aboutsummaryrefslogtreecommitdiff
path: root/openmp/runtime/src/kmp_runtime.cpp
blob: b981f8740dbe2611d7698768f8317beb70a23311 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
/*
 * kmp_runtime.cpp -- KPTS runtime support library
 */

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_atomic.h"
#include "kmp_environment.h"
#include "kmp_error.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_itt.h"
#include "kmp_settings.h"
#include "kmp_stats.h"
#include "kmp_str.h"
#include "kmp_wait_release.h"
#include "kmp_wrapper_getpid.h"
#include "kmp_dispatch.h"
#if KMP_USE_HIER_SCHED
#include "kmp_dispatch_hier.h"
#endif

#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif

#if OMP_PROFILING_SUPPORT
#include "llvm/Support/TimeProfiler.h"
static char *ProfileTraceFile = nullptr;
#endif

/* these are temporary issues to be dealt with */
#define KMP_USE_PRCTL 0

#if KMP_OS_WINDOWS
#include <process.h>
#endif

#include "tsan_annotations.h"

#if KMP_OS_WINDOWS
// windows does not need include files as it doesn't use shared memory
#else
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#define SHM_SIZE 1024
#endif

#if defined(KMP_GOMP_COMPAT)
char const __kmp_version_alt_comp[] =
    KMP_VERSION_PREFIX "alternative compiler support: yes";
#endif /* defined(KMP_GOMP_COMPAT) */

char const __kmp_version_omp_api[] =
    KMP_VERSION_PREFIX "API version: 5.0 (201611)";

#ifdef KMP_DEBUG
char const __kmp_version_lock[] =
    KMP_VERSION_PREFIX "lock type: run time selectable";
#endif /* KMP_DEBUG */

#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))

/* ------------------------------------------------------------------------ */

#if KMP_USE_MONITOR
kmp_info_t __kmp_monitor;
#endif

/* Forward declarations */

void __kmp_cleanup(void);

static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid,
                                  int gtid);
static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
                                  kmp_internal_control_t *new_icvs,
                                  ident_t *loc);
#if KMP_AFFINITY_SUPPORTED
static void __kmp_partition_places(kmp_team_t *team,
                                   int update_master_only = 0);
#endif
static void __kmp_do_serial_initialize(void);
void __kmp_fork_barrier(int gtid, int tid);
void __kmp_join_barrier(int gtid);
void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
                          kmp_internal_control_t *new_icvs, ident_t *loc);

#ifdef USE_LOAD_BALANCE
static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc);
#endif

static int __kmp_expand_threads(int nNeed);
#if KMP_OS_WINDOWS
static int __kmp_unregister_root_other_thread(int gtid);
#endif
static void __kmp_reap_thread(kmp_info_t *thread, int is_root);
kmp_info_t *__kmp_thread_pool_insert_pt = NULL;

/* Calculate the identifier of the current thread */
/* fast (and somewhat portable) way to get unique identifier of executing
   thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
int __kmp_get_global_thread_id() {
  int i;
  kmp_info_t **other_threads;
  size_t stack_data;
  char *stack_addr;
  size_t stack_size;
  char *stack_base;

  KA_TRACE(
      1000,
      ("*** __kmp_get_global_thread_id: entering, nproc=%d  all_nproc=%d\n",
       __kmp_nth, __kmp_all_nth));

  /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
     a parallel region, made it return KMP_GTID_DNE to force serial_initialize
     by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
     __kmp_init_gtid for this to work. */

  if (!TCR_4(__kmp_init_gtid))
    return KMP_GTID_DNE;

#ifdef KMP_TDATA_GTID
  if (TCR_4(__kmp_gtid_mode) >= 3) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
    return __kmp_gtid;
  }
#endif
  if (TCR_4(__kmp_gtid_mode) >= 2) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
    return __kmp_gtid_get_specific();
  }
  KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));

  stack_addr = (char *)&stack_data;
  other_threads = __kmp_threads;

  /* ATT: The code below is a source of potential bugs due to unsynchronized
     access to __kmp_threads array. For example:
     1. Current thread loads other_threads[i] to thr and checks it, it is
        non-NULL.
     2. Current thread is suspended by OS.
     3. Another thread unregisters and finishes (debug versions of free()
        may fill memory with something like 0xEF).
     4. Current thread is resumed.
     5. Current thread reads junk from *thr.
     TODO: Fix it.  --ln  */

  for (i = 0; i < __kmp_threads_capacity; i++) {

    kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]);
    if (!thr)
      continue;

    stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize);
    stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase);

