aboutsummaryrefslogtreecommitdiff
path: root/lib/libcrypt/crypt-sha256.c
blob: cab7405bfd60f0be5e346051a8727f2c9e16a852 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*
 * Copyright (c) 2011 The FreeBSD Project. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/* Based on:
 * SHA256-based Unix crypt implementation. Released into the Public Domain by
 * Ulrich Drepper <drepper@redhat.com>. */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/endian.h>
#include <sys/param.h>

#include <errno.h>
#include <limits.h>
#include <sha256.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "crypt.h"

/* Define our magic string to mark salt for SHA256 "encryption" replacement. */
static const char sha256_salt_prefix[] = "$5$";

/* Prefix for optional rounds specification. */
static const char sha256_rounds_prefix[] = "rounds=";

/* Maximum salt string length. */
#define SALT_LEN_MAX 16
/* Default number of rounds if not explicitly specified. */
#define ROUNDS_DEFAULT 5000
/* Minimum number of rounds. */
#define ROUNDS_MIN 1000
/* Maximum number of rounds. */
#define ROUNDS_MAX 999999999

static char *
crypt_sha256_r(const char *key, const char *salt, char *buffer, int buflen)
{
	u_long srounds;
	int n;
	uint8_t alt_result[32], temp_result[32];
	SHA256_CTX ctx, alt_ctx;
	size_t salt_len, key_len, cnt, rounds;
	char *cp, *copied_key, *copied_salt, *p_bytes, *s_bytes, *endp;
	const char *num;
	bool rounds_custom;

	copied_key = NULL;
	copied_salt = NULL;

	/* Default number of rounds. */
	rounds = ROUNDS_DEFAULT;
	rounds_custom = false;

	/* Find beginning of salt string. The prefix should normally always
	 * be present. Just in case it is not. */
	if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0)
		/* Skip salt prefix. */
		salt += sizeof(sha256_salt_prefix) - 1;

	if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1)
	    == 0) {
		num = salt + sizeof(sha256_rounds_prefix) - 1;
		srounds = strtoul(num, &endp, 10);

		if (*endp == '$') {
			salt = endp + 1;
			rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX));
			rounds_custom = true;
		}
	}

	salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
	key_len = strlen(key);

	/* Prepare for the real work. */
	SHA256_Init(&ctx);

	/* Add the key string. */
	SHA256_Update(&ctx, key, key_len);

	/* The last part is the salt string. This must be at most 8
	 * characters and it ends at the first `$' character (for
	 * compatibility with existing implementations). */
	SHA256_Update(&ctx, salt, salt_len);

	/* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The
	 * final result will be added to the first context. */
	SHA256_Init(&alt_ctx);

	/* Add key. */
	SHA256_Update(&alt_ctx, key, key_len);

	/* Add salt. */
	SHA256_Update(&alt_ctx, salt, salt_len);

	/* Add key again. */
	SHA256_Update(&alt_ctx, key, key_len);

	/* Now get result of this (32 bytes) and add it to the other context. */
	SHA256_Final(alt_result, &alt_ctx);

	/* Add for any character in the key one byte of the alternate sum. */
	for (cnt = key_len; cnt > 32; cnt -= 32)
		SHA256_Update(&ctx, alt_result, 32);
	SHA256_Update(&ctx, alt_result, cnt);

	/* Take the binary representation of the length of the key and for
	 * every 1 add the alternate sum, for every 0 the key. */
	for (cnt = key_len; cnt > 0; cnt >>= 1)
		if ((cnt & 1) != 0)
			SHA256_Update(&ctx, alt_result, 32);
		else
			SHA256_Update(&ctx, key, key_len);

	/* Create intermediate result. */
	SHA256_Final(alt_result, &ctx);

	/* Start computation of P byte sequence. */
	SHA256_Init(&alt_ctx);

	/* For every character in the password add the entire password. */
	for (cnt = 0; cnt < key_len; ++cnt)
		SHA256_Update(&alt_ctx, key, key_len);

	/* Finish the digest. */
	SHA256_Final(temp_result, &alt_ctx);

	/* Create byte sequence P. */
	cp = p_bytes = alloca(key_len);
	for (cnt = key_len; cnt >= 32; cnt -= 32) {
		memcpy(cp, temp_result, 32);
		cp += 32;
	}
	memcpy(cp, temp_result, cnt);

