1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
|
//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements ProgramState and ProgramStateManager.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/Analysis/CFG.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace clang { namespace ento {
/// Increments the number of times this state is referenced.
void ProgramStateRetain(const ProgramState *state) {
++const_cast<ProgramState*>(state)->refCount;
}
/// Decrement the number of times this state is referenced.
void ProgramStateRelease(const ProgramState *state) {
assert(state->refCount > 0);
ProgramState *s = const_cast<ProgramState*>(state);
if (--s->refCount == 0) {
ProgramStateManager &Mgr = s->getStateManager();
Mgr.StateSet.RemoveNode(s);
s->~ProgramState();
Mgr.freeStates.push_back(s);
}
}
}}
ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
StoreRef st, GenericDataMap gdm)
: stateMgr(mgr),
Env(env),
store(st.getStore()),
GDM(gdm),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::ProgramState(const ProgramState &RHS)
: llvm::FoldingSetNode(),
stateMgr(RHS.stateMgr),
Env(RHS.Env),
store(RHS.store),
GDM(RHS.GDM),
refCount(0) {
stateMgr->getStoreManager().incrementReferenceCount(store);
}
ProgramState::~ProgramState() {
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
}
ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
StoreManagerCreator CreateSMgr,
ConstraintManagerCreator CreateCMgr,
llvm::BumpPtrAllocator &alloc,
SubEngine *SubEng)
: Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
StoreMgr = (*CreateSMgr)(*this);
ConstraintMgr = (*CreateCMgr)(*this, SubEng);
}
ProgramStateManager::~ProgramStateManager() {
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
I!=E; ++I)
I->second.second(I->second.first);
}
ProgramStateRef
ProgramStateManager::removeDeadBindings(ProgramStateRef state,
const StackFrameContext *LCtx,
SymbolReaper& SymReaper) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
ProgramState NewState = *state;
NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
// Clean up the store.
StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
SymReaper);
NewState.setStore(newStore);
SymReaper.setReapedStore(newStore);
ProgramStateRef Result = getPersistentState(NewState);
return ConstraintMgr->removeDeadBindings(Result, SymReaper);
}
ProgramStateRef ProgramState::bindLoc(Loc LV,
SVal V,
const LocationContext *LCtx,
bool notifyChanges) const {
ProgramStateManager &Mgr = getStateManager();
ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
LV, V));
const MemRegion *MR = LV.getAsRegion();
if (MR && Mgr.getOwningEngine() && notifyChanges)
return Mgr.getOwningEngine()->processRegionChange(newState, MR, LCtx);
return newState;
}
ProgramStateRef ProgramState::bindDefault(SVal loc,
SVal V,
const LocationContext *LCtx) const {
ProgramStateManager &Mgr = getStateManager();
const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
ProgramStateRef new_state = makeWithStore(newStore);
return Mgr.getOwningEngine() ?