    /* stack grows down -- search through all of the active threads */

    if (stack_addr <= stack_base) {
      size_t stack_diff = stack_base - stack_addr;

      if (stack_diff <= stack_size) {
        /* The only way we can be closer than the allocated */
        /* stack size is if we are running on this thread. */
        KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i);
        return i;
      }
    }
  }

  /* get specific to try and determine our gtid */
  KA_TRACE(1000,
           ("*** __kmp_get_global_thread_id: internal alg. failed to find "
            "thread, using TLS\n"));
  i = __kmp_gtid_get_specific();

  /*fprintf( stderr, "=== %d\n", i );  */ /* GROO */

  /* if we havn't been assigned a gtid, then return code */
  if (i < 0)
    return i;

  /* dynamically updated stack window for uber threads to avoid get_specific
     call */
  if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) {
    KMP_FATAL(StackOverflow, i);
  }

  stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
  if (stack_addr > stack_base) {
    TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr);
    TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
            other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr -
                stack_base);
  } else {
    TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
            stack_base - stack_addr);
  }

  /* Reprint stack bounds for ubermaster since they have been refined */
  if (__kmp_storage_map) {
    char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
    char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize;
    __kmp_print_storage_map_gtid(i, stack_beg, stack_end,
                                 other_threads[i]->th.th_info.ds.ds_stacksize,
                                 "th_%d stack (refinement)", i);
  }
  return i;
}

int __kmp_get_global_thread_id_reg() {
  int gtid;

  if (!__kmp_init_serial) {
    gtid = KMP_GTID_DNE;
  } else
#ifdef KMP_TDATA_GTID
      if (TCR_4(__kmp_gtid_mode) >= 3) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
    gtid = __kmp_gtid;
  } else
#endif
      if (TCR_4(__kmp_gtid_mode) >= 2) {
    KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
    gtid = __kmp_gtid_get_specific();
  } else {
    KA_TRACE(1000,
             ("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
    gtid = __kmp_get_global_thread_id();
  }

  /* we must be a new uber master sibling thread */
  if (gtid == KMP_GTID_DNE) {
    KA_TRACE(10,
             ("__kmp_get_global_thread_id_reg: Encountered new root thread. "
              "Registering a new gtid.\n"));
    __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
    if (!__kmp_init_serial) {
      __kmp_do_serial_initialize();
      gtid = __kmp_gtid_get_specific();
    } else {
      gtid = __kmp_register_root(FALSE);
    }
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
  }

  KMP_DEBUG_ASSERT(gtid >= 0);

  return gtid;
}

/* caller must hold forkjoin_lock */
void __kmp_check_stack_overlap(kmp_info_t *th) {
  int f;
  char *stack_beg = NULL;
  char *stack_end = NULL;
  int gtid;

  KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
  if (__kmp_storage_map) {
    stack_end = (char *)th->th.th_info.ds.ds_stackbase;
    stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;

    gtid = __kmp_gtid_from_thread(th);

    if (gtid == KMP_GTID_MONITOR) {
      __kmp_print_storage_map_gtid(
          gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
          "th_%s stack (%s)", "mon",
          (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
    } else {
      __kmp_print_storage_map_gtid(
          gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
          "th_%d stack (%s)", gtid,
          (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
    }
  }

  /* No point in checking ubermaster threads since they use refinement and
   * cannot overlap */
  gtid = __kmp_gtid_from_thread(th);
  if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) {
    KA_TRACE(10,
             ("__kmp_check_stack_overlap: performing extensive checking\n"));
    if (stack_beg == NULL) {
      stack_end = (char *)th->th.th_info.ds.ds_stackbase;
      stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
    }

    for (f = 0; f < __kmp_threads_capacity; f++) {
      kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]);

      if (f_th && f_th != th) {
        char *other_stack_end =
            (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase);
        char *other_stack_beg =
            other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize);
        if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) ||
            (stack_end > other_stack_beg && stack_end < other_stack_end)) {

