aboutsummaryrefslogtreecommitdiff
path: root/lib/libkvm/kvm_private.c
blob: ea576d8d4d2b4d9813d9d885bc8dd269bd90002b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*-
 * Copyright (c) 1989, 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software developed by the Computer Systems
 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
 * BG 91-66 and contributed to Berkeley.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/fnv_hash.h>

#define	_WANT_VNET

#include <sys/user.h>
#include <sys/linker.h>
#include <sys/pcpu.h>
#include <sys/stat.h>
#include <sys/mman.h>

#include <stdbool.h>
#include <net/vnet.h>

#include <assert.h>
#include <fcntl.h>
#include <vm/vm.h>
#include <kvm.h>
#include <limits.h>
#include <paths.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>

#include "kvm_private.h"

/*
 * Routines private to libkvm.
 */

/* from src/lib/libc/gen/nlist.c */
int __fdnlist(int, struct nlist *);

/*
 * Report an error using printf style arguments.  "program" is kd->program
 * on hard errors, and 0 on soft errors, so that under sun error emulation,
 * only hard errors are printed out (otherwise, programs like gdb will
 * generate tons of error messages when trying to access bogus pointers).
 */
void
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	if (program != NULL) {
		(void)fprintf(stderr, "%s: ", program);
		(void)vfprintf(stderr, fmt, ap);
		(void)fputc('\n', stderr);
	} else
		(void)vsnprintf(kd->errbuf,
		    sizeof(kd->errbuf), fmt, ap);

	va_end(ap);
}

void
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
{
	va_list ap;
	int n;

	va_start(ap, fmt);
	if (program != NULL) {
		(void)fprintf(stderr, "%s: ", program);
		(void)vfprintf(stderr, fmt, ap);
		(void)fprintf(stderr, ": %s\n", strerror(errno));
	} else {
		char *cp = kd->errbuf;

		(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
		n = strlen(cp);
		(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
		    strerror(errno));
	}
	va_end(ap);
}

void *
_kvm_malloc(kvm_t *kd, size_t n)
{
	void *p;

	if ((p = calloc(n, sizeof(char))) == NULL)
		_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
			 n, strerror(errno));
	return (p);
}

int
_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
{

	return (kd->nlehdr.e_ident[EI_CLASS] == class &&
	    ((machine == EM_PPC || machine == EM_PPC64) ?
	     kd->nlehdr.e_type == ET_DYN : kd->nlehdr.e_type == ET_EXEC) &&
	    kd->nlehdr.e_machine == machine);
}

int
_kvm_is_minidump(kvm_t *kd)
{
	char minihdr[8];

	if (kd->rawdump)
		return (0);
	if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
	    memcmp(&minihdr, "minidump", 8) == 0)
		return (1);
	return (0);
}

/*
 * The powerpc backend has a hack to strip a leading kerneldump
 * header from the core before treating it as an ELF header.
 *
 * We can add that here if we can get a change to libelf to support
 * an initial offset into the file.  Alternatively we could patch
 * savecore to extract cores from a regular file instead.
 */
int
_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
{
	GElf_Ehdr ehdr;
	GElf_Phdr *phdr;
	Elf *elf;
	size_t i, phnum;

	elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
	if (elf == NULL) {
		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
		return (-1);
	}
	if (elf_kind(elf) != ELF_K_ELF) {
		_kvm_err(kd, kd->program, "invalid core");
		goto bad;
	}
	if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
		_kvm_err(kd, kd->program, "invalid core");
		goto bad;
	}
	if (gelf_getehdr(elf, &ehdr) == NULL) {
		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
		goto bad;
	}
	if (ehdr.e_type != ET_CORE) {
		_kvm_err(kd, kd->program, "invalid core");
		goto bad;
	}
	if (ehdr.e_machine != kd->nlehdr.e_machine) {
		_kvm_err(kd, kd->program, "invalid core");
		goto bad;
	}

	if (elf_getphdrnum(elf, &phnum) == -1) {
		_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
		goto bad;
	}

	phdr = calloc(phnum, sizeof(*phdr));
	if (phdr == NULL) {
		_kvm_err(kd, kd->program, "failed to allocate phdrs");
		goto bad;
	}