Mgr.getOwningEngine()->processRegionChange(new_state, R, LCtx) :
new_state;
}
typedef ArrayRef<const MemRegion *> RegionList;
typedef ArrayRef<SVal> ValueList;
ProgramStateRef
ProgramState::invalidateRegions(RegionList Regions,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits *ITraits) const {
SmallVector<SVal, 8> Values;
for (RegionList::const_iterator I = Regions.begin(),
End = Regions.end(); I != End; ++I)
Values.push_back(loc::MemRegionVal(*I));
return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
IS, ITraits, Call);
}
ProgramStateRef
ProgramState::invalidateRegions(ValueList Values,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits *ITraits) const {
return invalidateRegionsImpl(Values, E, Count, LCtx, CausedByPointerEscape,
IS, ITraits, Call);
}
ProgramStateRef
ProgramState::invalidateRegionsImpl(ValueList Values,
const Expr *E, unsigned Count,
const LocationContext *LCtx,
bool CausedByPointerEscape,
InvalidatedSymbols *IS,
RegionAndSymbolInvalidationTraits *ITraits,
const CallEvent *Call) const {
ProgramStateManager &Mgr = getStateManager();
SubEngine* Eng = Mgr.getOwningEngine();
InvalidatedSymbols Invalidated;
if (!IS)
IS = &Invalidated;
RegionAndSymbolInvalidationTraits ITraitsLocal;
if (!ITraits)
ITraits = &ITraitsLocal;
if (Eng) {
StoreManager::InvalidatedRegions TopLevelInvalidated;
StoreManager::InvalidatedRegions Invalidated;
const StoreRef &newStore
= Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
*IS, *ITraits, &TopLevelInvalidated,
&Invalidated);
ProgramStateRef newState = makeWithStore(newStore);
if (CausedByPointerEscape) {
newState = Eng->notifyCheckersOfPointerEscape(newState, IS,
TopLevelInvalidated,
Invalidated, Call,
*ITraits);
}
return Eng->processRegionChanges(newState, IS, TopLevelInvalidated,
Invalidated, LCtx, Call);
}
const StoreRef &newStore =
Mgr.StoreMgr->invalidateRegions(getStore(), Values, E, Count, LCtx, Call,
*IS, *ITraits, nullptr, nullptr);
return makeWithStore(newStore);
}
ProgramStateRef ProgramState::killBinding(Loc LV) const {
assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
Store OldStore = getStore();
const StoreRef &newStore =
getStateManager().StoreMgr->killBinding(OldStore, LV);
if (newStore.getStore() == OldStore)
return this;
return makeWithStore(newStore);
}
ProgramStateRef
ProgramState::enterStackFrame(const CallEvent &Call,
const StackFrameContext *CalleeCtx) const {
const StoreRef &NewStore =
getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
return makeWithStore(NewStore);
}
SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
// We only want to do fetches from regions that we can actually bind
// values. For example, SymbolicRegions of type 'id<...>' cannot
// have direct bindings (but their can be bindings on their subregions).
if (!R->isBoundable())
return UnknownVal();
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
QualType T = TR->getValueType();
if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
return getSVal(R);
}
return UnknownVal();
}
SVal ProgramState::getSVal(Loc location, QualType T) const {
SVal V = getRawSVal(cast<Loc>(location), T);
// If 'V' is a symbolic value that is *perfectly* constrained to
// be a constant value, use that value instead to lessen the burden
// on later analysis stages (so we have less symbolic values to reason
// about).
if (!T.isNull()) {
if (SymbolRef sym = V.getAsSymbol()) {
if (const llvm::APSInt *Int = getStateManager()
.getConstraintManager()
.getSymVal(this, sym)) {
// FIXME: Because we don't correctly model (yet) sign-extension
// and truncation of symbolic values, we need to convert
// the integer value to the correct signedness and bitwidth.
//
// This shows up in the following:
//
// char foo();
// unsigned x = foo();
// if (x == 54)
// ...
//
// The symbolic value stored to 'x' is actually the conjured
// symbol for the call to foo(); the type of that symbol is 'char',
// not unsigned.
const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
if (V.getAs<Loc>())
return loc::ConcreteInt(NewV);
else
return nonloc::ConcreteInt(NewV);
}
}
}
return V;
}
ProgramStateRef ProgramState::BindExpr(const Stmt *S,
const LocationContext *LCtx,
SVal V, bool Invalidate) const{
Environment NewEnv =
getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
Invalidate);
if (NewEnv == Env)
return this;
ProgramState NewSt = *this;
NewSt.Env = NewEnv;
return getStateManager().getPersistentState(NewSt);
}
ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
DefinedOrUnknownSVal UpperBound,
bool Assumption,
QualType indexTy) const {
if (Idx.isUnknown() || UpperBound.isUnknown())
return this;
// Build an expression for 0 <= Idx < UpperBound.
// This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
// FIXME: This should probably be part of SValBuilder.