          /* Print the other stack values before the abort */
          if (__kmp_storage_map)
            __kmp_print_storage_map_gtid(
                -1, other_stack_beg, other_stack_end,
                (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize),
                "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th));

          __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit),
                      __kmp_msg_null);
        }
      }
    }
  }
  KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
}

/* ------------------------------------------------------------------------ */

void __kmp_infinite_loop(void) {
  static int done = FALSE;

  while (!done) {
    KMP_YIELD(TRUE);
  }
}

#define MAX_MESSAGE 512

void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size,
                                  char const *format, ...) {
  char buffer[MAX_MESSAGE];
  va_list ap;

  va_start(ap, format);
  KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1,
               p2, (unsigned long)size, format);
  __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
  __kmp_vprintf(kmp_err, buffer, ap);
#if KMP_PRINT_DATA_PLACEMENT
  int node;
  if (gtid >= 0) {
    if (p1 <= p2 && (char *)p2 - (char *)p1 == size) {
      if (__kmp_storage_map_verbose) {
        node = __kmp_get_host_node(p1);
        if (node < 0) /* doesn't work, so don't try this next time */
          __kmp_storage_map_verbose = FALSE;
        else {
          char *last;
          int lastNode;
          int localProc = __kmp_get_cpu_from_gtid(gtid);

          const int page_size = KMP_GET_PAGE_SIZE();

          p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1));
          p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1));
          if (localProc >= 0)
            __kmp_printf_no_lock("  GTID %d localNode %d\n", gtid,
                                 localProc >> 1);
          else
            __kmp_printf_no_lock("  GTID %d\n", gtid);
#if KMP_USE_PRCTL
          /* The more elaborate format is disabled for now because of the prctl
           * hanging bug. */
          do {
            last = p1;
            lastNode = node;
            /* This loop collates adjacent pages with the same host node. */
            do {
              (char *)p1 += page_size;
            } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode);
            __kmp_printf_no_lock("    %p-%p memNode %d\n", last, (char *)p1 - 1,
                                 lastNode);
          } while (p1 <= p2);
#else
          __kmp_printf_no_lock("    %p-%p memNode %d\n", p1,
                               (char *)p1 + (page_size - 1),
                               __kmp_get_host_node(p1));
          if (p1 < p2) {
            __kmp_printf_no_lock("    %p-%p memNode %d\n", p2,
                                 (char *)p2 + (page_size - 1),
                                 __kmp_get_host_node(p2));
          }
#endif
        }
      }
    } else
      __kmp_printf_no_lock("  %s\n", KMP_I18N_STR(StorageMapWarning));
  }
#endif /* KMP_PRINT_DATA_PLACEMENT */
  __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
}

void __kmp_warn(char const *format, ...) {
  char buffer[MAX_MESSAGE];
  va_list ap;

  if (__kmp_generate_warnings == kmp_warnings_off) {
    return;
  }

  va_start(ap, format);

  KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format);
  __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
  __kmp_vprintf(kmp_err, buffer, ap);
  __kmp_release_bootstrap_lock(&__kmp_stdio_lock);

  va_end(ap);
}

void __kmp_abort_process() {
  // Later threads may stall here, but that's ok because abort() will kill them.
  __kmp_acquire_bootstrap_lock(&__kmp_exit_lock);

  if (__kmp_debug_buf) {
    __kmp_dump_debug_buffer();
  }

  if (KMP_OS_WINDOWS) {
    // Let other threads know of abnormal termination and prevent deadlock
    // if abort happened during library initialization or shutdown
    __kmp_global.g.g_abort = SIGABRT;

    /* On Windows* OS by default abort() causes pop-up error box, which stalls
       nightly testing. Unfortunately, we cannot reliably suppress pop-up error
       boxes. _set_abort_behavior() works well, but this function is not
       available in VS7 (this is not problem for DLL, but it is a problem for
       static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
       help, at least in some versions of MS C RTL.