	/* Start computation of S byte sequence. */
	SHA256_Init(&alt_ctx);

	/* For every character in the password add the entire password. */
	for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
		SHA256_Update(&alt_ctx, salt, salt_len);

	/* Finish the digest. */
	SHA256_Final(temp_result, &alt_ctx);

	/* Create byte sequence S. */
	cp = s_bytes = alloca(salt_len);
	for (cnt = salt_len; cnt >= 32; cnt -= 32) {
		memcpy(cp, temp_result, 32);
		cp += 32;
	}
	memcpy(cp, temp_result, cnt);

	/* Repeatedly run the collected hash value through SHA256 to burn CPU
	 * cycles. */
	for (cnt = 0; cnt < rounds; ++cnt) {
		/* New context. */
		SHA256_Init(&ctx);

		/* Add key or last result. */
		if ((cnt & 1) != 0)
			SHA256_Update(&ctx, p_bytes, key_len);
		else
			SHA256_Update(&ctx, alt_result, 32);

		/* Add salt for numbers not divisible by 3. */
		if (cnt % 3 != 0)
			SHA256_Update(&ctx, s_bytes, salt_len);

		/* Add key for numbers not divisible by 7. */
		if (cnt % 7 != 0)
			SHA256_Update(&ctx, p_bytes, key_len);

		/* Add key or last result. */
		if ((cnt & 1) != 0)
			SHA256_Update(&ctx, alt_result, 32);
		else
			SHA256_Update(&ctx, p_bytes, key_len);

		/* Create intermediate result. */
		SHA256_Final(alt_result, &ctx);
	}

	/* Now we can construct the result string. It consists of three
	 * parts. */
	cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen));
	buflen -= sizeof(sha256_salt_prefix) - 1;

	if (rounds_custom) {
		n = snprintf(cp, MAX(0, buflen), "%s%zu$",
			 sha256_rounds_prefix, rounds);

		cp += n;
		buflen -= n;
	}

	cp = stpncpy(cp, salt, MIN((size_t)MAX(0, buflen), salt_len));
	buflen -= MIN((size_t)MAX(0, buflen), salt_len);

	if (buflen > 0) {
		*cp++ = '$';
		--buflen;
	}

	b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &buflen, &cp);
	b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &buflen, &cp);
	b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &buflen, &cp);
	b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &buflen, &cp);
	b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &buflen, &cp);
	b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &buflen, &cp);
	b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &buflen, &cp);
	b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &buflen, &cp);
	b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &buflen, &cp);
	b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &buflen, &cp);
	b64_from_24bit(0, alt_result[31], alt_result[30], 3, &buflen, &cp);
	if (buflen <= 0) {
		errno = ERANGE;
		buffer = NULL;
	}
	else
		*cp = '\0';	/* Terminate the string. */

	/* Clear the buffer for the intermediate result so that people
	 * attaching to processes or reading core dumps cannot get any
	 * information. We do it in this way to clear correct_words[] inside
	 * the SHA256 implementation as well. */
	SHA256_Init(&ctx);
	SHA256_Final(alt_result, &ctx);
	memset(temp_result, '\0', sizeof(temp_result));
	memset(p_bytes, '\0', key_len);
	memset(s_bytes, '\0', salt_len);
	memset(&ctx, '\0', sizeof(ctx));
	memset(&alt_ctx, '\0', sizeof(alt_ctx));
	if (copied_key != NULL)
		memset(copied_key, '\0', key_len);
	if (copied_salt != NULL)
		memset(copied_salt, '\0', salt_len);

	return buffer;
}

/* This entry point is equivalent to crypt(3). */
char *
crypt_sha256(const char *key, const char *salt)
{
	/* We don't want to have an arbitrary limit in the size of the
	 * password. We can compute an upper bound for the size of the
	 * result in advance and so we can prepare the buffer we pass to
	 * `crypt_sha256_r'. */
	static char *buffer;
	static int buflen;
	int needed;
	char *new_buffer;

	needed = (sizeof(sha256_salt_prefix) - 1
	      + sizeof(sha256_rounds_prefix) + 9 + 1
	      + strlen(salt) + 1 + 43 + 1);

	if (buflen < needed) {
		new_buffer = (char *)realloc(buffer, needed);

		if (new_buffer == NULL)
			return NULL;

