aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopDeletion.cpp
blob: ac4dd44a0e90667f49c1017cb04dcef74c56cf07 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Deletion Pass. This pass is responsible
// for eliminating loops with non-infinite computable trip counts that have no
// side effects or volatile instructions, and do not contribute to the
// computation of the function's return value.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;

#define DEBUG_TYPE "loop-delete"

STATISTIC(NumDeleted, "Number of loops deleted");

/// This function deletes dead loops. The caller of this function needs to
/// guarantee that the loop is infact dead. Here we handle two kinds of dead
/// loop. The first kind (\p isLoopDead) is where only invariant values from
/// within the loop are used outside of it. The second kind (\p
/// isLoopNeverExecuted) is where the loop is provably never executed. We can
/// always remove never executed loops since they will not cause any difference
/// to program behaviour.
/// 
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
/// LI. It also updates the loop PM if an updater struct is provided.
// TODO: This function will be used by loop-simplifyCFG as well. So, move this
// to LoopUtils.cpp
static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
                           LoopInfo &LI, LPMUpdater *Updater = nullptr);
/// Determines if a loop is dead.
///
/// This assumes that we've already checked for unique exit and exiting blocks,
/// and that the code is in LCSSA form.
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
                       SmallVectorImpl<BasicBlock *> &ExitingBlocks,
                       BasicBlock *ExitBlock, bool &Changed,
                       BasicBlock *Preheader) {
  // Make sure that all PHI entries coming from the loop are loop invariant.
  // Because the code is in LCSSA form, any values used outside of the loop
  // must pass through a PHI in the exit block, meaning that this check is
  // sufficient to guarantee that no loop-variant values are used outside
  // of the loop.
  BasicBlock::iterator BI = ExitBlock->begin();
  bool AllEntriesInvariant = true;
  bool AllOutgoingValuesSame = true;
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    Value *incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);

    // Make sure all exiting blocks produce the same incoming value for the exit
    // block.  If there are different incoming values for different exiting
    // blocks, then it is impossible to statically determine which value should
    // be used.
    AllOutgoingValuesSame =
        all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
          return incoming == P->getIncomingValueForBlock(BB);
        });

    if (!AllOutgoingValuesSame)
      break;

    if (Instruction *I = dyn_cast<Instruction>(incoming))
      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
        AllEntriesInvariant = false;
        break;
      }

    ++BI;
  }

  if (Changed)
    SE.forgetLoopDispositions(L);

  if (!AllEntriesInvariant || !AllOutgoingValuesSame)
    return false;

  // Make sure that no instructions in the block have potential side-effects.
  // This includes instructions that could write to memory, and loads that are
  // marked volatile.
  for (auto &I : L->blocks())
    if (any_of(*I, [](Instruction &I) { return I.mayHaveSideEffects(); }))
      return false;
  return true;
}

/// This function returns true if there is no viable path from the
/// entry block to the header of \p L. Right now, it only does
/// a local search to save compile time.
static bool isLoopNeverExecuted(Loop *L) {
  using namespace PatternMatch;

  auto *Preheader = L->getLoopPreheader();
  // TODO: We can relax this constraint, since we just need a loop
  // predecessor.
  assert(Preheader && "Needs preheader!");

  if (Preheader == &Preheader->getParent()->getEntryBlock())
    return false;
  // All predecessors of the preheader should have a constant conditional
  // branch, with the loop's preheader as not-taken.
  for (auto *Pred: predecessors(Preheader)) {
    BasicBlock *Taken, *NotTaken;
    ConstantInt *Cond;
    if (!match(Pred->getTerminator(),
               m_Br(m_ConstantInt(Cond), Taken, NotTaken)))
      return false;
    if (!Cond->getZExtValue())
      std::swap(Taken, NotTaken);
    if (Taken == Preheader)
      return false;
  }
  assert(!pred_empty(Preheader) &&
         "Preheader should have predecessors at this point!");
  // All the predecessors have the loop preheader as not-taken target.
  return true;
}

/// Remove a loop if it is dead.
///
/// A loop is considered dead if it does not impact the observable behavior of
/// the program other than finite running time. This never removes a loop that
/// might be infinite (unless it is never executed), as doing so could change
/// the halting/non-halting nature of a program.
///
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
/// order to make various safety checks work.
///
/// \returns true if any changes were made. This may mutate the loop even if it
/// is unable to delete it due to hoisting trivially loop invariant
/// instructions out of the loop.
static bool deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
                             LoopInfo &LI, LPMUpdater *Updater = nullptr) {
  assert(L->isLCSSAForm(DT) && "Expected LCSSA!");

  // We can only remove the loop if there is a preheader that we can branch from
  // after removing it. Also, if LoopSimplify form is not available, stay out
  // of trouble.
  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader || !L->hasDedicatedExits()) {
    DEBUG(dbgs()
          << "Deletion requires Loop with preheader and dedicated exits.\n");
    return false;
  }
  // We can't remove loops that contain subloops.  If the subloops were dead,
  // they would already have been removed in earlier executions of this pass.
  if (L->begin() != L->end()) {
    DEBUG(dbgs() << "Loop contains subloops.\n");
    return false;
  }