       It seems following sequence is the only way to simulate abort() and
       avoid pop-up error box. */
    raise(SIGABRT);
    _exit(3); // Just in case, if signal ignored, exit anyway.
  } else {
    __kmp_unregister_library();
    abort();
  }

  __kmp_infinite_loop();
  __kmp_release_bootstrap_lock(&__kmp_exit_lock);

} // __kmp_abort_process

void __kmp_abort_thread(void) {
  // TODO: Eliminate g_abort global variable and this function.
  // In case of abort just call abort(), it will kill all the threads.
  __kmp_infinite_loop();
} // __kmp_abort_thread

/* Print out the storage map for the major kmp_info_t thread data structures
   that are allocated together. */

static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) {
  __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d",
                               gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team,
                               sizeof(kmp_desc_t), "th_%d.th_info", gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head,
                               sizeof(kmp_local_t), "th_%d.th_local", gtid);

  __kmp_print_storage_map_gtid(
      gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier],
      sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier],
                               &thr->th.th_bar[bs_plain_barrier + 1],
                               sizeof(kmp_balign_t), "th_%d.th_bar[plain]",
                               gtid);

  __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier],
                               &thr->th.th_bar[bs_forkjoin_barrier + 1],
                               sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]",
                               gtid);

#if KMP_FAST_REDUCTION_BARRIER
  __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier],
                               &thr->th.th_bar[bs_reduction_barrier + 1],
                               sizeof(kmp_balign_t), "th_%d.th_bar[reduction]",
                               gtid);
#endif // KMP_FAST_REDUCTION_BARRIER
}

/* Print out the storage map for the major kmp_team_t team data structures
   that are allocated together. */

static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team,
                                         int team_id, int num_thr) {
  int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
  __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d",
                               header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0],
                               &team->t.t_bar[bs_last_barrier],
                               sizeof(kmp_balign_team_t) * bs_last_barrier,
                               "%s_%d.t_bar", header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier],
                               &team->t.t_bar[bs_plain_barrier + 1],
                               sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]",
                               header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier],
                               &team->t.t_bar[bs_forkjoin_barrier + 1],
                               sizeof(kmp_balign_team_t),
                               "%s_%d.t_bar[forkjoin]", header, team_id);

#if KMP_FAST_REDUCTION_BARRIER
  __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier],
                               &team->t.t_bar[bs_reduction_barrier + 1],
                               sizeof(kmp_balign_team_t),
                               "%s_%d.t_bar[reduction]", header, team_id);
#endif // KMP_FAST_REDUCTION_BARRIER

  __kmp_print_storage_map_gtid(
      -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr],
      sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id);

  __kmp_print_storage_map_gtid(
      -1, &team->t.t_threads[0], &team->t.t_threads[num_thr],
      sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id);

  __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0],
                               &team->t.t_disp_buffer[num_disp_buff],
                               sizeof(dispatch_shared_info_t) * num_disp_buff,
                               "%s_%d.t_disp_buffer", header, team_id);
}

static void __kmp_init_allocator() { __kmp_init_memkind(); }
static void __kmp_fini_allocator() { __kmp_fini_memkind(); }

/* ------------------------------------------------------------------------ */

#if KMP_DYNAMIC_LIB
#if KMP_OS_WINDOWS

static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) {
  // TODO: Change to __kmp_break_bootstrap_lock().
  __kmp_init_bootstrap_lock(lck); // make the lock released
}

static void __kmp_reset_locks_on_process_detach(int gtid_req) {
  int i;
  int thread_count;

  // PROCESS_DETACH is expected to be called by a thread that executes
  // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one
  // calling ProcessExit or FreeLibrary). So, it might be safe to access the
  // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some
  // threads can be still alive here, although being about to be terminated. The
  // threads in the array with ds_thread==0 are most suspicious. Actually, it
  // can be not safe to access the __kmp_threads[].

  // TODO: does it make sense to check __kmp_roots[] ?

  // Let's check that there are no other alive threads registered with the OMP
  // lib.
  while (1) {
    thread_count = 0;
    for (i = 0; i < __kmp_threads_capacity; ++i) {
      if (!__kmp_threads)
        continue;
      kmp_info_t *th = __kmp_threads[i];
      if (th == NULL)
        continue;
      int gtid = th->th.th_info.ds.ds_gtid;
      if (gtid == gtid_req)
        continue;
      if (gtid < 0)
        continue;
      DWORD exit_val;
      int alive = __kmp_is_thread_alive(th, &exit_val);
      if (alive) {
        ++thread_count;
      }
    }
    if (thread_count == 0)
      break; // success
  }

