoint Paths " by the same authors.

  // A very simple and direct explanation of these properties can be found in
  // "An Experimental Study of Dynamic Dominators", found at
  // https://arxiv.org/abs/1604.02711

  // The easiest way to think of the parent property is that it's a requirement
  // of being a dominator.  Let's just take immediate dominators.  For PARENT to
  // be an immediate dominator of CHILD, all paths in the CFG must go through
  // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
  // out of the CFG, there should be no paths to CHILD that are reachable.  If
  // there are, then you now have a path from PARENT to CHILD that goes around
  // PARENT and still reaches CHILD, which by definition, means PARENT can't be
  // a dominator of CHILD (let alone an immediate one).

  // The sibling property is similar.  It says that for each pair of sibling
  // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
  // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
  // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
  // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
  // RIGHT, not a sibling.

  // It is possible to verify the parent and sibling properties in
  // linear time, but the algorithms are complex. Instead, we do it in a
  // straightforward N^2 and N^3 way below, using direct path reachability.


  // Checks if the tree has the parent property: if for all edges from V to W in
  // the input graph, such that V is reachable, the parent of W in the tree is
  // an ancestor of V in the tree.
  //
  // This means that if a node gets disconnected from the graph, then all of
  // the nodes it dominated previously will now become unreachable.
  bool verifyParentProperty(const DomTreeT &DT) {
    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB || TN->getChildren().empty()) continue;

      clear();
      doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
        return From != BB && To != BB;
      });

      for (TreeNodePtr Child : TN->getChildren())
        if (NodeToInfo.count(Child->getBlock()) != 0) {
          errs() << "Child ";
          PrintBlockOrNullptr(errs(), Child->getBlock());
          errs() << " reachable after its parent ";
          PrintBlockOrNullptr(errs(), BB);
          errs() << " is removed!\n";
          errs().flush();

          return false;
        }
    }

    return true;
  }

  // Check if the tree has sibling property: if a node V does not dominate a
  // node W for all siblings V and W in the tree.
  //
  // This means that if a node gets disconnected from the graph, then all of its
  // siblings will now still be reachable.
  bool verifySiblingProperty(const DomTreeT &DT) {
    for (auto &NodeToTN : DT.DomTreeNodes) {
      const TreeNodePtr TN = NodeToTN.second.get();
      const NodePtr BB = TN->getBlock();
      if (!BB || TN->getChildren().empty()) continue;

      const auto &Siblings = TN->getChildren();
      for (const TreeNodePtr N : Siblings) {
        clear();
        NodePtr BBN = N->getBlock();
        doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
          return From != BBN && To != BBN;
        });

        for (const TreeNodePtr S : Siblings) {
          if (S == N) continue;

          if (NodeToInfo.count(S->getBlock()) == 0) {
            errs() << "Node ";
            PrintBlockOrNullptr(errs(), S->getBlock());
            errs() << " not reachable when its sibling ";
            PrintBlockOrNullptr(errs(), N->getBlock());
            errs() << " is removed!\n";
            errs().flush();

            return false;
          }
        }
      }
    }

    return true;
  }
};

template <class FuncT, class NodeT>
void Calculate(DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT,
               FuncT &F) {
  using NodePtr = typename GraphTraits<NodeT>::NodeRef;
  static_assert(std::is_pointer<NodePtr>::value,
                "NodePtr should be a pointer type");
  SemiNCAInfo<typename std::remove_pointer<NodePtr>::type> SNCA;
  SNCA.template runSemiNCA<NodeT>(DT, GraphTraits<FuncT *>::size(&F));
}

template <class NodeT>
bool Verify(const DominatorTreeBaseByGraphTraits<GraphTraits<NodeT>> &DT) {
  using NodePtr = typename GraphTraits<NodeT>::NodeRef;
  static_assert(std::is_pointer<NodePtr>::value,
                "NodePtr should be a pointer type");
  SemiNCAInfo<typename std::remove_pointer<NodePtr>::type> SNCA;

  return SNCA.verifyReachability(DT) && SNCA.VerifyLevels(DT) &&
         SNCA.verifyNCD(DT) && SNCA.verifyParentProperty(DT) &&
         SNCA.verifySiblingProperty(DT);
}

}  // namespace DomTreeBuilder
}  // namespace llvm

#endif