	for (i = 0; i < phnum; i++) {
		if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
			free(phdr);
			_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
			goto bad;
		}
	}
	elf_end(elf);
	*phnump = phnum;
	*phdrp = phdr;
	return (0);

bad:
	elf_end(elf);
	return (-1);
}

/*
 * Transform v such that only bits [bit0, bitN) may be set.  Generates a
 * bitmask covering the number of bits, then shifts so +bit0+ is the first.
 */
static uint64_t
bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
{
	if (bit0 == 0 && bitN == BITS_IN(v))
		return (v);

	return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
}

/*
 * Returns the number of bits in a given byte array range starting at a
 * given base, from bit0 to bitN.  bit0 may be non-zero in the case of
 * counting backwards from bitN.
 */
static uint64_t
popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
{
	uint32_t res = bitN - bit0;
	uint64_t count = 0;
	uint32_t bound;

	/* Align to 64-bit boundary on the left side if needed. */
	if ((bit0 % BITS_IN(*addr)) != 0) {
		bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
		count += __bitcount64(bitmask_range(*addr, bit0, bound));
		res -= (bound - bit0);
		addr++;
	}

	while (res > 0) {
		bound = MIN(res, BITS_IN(*addr));
		count += __bitcount64(bitmask_range(*addr, 0, bound));
		res -= bound;
		addr++;
	}

	return (count);
}

void *
_kvm_pmap_get(kvm_t *kd, u_long idx, size_t len)
{
	uintptr_t off = idx * len;

	if ((off_t)off >= kd->pt_sparse_off)
		return (NULL);
	return (void *)((uintptr_t)kd->page_map + off);
}

void *
_kvm_map_get(kvm_t *kd, u_long pa, unsigned int page_size)
{
	off_t off;
	uintptr_t addr;

	off = _kvm_pt_find(kd, pa, page_size);
	if (off == -1)
		return NULL;

	addr = (uintptr_t)kd->page_map + off;
	if (off >= kd->pt_sparse_off)
		addr = (uintptr_t)kd->sparse_map + (off - kd->pt_sparse_off);
	return (void *)addr;
}

int
_kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
    int page_size, int word_size)
{
	uint64_t *addr;
	uint32_t *popcount_bin;
	int bin_popcounts = 0;
	uint64_t pc_bins, res;
	ssize_t rd;

	/*
	 * Map the bitmap specified by the arguments.
	 */
	kd->pt_map = _kvm_malloc(kd, map_len);
	if (kd->pt_map == NULL) {
		_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
		    map_len);
		return (-1);
	}
	rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
	if (rd < 0 || rd != (ssize_t)map_len) {
		_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
		    map_len);
		return (-1);
	}
	kd->pt_map_size = map_len;

	/*
	 * Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
	 * so lookups only have to calculate the number of bits set between
	 * a cache point and their bit.  This reduces lookups to O(1),
	 * without significantly increasing memory requirements.
	 *
	 * Round up the number of bins so that 'upper half' lookups work for
	 * the final bin, if needed.  The first popcount is 0, since no bits
	 * precede bit 0, so add 1 for that also.  Without this, extra work
	 * would be needed to handle the first PTEs in _kvm_pt_find().
	 */
	addr = kd->pt_map;
	res = map_len;
	pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
	kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
	if (kd->pt_popcounts == NULL) {
		_kvm_err(kd, kd->program, "cannot allocate popcount bins");
		return (-1);
	}

	for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
	    addr++, res -= sizeof(*addr)) {
		*popcount_bin += popcount_bytes(addr, 0,
		    MIN(res * NBBY, BITS_IN(*addr)));
		if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
			popcount_bin++;
			*popcount_bin = *(popcount_bin - 1);
			bin_popcounts = 0;
		}
	}

	assert(pc_bins * sizeof(*popcount_bin) ==
	    ((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));

	kd->pt_sparse_off = sparse_off;
	kd->pt_sparse_size = (uint64_t)*popcount_bin * page_size;
	kd->pt_page_size = page_size;
	kd->pt_word_size = word_size;