  BasicBlock *ExitBlock = L->getUniqueExitBlock();

  if (ExitBlock && isLoopNeverExecuted(L)) {
    DEBUG(dbgs() << "Loop is proven to never execute, delete it!");
    // Set incoming value to undef for phi nodes in the exit block.
    BasicBlock::iterator BI = ExitBlock->begin();
    while (PHINode *P = dyn_cast<PHINode>(BI)) {
      for (unsigned i = 0; i < P->getNumIncomingValues(); i++)
        P->setIncomingValue(i, UndefValue::get(P->getType()));
      BI++;
    }
    deleteDeadLoop(L, DT, SE, LI, Updater);
    ++NumDeleted;
    return true;
  }

  // The remaining checks below are for a loop being dead because all statements
  // in the loop are invariant.
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);

  // We require that the loop only have a single exit block.  Otherwise, we'd
  // be in the situation of needing to be able to solve statically which exit
  // block will be branched to, or trying to preserve the branching logic in
  // a loop invariant manner.
  if (!ExitBlock) {
    DEBUG(dbgs() << "Deletion requires single exit block\n");
    return false;
  }
  // Finally, we have to check that the loop really is dead.
  bool Changed = false;
  if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader)) {
    DEBUG(dbgs() << "Loop is not invariant, cannot delete.\n");
    return Changed;
  }

  // Don't remove loops for which we can't solve the trip count.
  // They could be infinite, in which case we'd be changing program behavior.
  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(S)) {
    DEBUG(dbgs() << "Could not compute SCEV MaxBackedgeTakenCount.\n");
    return Changed;
  }

  DEBUG(dbgs() << "Loop is invariant, delete it!");
  deleteDeadLoop(L, DT, SE, LI, Updater);
  ++NumDeleted;

  return true;
}

static void deleteDeadLoop(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
                           LoopInfo &LI, LPMUpdater *Updater) {
  assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // If we have an LPM updater, tell it about the loop being removed.
  if (Updater)
    Updater->markLoopAsDeleted(*L);

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  SE.forgetLoop(L);

  auto *ExitBlock = L->getUniqueExitBlock();
  assert(ExitBlock && "Should have a unique exit block!");

  assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");

  // Connect the preheader directly to the exit block.
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  Preheader->getTerminator()->replaceUsesOfWith(L->getHeader(), ExitBlock);

  // Rewrite phis in the exit block to get their inputs from the Preheader
  // instead of the exiting block.
  BasicBlock::iterator BI = ExitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    // Set the zero'th element of Phi to be from the preheader and remove all
    // other incoming values. Given the loop has dedicated exits, all other
    // incoming values must be from the exiting blocks.
    int PredIndex = 0;
    P->setIncomingBlock(PredIndex, Preheader);
    // Removes all incoming values from all other exiting blocks (including
    // duplicate values from an exiting block).
    // Nuke all entries except the zero'th entry which is the preheader entry.
    // NOTE! We need to remove Incoming Values in the reverse order as done
    // below, to keep the indices valid for deletion (removeIncomingValues
    // updates getNumIncomingValues and shifts all values down into the operand
    // being deleted).
    for (unsigned i = 0, e = P->getNumIncomingValues() - 1; i != e; ++i)
      P->removeIncomingValue(e-i, false);

    assert((P->getNumIncomingValues() == 1 &&
            P->getIncomingBlock(PredIndex) == Preheader) &&
           "Should have exactly one value and that's from the preheader!");
    ++BI;
  }

  // Update the dominator tree and remove the instructions and blocks that will
  // be deleted from the reference counting scheme.
  SmallVector<DomTreeNode*, 8> ChildNodes;
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI) {
    // Move all of the block's children to be children of the Preheader, which
    // allows us to remove the domtree entry for the block.
    ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
    for (DomTreeNode *ChildNode : ChildNodes) {
      DT.changeImmediateDominator(ChildNode, DT[Preheader]);
    }

    ChildNodes.clear();
    DT.eraseNode(*LI);

    // Remove the block from the reference counting scheme, so that we can
    // delete it freely later.
    (*LI)->dropAllReferences();
  }

  // Erase the instructions and the blocks without having to worry
  // about ordering because we already dropped the references.
  // NOTE: This iteration is safe because erasing the block does not remove its
  // entry from the loop's block list.  We do that in the next section.
  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
       LI != LE; ++LI)
    (*LI)->eraseFromParent();

  // Finally, the blocks from loopinfo.  This has to happen late because
  // otherwise our loop iterators won't work.

  SmallPtrSet<BasicBlock *, 8> blocks;
  blocks.insert(L->block_begin(), L->block_end());
  for (BasicBlock *BB : blocks)
    LI.removeBlock(BB);

  // The last step is to update LoopInfo now that we've eliminated this loop.
  LI.markAsRemoved(L);
}

PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
                                        LoopStandardAnalysisResults &AR,
                                        LPMUpdater &Updater) {

  DEBUG(dbgs() << "Analyzing Loop for deletion: ");
  DEBUG(L.dump());
  if (!deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, &Updater))
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}

namespace {
class LoopDeletionLegacyPass : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopDeletionLegacyPass() : LoopPass(ID) {
    initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  // Possibly eliminate loop L if it is dead.
  bool runOnLoop(Loop *L, LPPassManager &) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    getLoopAnalysisUsage(AU);
  }
};
}

char LoopDeletionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
                      "Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
                    "Delete dead loops", false, false)

Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }

bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
  if (skipLoop(L))
    return false;
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  DEBUG(dbgs() << "Analyzing Loop for deletion: ");
  DEBUG(L->dump());
  return deleteLoopIfDead(L, DT, SE, LI);
}