  // Assume that I'm alone. Now it might be safe to check and reset locks.
  // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset.
  __kmp_reset_lock(&__kmp_forkjoin_lock);
#ifdef KMP_DEBUG
  __kmp_reset_lock(&__kmp_stdio_lock);
#endif // KMP_DEBUG
}

BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) {
  //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );

  switch (fdwReason) {

  case DLL_PROCESS_ATTACH:
    KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));

    return TRUE;

  case DLL_PROCESS_DETACH:
    KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));

    if (lpReserved != NULL) {
      // lpReserved is used for telling the difference:
      //   lpReserved == NULL when FreeLibrary() was called,
      //   lpReserved != NULL when the process terminates.
      // When FreeLibrary() is called, worker threads remain alive. So they will
      // release the forkjoin lock by themselves. When the process terminates,
      // worker threads disappear triggering the problem of unreleased forkjoin
      // lock as described below.

      // A worker thread can take the forkjoin lock. The problem comes up if
      // that worker thread becomes dead before it releases the forkjoin lock.
      // The forkjoin lock remains taken, while the thread executing
      // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try
      // to take the forkjoin lock and will always fail, so that the application
      // will never finish [normally]. This scenario is possible if
      // __kmpc_end() has not been executed. It looks like it's not a corner
      // case, but common cases:
      // - the main function was compiled by an alternative compiler;
      // - the main function was compiled by icl but without /Qopenmp
      //   (application with plugins);
      // - application terminates by calling C exit(), Fortran CALL EXIT() or
      //   Fortran STOP.
      // - alive foreign thread prevented __kmpc_end from doing cleanup.
      //
      // This is a hack to work around the problem.
      // TODO: !!! figure out something better.
      __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific());
    }

    __kmp_internal_end_library(__kmp_gtid_get_specific());

    return TRUE;

  case DLL_THREAD_ATTACH:
    KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));

    /* if we want to register new siblings all the time here call
     * __kmp_get_gtid(); */
    return TRUE;

  case DLL_THREAD_DETACH:
    KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));

    __kmp_internal_end_thread(__kmp_gtid_get_specific());
    return TRUE;
  }

  return TRUE;
}

#endif /* KMP_OS_WINDOWS */
#endif /* KMP_DYNAMIC_LIB */

/* __kmp_parallel_deo -- Wait until it's our turn. */
void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  int gtid = *gtid_ref;
#ifdef BUILD_PARALLEL_ORDERED
  kmp_team_t *team = __kmp_team_from_gtid(gtid);
#endif /* BUILD_PARALLEL_ORDERED */

  if (__kmp_env_consistency_check) {
    if (__kmp_threads[gtid]->th.th_root->r.r_active)
#if KMP_USE_DYNAMIC_LOCK
      __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0);
#else
      __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL);
#endif
  }
#ifdef BUILD_PARALLEL_ORDERED
  if (!team->t.t_serialized) {
    KMP_MB();
    KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ,
             NULL);
    KMP_MB();
  }
#endif /* BUILD_PARALLEL_ORDERED */
}

/* __kmp_parallel_dxo -- Signal the next task. */
void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
  int gtid = *gtid_ref;
#ifdef BUILD_PARALLEL_ORDERED
  int tid = __kmp_tid_from_gtid(gtid);
  kmp_team_t *team = __kmp_team_from_gtid(gtid);
#endif /* BUILD_PARALLEL_ORDERED */

  if (__kmp_env_consistency_check) {
    if (__kmp_threads[gtid]->th.th_root->r.r_active)
      __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref);
  }
#ifdef BUILD_PARALLEL_ORDERED
  if (!team->t.t_serialized) {
    KMP_MB(); /* Flush all pending memory write invalidates.  */

    /* use the tid of the next thread in this team */
    /* TODO replace with general release procedure */
    team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc);

    KMP_MB(); /* Flush all pending memory write invalidates.  */
  }
#endif /* BUILD_PARALLEL_ORDERED */
}

/* ------------------------------------------------------------------------ */
/* The BARRIER for a SINGLE process section is always explicit   */

int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) {
  int status;
  kmp_info_t *th;
  kmp_team_t *team;

  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();
  __kmp_resume_if_soft_paused();

  th = __kmp_threads[gtid];
  team = th->th.th_team;
  status = 0;

  th->th.th_ident = id_ref;

  if (team->t.t_serialized) {
    status = 1;
  } else {
    kmp_int32 old_this = th->th.th_local.this_construct;