	/*
	 * Map the sparse page array.  This is useful for performing point
	 * lookups of specific pages, e.g. for kvm_walk_pages.  Generally,
	 * this is much larger than is reasonable to read in up front, so
	 * mmap it in instead.
	 */
	kd->sparse_map = mmap(NULL, kd->pt_sparse_size, PROT_READ,
	    MAP_PRIVATE, kd->pmfd, kd->pt_sparse_off);
	if (kd->sparse_map == MAP_FAILED) {
		_kvm_err(kd, kd->program, "cannot map %" PRIu64
		    " bytes from fd %d offset %jd for sparse map: %s",
		    kd->pt_sparse_size, kd->pmfd,
		    (intmax_t)kd->pt_sparse_off, strerror(errno));
		return (-1);
	}
	return (0);
}

int
_kvm_pmap_init(kvm_t *kd, uint32_t pmap_size, off_t pmap_off)
{
	ssize_t exp_len = pmap_size;

	kd->page_map_size = pmap_size;
	kd->page_map_off = pmap_off;
	kd->page_map = _kvm_malloc(kd, pmap_size);
	if (kd->page_map == NULL) {
		_kvm_err(kd, kd->program, "cannot allocate %u bytes "
		    "for page map", pmap_size);
		return (-1);
	}
	if (pread(kd->pmfd, kd->page_map, pmap_size, pmap_off) != exp_len) {
		_kvm_err(kd, kd->program, "cannot read %d bytes from "
		    "offset %jd for page map", pmap_size, (intmax_t)pmap_off);
		return (-1);
	}
	return (0);
}

/*
 * Find the offset for the given physical page address; returns -1 otherwise.
 *
 * A page's offset is represented by the sparse page base offset plus the
 * number of bits set before its bit multiplied by page size.  This means
 * that if a page exists in the dump, it's necessary to know how many pages
 * in the dump precede it.  Reduce this O(n) counting to O(1) by caching the
 * number of bits set at POPCOUNT_BITS intervals.
 *
 * Then to find the number of pages before the requested address, simply
 * index into the cache and count the number of bits set between that cache
 * bin and the page's bit.  Halve the number of bytes that have to be
 * checked by also counting down from the next higher bin if it's closer.
 */
off_t
_kvm_pt_find(kvm_t *kd, uint64_t pa, unsigned int page_size)
{
	uint64_t *bitmap = kd->pt_map;
	uint64_t pte_bit_id = pa / page_size;
	uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
	uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
	uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
	uint64_t bitN;
	uint32_t count;

	/* Check whether the page address requested is in the dump. */
	if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
	    (bitmap[pte_u64] & pte_mask) == 0)
		return (-1);

	/*
	 * Add/sub popcounts from the bitmap until the PTE's bit is reached.
	 * For bits that are in the upper half between the calculated
	 * popcount id and the next one, use the next one and subtract to
	 * minimize the number of popcounts required.
	 */
	if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
		count = kd->pt_popcounts[popcount_id] + popcount_bytes(
		    bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
		    0, pte_bit_id - popcount_id * POPCOUNT_BITS);
	} else {
		/*
		 * Counting in reverse is trickier, since we must avoid
		 * reading from bytes that are not in range, and invert.
		 */
		uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);

		popcount_id++;
		bitN = MIN(popcount_id * POPCOUNT_BITS,
		    kd->pt_map_size * BITS_IN(uint8_t));
		count = kd->pt_popcounts[popcount_id] - popcount_bytes(
		    bitmap + pte_u64,
		    pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
	}

	/*
	 * This can only happen if the core is truncated.  Treat these
	 * entries as if they don't exist, since their backing doesn't.
	 */
	if (count >= (kd->pt_sparse_size / page_size))
		return (-1);

	return (kd->pt_sparse_off + (uint64_t)count * page_size);
}

static int
kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
{
	kvaddr_t addr;
	int error, nfail;

	if (kd->resolve_symbol == NULL) {
		struct nlist *nl;
		int count, i;

		for (count = 0; list[count].n_name != NULL &&
		     list[count].n_name[0] != '\0'; count++)
			;
		nl = calloc(count + 1, sizeof(*nl));
		for (i = 0; i < count; i++)
			nl[i].n_name = list[i].n_name;
		nfail = __fdnlist(kd->nlfd, nl);
		for (i = 0; i < count; i++) {
			list[i].n_type = nl[i].n_type;
			list[i].n_value = nl[i].n_value;
		}
		free(nl);
		return (nfail);
	}

	nfail = 0;
	while (list->n_name != NULL && list->n_name[0] != '\0') {
		error = kd->resolve_symbol(list->n_name, &addr);
		if (error != 0) {
			nfail++;
			list->n_value = 0;
			list->n_type = 0;
		} else {
			list->n_value = addr;
			list->n_type = N_DATA | N_EXT;
		}
		list++;
	}
	return (nfail);
}