		buffer = new_buffer;
		buflen = needed;
	}

	return crypt_sha256_r(key, salt, buffer, buflen);
}

#ifdef TEST

static const struct {
	const char *input;
	const char result[32];
} tests[] =
{
	/* Test vectors from FIPS 180-2: appendix B.1. */
	{
		"abc",
		"\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23"
		"\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"
	},
	/* Test vectors from FIPS 180-2: appendix B.2. */
	{
		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
	},
	/* Test vectors from the NESSIE project. */
	{
		"",
		"\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24"
		"\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"
	},
	{
		"a",
		"\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d"
		"\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"
	},
	{
		"message digest",
		"\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad"
		"\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"
	},
	{
		"abcdefghijklmnopqrstuvwxyz",
		"\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52"
		"\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"
	},
	{
		"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
		"\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39"
		"\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"
	},
	{
		"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
		"\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80"
		"\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"
	},
	{
		"123456789012345678901234567890123456789012345678901234567890"
		"12345678901234567890",
		"\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e"
		"\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"
	}
};

#define ntests (sizeof (tests) / sizeof (tests[0]))

static const struct {
	const char *salt;
	const char *input;
	const char *expected;
} tests2[] =
{
	{
		"$5$saltstring", "Hello world!",
		"$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"
	},
	{
		"$5$rounds=10000$saltstringsaltstring", "Hello world!",
		"$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2."
		"opqey6IcA"
	},
	{
		"$5$rounds=5000$toolongsaltstring", "This is just a test",
		"$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8"
		"mGRcvxa5"
	},
	{
		"$5$rounds=1400$anotherlongsaltstring",
		"a very much longer text to encrypt.  This one even stretches over more"
		"than one line.",
		"$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12"
		"oP84Bnq1"
	},
	{
		"$5$rounds=77777$short",
		"we have a short salt string but not a short password",
		"$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"
	},
	{
		"$5$rounds=123456$asaltof16chars..", "a short string",
		"$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/"
		"cZKmF/wJvD"
	},
	{
		"$5$rounds=10$roundstoolow", "the minimum number is still observed",
		"$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97"
		"2bIC"
	},
};

#define ntests2 (sizeof (tests2) / sizeof (tests2[0]))

int
main(void)
{
	SHA256_CTX ctx;
	uint8_t sum[32];
	int result = 0;
	int i, cnt;

	for (cnt = 0; cnt < (int)ntests; ++cnt) {
		SHA256_Init(&ctx);
		SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input));
		SHA256_Final(sum, &ctx);
		if (memcmp(tests[cnt].result, sum, 32) != 0) {
			for (i = 0; i < 32; i++)
				printf("%02X", tests[cnt].result[i]);
			printf("\n");
			for (i = 0; i < 32; i++)
				printf("%02X", sum[i]);
			printf("\n");
			printf("test %d run %d failed\n", cnt, 1);
			result = 1;
		}

		SHA256_Init(&ctx);
		for (i = 0; tests[cnt].input[i] != '\0'; ++i)
			SHA256_Update(&ctx, &tests[cnt].input[i], 1);
		SHA256_Final(sum, &ctx);
		if (memcmp(tests[cnt].result, sum, 32) != 0) {
			for (i = 0; i < 32; i++)
				printf("%02X", tests[cnt].result[i]);
			printf("\n");
			for (i = 0; i < 32; i++)
				printf("%02X", sum[i]);
			printf("\n");
			printf("test %d run %d failed\n", cnt, 2);
			result = 1;
		}
	}

	/* Test vector from FIPS 180-2: appendix B.3. */
	char buf[1000];

	memset(buf, 'a', sizeof(buf));
	SHA256_Init(&ctx);
	for (i = 0; i < 1000; ++i)
		SHA256_Update(&ctx, buf, sizeof(buf));
	SHA256_Final(sum, &ctx);
	static const char expected[32] =
	"\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67"
	"\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0";

	if (memcmp(expected, sum, 32) != 0) {
		printf("test %d failed\n", cnt);
		result = 1;
	}

	for (cnt = 0; cnt < ntests2; ++cnt) {
		char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt);

		if (strcmp(cp, tests2[cnt].expected) != 0) {
			printf("test %d: expected \"%s\", got \"%s\"\n",
			       cnt, tests2[cnt].expected, cp);
			result = 1;
		}
	}

	if (result == 0)
		puts("all tests OK");

	return result;
}

#endif /* TEST */