ProgramStateManager &SM = getStateManager();
SValBuilder &svalBuilder = SM.getSValBuilder();
ASTContext &Ctx = svalBuilder.getContext();
// Get the offset: the minimum value of the array index type.
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
// FIXME: This should be using ValueManager::ArrayindexTy...somehow.
if (indexTy.isNull())
indexTy = Ctx.IntTy;
nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
// Adjust the index.
SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
Idx.castAs<NonLoc>(), Min, indexTy);
if (newIdx.isUnknownOrUndef())
return this;
// Adjust the upper bound.
SVal newBound =
svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
Min, indexTy);
if (newBound.isUnknownOrUndef())
return this;
// Build the actual comparison.
SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
newBound.castAs<NonLoc>(), Ctx.IntTy);
if (inBound.isUnknownOrUndef())
return this;
// Finally, let the constraint manager take care of it.
ConstraintManager &CM = SM.getConstraintManager();
return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
}
ConditionTruthVal ProgramState::isNull(SVal V) const {
if (V.isZeroConstant())
return true;
if (V.isConstant())
return false;
SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
if (!Sym)
return ConditionTruthVal();
return getStateManager().ConstraintMgr->isNull(this, Sym);
}
ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
ProgramState State(this,
EnvMgr.getInitialEnvironment(),
StoreMgr->getInitialStore(InitLoc),
GDMFactory.getEmptyMap());
return getPersistentState(State);
}
ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
ProgramStateRef FromState,
ProgramStateRef GDMState) {
ProgramState NewState(*FromState);
NewState.GDM = GDMState->GDM;
return getPersistentState(NewState);
}
ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void *InsertPos;
if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ProgramState *newState = nullptr;
if (!freeStates.empty()) {
newState = freeStates.back();
freeStates.pop_back();
}
else {
newState = (ProgramState*) Alloc.Allocate<ProgramState>();
}
new (newState) ProgramState(State);
StateSet.InsertNode(newState, InsertPos);
return newState;
}
ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
ProgramState NewSt(*this);
NewSt.setStore(store);
return getStateManager().getPersistentState(NewSt);
}
void ProgramState::setStore(const StoreRef &newStore) {
Store newStoreStore = newStore.getStore();
if (newStoreStore)
stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
if (store)
stateMgr->getStoreManager().decrementReferenceCount(store);
store = newStoreStore;
}
//===----------------------------------------------------------------------===//
// State pretty-printing.
//===----------------------------------------------------------------------===//
void ProgramState::print(raw_ostream &Out,
const char *NL, const char *Sep) const {
// Print the store.
ProgramStateManager &Mgr = getStateManager();
Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
// Print out the environment.
Env.print(Out, NL, Sep);
// Print out the constraints.
Mgr.getConstraintManager().print(this, Out, NL, Sep);
// Print checker-specific data.
Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
}
void ProgramState::printDOT(raw_ostream &Out) const {
print(Out, "\\l", "\\|");
}
LLVM_DUMP_METHOD void ProgramState::dump() const {
print(llvm::errs());
}
void ProgramState::printTaint(raw_ostream &Out,
const char *NL, const char *Sep) const {
TaintMapImpl TM = get<TaintMap>();
if (!TM.isEmpty())
Out <<"Tainted Symbols:" << NL;
for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
Out << I->first << " : " << I->second << NL;
}
}
void ProgramState::dumpTaint() const {
printTaint(llvm::errs());
}
//===----------------------------------------------------------------------===//
// Generic Data Map.