/*
 * Walk the list of unresolved symbols, generate a new list and prefix the
 * symbol names, try again, and merge back what we could resolve.
 */
static int
kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
    const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
{
	struct kvm_nlist *n, *np, *p;
	char *cp, *ce;
	const char *ccp;
	size_t len;
	int slen, unresolved;

	/*
	 * Calculate the space we need to malloc for nlist and names.
	 * We are going to store the name twice for later lookups: once
	 * with the prefix and once the unmodified name delmited by \0.
	 */
	len = 0;
	unresolved = 0;
	for (p = nl; p->n_name && p->n_name[0]; ++p) {
		if (p->n_type != N_UNDF)
			continue;
		len += sizeof(struct kvm_nlist) + strlen(prefix) +
		    2 * (strlen(p->n_name) + 1);
		unresolved++;
	}
	if (unresolved == 0)
		return (unresolved);
	/* Add space for the terminating nlist entry. */
	len += sizeof(struct kvm_nlist);
	unresolved++;

	/* Alloc one chunk for (nlist, [names]) and setup pointers. */
	n = np = malloc(len);
	bzero(n, len);
	if (n == NULL)
		return (missing);
	cp = ce = (char *)np;
	cp += unresolved * sizeof(struct kvm_nlist);
	ce += len;

	/* Generate shortened nlist with special prefix. */
	unresolved = 0;
	for (p = nl; p->n_name && p->n_name[0]; ++p) {
		if (p->n_type != N_UNDF)
			continue;
		*np = *p;
		/* Save the new\0orig. name so we can later match it again. */
		slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
			(p->n_name + 1) : p->n_name, '\0', p->n_name);
		if (slen < 0 || slen >= ce - cp)
			continue;
		np->n_name = cp;
		cp += slen + 1;
		np++;
		unresolved++;
	}

	/* Do lookup on the reduced list. */
	np = n;
	unresolved = kvm_fdnlist(kd, np);

	/* Check if we could resolve further symbols and update the list. */
	if (unresolved >= 0 && unresolved < missing) {
		/* Find the first freshly resolved entry. */
		for (; np->n_name && np->n_name[0]; np++)
			if (np->n_type != N_UNDF)
				break;
		/*
		 * The lists are both in the same order,
		 * so we can walk them in parallel.
		 */
		for (p = nl; np->n_name && np->n_name[0] &&
		    p->n_name && p->n_name[0]; ++p) {
			if (p->n_type != N_UNDF)
				continue;
			/* Skip expanded name and compare to orig. one. */
			ccp = np->n_name + strlen(np->n_name) + 1;
			if (strcmp(ccp, p->n_name) != 0)
				continue;
			/* Update nlist with new, translated results. */
			p->n_type = np->n_type;
			if (validate_fn)
				p->n_value = (*validate_fn)(kd, np->n_value);
			else
				p->n_value = np->n_value;
			missing--;
			/* Find next freshly resolved entry. */
			for (np++; np->n_name && np->n_name[0]; np++)
				if (np->n_type != N_UNDF)
					break;
		}
	}
	/* We could assert missing = unresolved here. */

	free(n);
	return (unresolved);
}

int
_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
{
	struct kvm_nlist *p;
	int nvalid;
	struct kld_sym_lookup lookup;
	int error;
	const char *prefix = "";
	char symname[1024]; /* XXX-BZ symbol name length limit? */
	int tried_vnet, tried_dpcpu;