    ++th->th.th_local.this_construct;
    /* try to set team count to thread count--success means thread got the
       single block */
    /* TODO: Should this be acquire or release? */
    if (team->t.t_construct == old_this) {
      status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this,
                                              th->th.th_local.this_construct);
    }
#if USE_ITT_BUILD
    if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
        KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
        team->t.t_active_level ==
            1) { // Only report metadata by master of active team at level 1
      __kmp_itt_metadata_single(id_ref);
    }
#endif /* USE_ITT_BUILD */
  }

  if (__kmp_env_consistency_check) {
    if (status && push_ws) {
      __kmp_push_workshare(gtid, ct_psingle, id_ref);
    } else {
      __kmp_check_workshare(gtid, ct_psingle, id_ref);
    }
  }
#if USE_ITT_BUILD
  if (status) {
    __kmp_itt_single_start(gtid);
  }
#endif /* USE_ITT_BUILD */
  return status;
}

void __kmp_exit_single(int gtid) {
#if USE_ITT_BUILD
  __kmp_itt_single_end(gtid);
#endif /* USE_ITT_BUILD */
  if (__kmp_env_consistency_check)
    __kmp_pop_workshare(gtid, ct_psingle, NULL);
}

/* determine if we can go parallel or must use a serialized parallel region and
 * how many threads we can use
 * set_nproc is the number of threads requested for the team
 * returns 0 if we should serialize or only use one thread,
 * otherwise the number of threads to use
 * The forkjoin lock is held by the caller. */
static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team,
                                 int master_tid, int set_nthreads,
                                 int enter_teams) {
  int capacity;
  int new_nthreads;
  KMP_DEBUG_ASSERT(__kmp_init_serial);
  KMP_DEBUG_ASSERT(root && parent_team);
  kmp_info_t *this_thr = parent_team->t.t_threads[master_tid];

  // If dyn-var is set, dynamically adjust the number of desired threads,
  // according to the method specified by dynamic_mode.
  new_nthreads = set_nthreads;
  if (!get__dynamic_2(parent_team, master_tid)) {
    ;
  }
#ifdef USE_LOAD_BALANCE
  else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
    new_nthreads = __kmp_load_balance_nproc(root, set_nthreads);
    if (new_nthreads == 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
                    "reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    if (new_nthreads < set_nthreads) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
                    "reservation to %d threads\n",
                    master_tid, new_nthreads));
    }
  }
#endif /* USE_LOAD_BALANCE */
  else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
    new_nthreads = __kmp_avail_proc - __kmp_nth +
                   (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (new_nthreads <= 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
                    "reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    if (new_nthreads < set_nthreads) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
                    "reservation to %d threads\n",
                    master_tid, new_nthreads));
    } else {
      new_nthreads = set_nthreads;
    }
  } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
    if (set_nthreads > 2) {
      new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]);
      new_nthreads = (new_nthreads % set_nthreads) + 1;
      if (new_nthreads == 1) {
        KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
                      "reservation to 1 thread\n",
                      master_tid));
        return 1;
      }
      if (new_nthreads < set_nthreads) {
        KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
                      "reservation to %d threads\n",
                      master_tid, new_nthreads));
      }
    }
  } else {
    KMP_ASSERT(0);
  }

  // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
  if (__kmp_nth + new_nthreads -
          (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
      __kmp_max_nth) {
    int tl_nthreads = __kmp_max_nth - __kmp_nth +
                      (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (tl_nthreads <= 0) {
      tl_nthreads = 1;
    }

    // If dyn-var is false, emit a 1-time warning.
    if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
      __kmp_reserve_warn = 1;
      __kmp_msg(kmp_ms_warning,
                KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
                KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
    }
    if (tl_nthreads == 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
                    "reduced reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
                  "reservation to %d threads\n",
                  master_tid, tl_nthreads));
    new_nthreads = tl_nthreads;
  }

  // Respect OMP_THREAD_LIMIT
  int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads;
  int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit;
  if (cg_nthreads + new_nthreads -
          (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
      max_cg_threads) {
    int tl_nthreads = max_cg_threads - cg_nthreads +
                      (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (tl_nthreads <= 0) {
      tl_nthreads = 1;
    }