//===----------------------------------------------------------------------===//
void *const* ProgramState::FindGDM(void *K) const {
return GDM.lookup(K);
}
void*
ProgramStateManager::FindGDMContext(void *K,
void *(*CreateContext)(llvm::BumpPtrAllocator&),
void (*DeleteContext)(void*)) {
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
if (!p.first) {
p.first = CreateContext(Alloc);
p.second = DeleteContext;
}
return p.first;
}
ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
ProgramState::GenericDataMap M1 = St->getGDM();
ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
if (M1 == M2)
return St;
ProgramState NewSt = *St;
NewSt.GDM = M2;
return getPersistentState(NewSt);
}
ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
ProgramState::GenericDataMap OldM = state->getGDM();
ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
if (NewM == OldM)
return state;
ProgramState NewState = *state;
NewState.GDM = NewM;
return getPersistentState(NewState);
}
bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
bool wasVisited = !visited.insert(val.getCVData()).second;
if (wasVisited)
return true;
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
// FIXME: We don't really want to use getBaseRegion() here because pointer
// arithmetic doesn't apply, but scanReachableSymbols only accepts base
// regions right now.
const MemRegion *R = val.getRegion()->getBaseRegion();
return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
}
bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
if (!scan(*I))
return false;
return true;
}
bool ScanReachableSymbols::scan(const SymExpr *sym) {
for (SymExpr::symbol_iterator SI = sym->symbol_begin(),
SE = sym->symbol_end();
SI != SE; ++SI) {
bool wasVisited = !visited.insert(*SI).second;
if (wasVisited)
continue;
if (!visitor.VisitSymbol(*SI))
return false;
}
return true;
}
bool ScanReachableSymbols::scan(SVal val) {
if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
return scan(X->getRegion());
if (Optional<nonloc::LazyCompoundVal> X =
val.getAs<nonloc::LazyCompoundVal>())
return scan(*X);
if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
return scan(X->getLoc());
if (SymbolRef Sym = val.getAsSymbol())
return scan(Sym);
if (const SymExpr *Sym = val.getAsSymbolicExpression())
return scan(Sym);
if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
return scan(*X);
return true;
}
bool ScanReachableSymbols::scan(const MemRegion *R) {
if (isa<MemSpaceRegion>(R))
return true;
bool wasVisited = !visited.insert(R).second;
if (wasVisited)
return true;
if (!visitor.VisitMemRegion(R))
return false;
// If this is a symbolic region, visit the symbol for the region.
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
if (!visitor.VisitSymbol(SR->getSymbol()))
return false;
// If this is a subregion, also visit the parent regions.
if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
const MemRegion *Super = SR->getSuperRegion();
if (!scan(Super))
return false;
// When we reach the topmost region, scan all symbols in it.
if (isa<MemSpaceRegion>(Super)) {
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
return false;
}
}
// Regions captured by a block are also implicitly reachable.
if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
E = BDR->referenced_vars_end();
for ( ; I != E; ++I) {
if (!scan(I.getCapturedRegion()))
return false;
}
}
return true;
}
bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
ScanReachableSymbols S(this, visitor);
return S.scan(val);
}
bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for ( ; I != E; ++I) {
if (!S.scan(*I))
return false;
}
return true;
}
bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
const MemRegion * const *E,
SymbolVisitor &visitor) const {
ScanReachableSymbols S(this, visitor);
for ( ; I != E; ++I) {
if (!S.scan(*I))
return false;
}
return true;
}
ProgramStateRef ProgramState::addTaint(const Stmt *S,
const LocationContext *LCtx,
TaintTagType Kind) const {
if (const Expr *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreParens();
return addTaint(getSVal(S, LCtx), Kind);
}
ProgramStateRef ProgramState::addTaint(SVal V,
TaintTagType Kind) const {
SymbolRef Sym = V.getAsSymbol();
if (Sym)
return addTaint(Sym, Kind);
// If the SVal represents a structure, try to mass-taint all values within the
// structure. For now it only works efficiently on lazy compound values that
// were conjured during a conservative evaluation of a function - either as
// return values of functions that return structures or arrays by value, or as
// values of structures or arrays passed into the function by reference,
// directly or through pointer aliasing. Such lazy compound values are
// characterized by having exactly one binding in their captured store within
// their parent region, which is a conjured symbol default-bound to the base
// region of the parent region.