	/*
	 * If we can't use the kld symbol lookup, revert to the
	 * slow library call.
	 */
	if (!ISALIVE(kd)) {
		error = kvm_fdnlist(kd, nl);
		if (error <= 0)			/* Hard error or success. */
			return (error);

		if (_kvm_vnet_initialized(kd, initialize))
			error = kvm_fdnlist_prefix(kd, nl, error,
			    VNET_SYMPREFIX, _kvm_vnet_validaddr);

		if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
			error = kvm_fdnlist_prefix(kd, nl, error,
			    DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);

		return (error);
	}

	/*
	 * We can use the kld lookup syscall.  Go through each nlist entry
	 * and look it up with a kldsym(2) syscall.
	 */
	nvalid = 0;
	tried_vnet = 0;
	tried_dpcpu = 0;
again:
	for (p = nl; p->n_name && p->n_name[0]; ++p) {
		if (p->n_type != N_UNDF)
			continue;

		lookup.version = sizeof(lookup);
		lookup.symvalue = 0;
		lookup.symsize = 0;

		error = snprintf(symname, sizeof(symname), "%s%s", prefix,
		    (prefix[0] != '\0' && p->n_name[0] == '_') ?
			(p->n_name + 1) : p->n_name);
		if (error < 0 || error >= (int)sizeof(symname))
			continue;
		lookup.symname = symname;
		if (lookup.symname[0] == '_')
			lookup.symname++;

		if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
			p->n_type = N_TEXT;
			if (_kvm_vnet_initialized(kd, initialize) &&
			    strcmp(prefix, VNET_SYMPREFIX) == 0)
				p->n_value =
				    _kvm_vnet_validaddr(kd, lookup.symvalue);
			else if (_kvm_dpcpu_initialized(kd, initialize) &&
			    strcmp(prefix, DPCPU_SYMPREFIX) == 0)
				p->n_value =
				    _kvm_dpcpu_validaddr(kd, lookup.symvalue);
			else
				p->n_value = lookup.symvalue;
			++nvalid;
			/* lookup.symsize */
		}
	}

	/*
	 * Check the number of entries that weren't found. If they exist,
	 * try again with a prefix for virtualized or DPCPU symbol names.
	 */
	error = ((p - nl) - nvalid);
	if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
		tried_vnet = 1;
		prefix = VNET_SYMPREFIX;
		goto again;
	}
	if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
		tried_dpcpu = 1;
		prefix = DPCPU_SYMPREFIX;
		goto again;
	}

	/*
	 * Return the number of entries that weren't found. If they exist,
	 * also fill internal error buffer.
	 */
	error = ((p - nl) - nvalid);
	if (error)
		_kvm_syserr(kd, kd->program, "kvm_nlist");
	return (error);
}

int
_kvm_bitmap_init(struct kvm_bitmap *bm, u_long bitmapsize, u_long *idx)
{

	*idx = ULONG_MAX;
	bm->map = calloc(bitmapsize, sizeof *bm->map);
	if (bm->map == NULL)
		return (0);
	bm->size = bitmapsize;
	return (1);
}

void
_kvm_bitmap_set(struct kvm_bitmap *bm, u_long pa, unsigned int page_size)
{
	u_long bm_index = pa / page_size;
	uint8_t *byte = &bm->map[bm_index / 8];

	*byte |= (1UL << (bm_index % 8));
}

int
_kvm_bitmap_next(struct kvm_bitmap *bm, u_long *idx)
{
	u_long first_invalid = bm->size * CHAR_BIT;

	if (*idx == ULONG_MAX)
		*idx = 0;
	else
		(*idx)++;

	/* Find the next valid idx. */
	for (; *idx < first_invalid; (*idx)++) {
		unsigned int mask = *idx % CHAR_BIT;
		if ((bm->map[*idx * CHAR_BIT] & mask) == 0)
			break;
	}

	return (*idx < first_invalid);
}

void
_kvm_bitmap_deinit(struct kvm_bitmap *bm)
{

	free(bm->map);
}

int
_kvm_visit_cb(kvm_t *kd, kvm_walk_pages_cb_t *cb, void *arg, u_long pa,
    u_long kmap_vaddr, u_long dmap_vaddr, vm_prot_t prot, size_t len,
    unsigned int page_size)
{
	unsigned int pgsz = page_size ? page_size : len;
	struct kvm_page p = {
		.kp_version = LIBKVM_WALK_PAGES_VERSION,
		.kp_paddr = pa,
		.kp_kmap_vaddr = kmap_vaddr,
		.kp_dmap_vaddr = dmap_vaddr,
		.kp_prot = prot,
		.kp_offset = _kvm_pt_find(kd, pa, pgsz),
		.kp_len = len,
	};

	return cb(&p, arg);
}