if (auto LCV = V.getAs<nonloc::LazyCompoundVal>()) {
if (Optional<SVal> binding = getStateManager().StoreMgr->getDefaultBinding(*LCV)) {
if (SymbolRef Sym = binding->getAsSymbol())
return addPartialTaint(Sym, LCV->getRegion(), Kind);
}
}
const MemRegion *R = V.getAsRegion();
return addTaint(R, Kind);
}
ProgramStateRef ProgramState::addTaint(const MemRegion *R,
TaintTagType Kind) const {
if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
return addTaint(SR->getSymbol(), Kind);
return this;
}
ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
TaintTagType Kind) const {
// If this is a symbol cast, remove the cast before adding the taint. Taint
// is cast agnostic.
while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
Sym = SC->getOperand();
ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
assert(NewState);
return NewState;
}
ProgramStateRef ProgramState::addPartialTaint(SymbolRef ParentSym,
const SubRegion *SubRegion,
TaintTagType Kind) const {
// Ignore partial taint if the entire parent symbol is already tainted.
if (contains<TaintMap>(ParentSym) && *get<TaintMap>(ParentSym) == Kind)
return this;
// Partial taint applies if only a portion of the symbol is tainted.
if (SubRegion == SubRegion->getBaseRegion())
return addTaint(ParentSym, Kind);
const TaintedSubRegions *SavedRegs = get<DerivedSymTaint>(ParentSym);
TaintedSubRegions Regs =
SavedRegs ? *SavedRegs : stateMgr->TSRFactory.getEmptyMap();
Regs = stateMgr->TSRFactory.add(Regs, SubRegion, Kind);
ProgramStateRef NewState = set<DerivedSymTaint>(ParentSym, Regs);
assert(NewState);
return NewState;
}
bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
TaintTagType Kind) const {
if (const Expr *E = dyn_cast_or_null<Expr>(S))
S = E->IgnoreParens();
SVal val = getSVal(S, LCtx);
return isTainted(val, Kind);
}
bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
if (const SymExpr *Sym = V.getAsSymExpr())
return isTainted(Sym, Kind);
if (const MemRegion *Reg = V.getAsRegion())
return isTainted(Reg, Kind);
return false;
}
bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
if (!Reg)
return false;
// Element region (array element) is tainted if either the base or the offset
// are tainted.
if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
return isTainted(SR->getSymbol(), K);
if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
return isTainted(ER->getSuperRegion(), K);
return false;
}
bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
if (!Sym)
return false;
// Traverse all the symbols this symbol depends on to see if any are tainted.
for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
SI != SE; ++SI) {
if (!isa<SymbolData>(*SI))
continue;
if (const TaintTagType *Tag = get<TaintMap>(*SI)) {
if (*Tag == Kind)
return true;
}
if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI)) {
// If this is a SymbolDerived with a tainted parent, it's also tainted.
if (isTainted(SD->getParentSymbol(), Kind))
return true;
// If this is a SymbolDerived with the same parent symbol as another
// tainted SymbolDerived and a region that's a sub-region of that tainted
// symbol, it's also tainted.
if (const TaintedSubRegions *Regs =
get<DerivedSymTaint>(SD->getParentSymbol())) {
const TypedValueRegion *R = SD->getRegion();
for (auto I : *Regs) {
// FIXME: The logic to identify tainted regions could be more
// complete. For example, this would not currently identify
// overlapping fields in a union as tainted. To identify this we can
// check for overlapping/nested byte offsets.
if (Kind == I.second &&
(R == I.first || R->isSubRegionOf(I.first)))
return true;
}
}
}
// If memory region is tainted, data is also tainted.
if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI)) {
if (isTainted(SRV->getRegion(), Kind))
return true;
}
// If this is a SymbolCast from a tainted value, it's also tainted.
if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI)) {
if (isTainted(SC->getOperand(), Kind))
return true;
}
}
return false;
}
|