    // If dyn-var is false, emit a 1-time warning.
    if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
      __kmp_reserve_warn = 1;
      __kmp_msg(kmp_ms_warning,
                KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
                KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
    }
    if (tl_nthreads == 1) {
      KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
                    "reduced reservation to 1 thread\n",
                    master_tid));
      return 1;
    }
    KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
                  "reservation to %d threads\n",
                  master_tid, tl_nthreads));
    new_nthreads = tl_nthreads;
  }

  // Check if the threads array is large enough, or needs expanding.
  // See comment in __kmp_register_root() about the adjustment if
  // __kmp_threads[0] == NULL.
  capacity = __kmp_threads_capacity;
  if (TCR_PTR(__kmp_threads[0]) == NULL) {
    --capacity;
  }
  // If it is not for initializing the hidden helper team, we need to take
  // __kmp_hidden_helper_threads_num out of the capacity because it is included
  // in __kmp_threads_capacity.
  if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
    capacity -= __kmp_hidden_helper_threads_num;
  }
  if (__kmp_nth + new_nthreads -
          (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
      capacity) {
    // Expand the threads array.
    int slotsRequired = __kmp_nth + new_nthreads -
                        (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) -
                        capacity;
    int slotsAdded = __kmp_expand_threads(slotsRequired);
    if (slotsAdded < slotsRequired) {
      // The threads array was not expanded enough.
      new_nthreads -= (slotsRequired - slotsAdded);
      KMP_ASSERT(new_nthreads >= 1);

      // If dyn-var is false, emit a 1-time warning.
      if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
        __kmp_reserve_warn = 1;
        if (__kmp_tp_cached) {
          __kmp_msg(kmp_ms_warning,
                    KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
                    KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
                    KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
        } else {
          __kmp_msg(kmp_ms_warning,
                    KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
                    KMP_HNT(SystemLimitOnThreads), __kmp_msg_null);
        }
      }
    }
  }

#ifdef KMP_DEBUG
  if (new_nthreads == 1) {
    KC_TRACE(10,
             ("__kmp_reserve_threads: T#%d serializing team after reclaiming "
              "dead roots and rechecking; requested %d threads\n",
              __kmp_get_gtid(), set_nthreads));
  } else {
    KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
                  " %d threads\n",
                  __kmp_get_gtid(), new_nthreads, set_nthreads));
  }
#endif // KMP_DEBUG
  return new_nthreads;
}

/* Allocate threads from the thread pool and assign them to the new team. We are
   assured that there are enough threads available, because we checked on that
   earlier within critical section forkjoin */
static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team,
                                    kmp_info_t *master_th, int master_gtid) {
  int i;
  int use_hot_team;

  KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc));
  KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid());
  KMP_MB();

  /* first, let's setup the master thread */
  master_th->th.th_info.ds.ds_tid = 0;
  master_th->th.th_team = team;
  master_th->th.th_team_nproc = team->t.t_nproc;
  master_th->th.th_team_master = master_th;
  master_th->th.th_team_serialized = FALSE;
  master_th->th.th_dispatch = &team->t.t_dispatch[0];

/* make sure we are not the optimized hot team */
#if KMP_NESTED_HOT_TEAMS
  use_hot_team = 0;
  kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams;
  if (hot_teams) { // hot teams array is not allocated if
    // KMP_HOT_TEAMS_MAX_LEVEL=0
    int level = team->t.t_active_level - 1; // index in array of hot teams
    if (master_th->th.th_teams_microtask) { // are we inside the teams?
      if (master_th->th.th_teams_size.nteams > 1) {
        ++level; // level was not increased in teams construct for
        // team_of_masters
      }
      if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
          master_th->th.th_teams_level == team->t.t_level) {
        ++level; // level was not increased in teams construct for
        // team_of_workers before the parallel
      } // team->t.t_level will be increased inside parallel
    }
    if (level < __kmp_hot_teams_max_level) {
      if (hot_teams[level].hot_team) {
        // hot team has already been allocated for given level
        KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team);
        use_hot_team = 1; // the team is ready to use
      } else {
        use_hot_team = 0; // AC: threads are not allocated yet
        hot_teams[level].hot_team = team; // remember new hot team
        hot_teams[level].hot_team_nth = team->t.t_nproc;
      }
    } else {
      use_hot_team = 0;
    }
  }
#else
  use_hot_team = team == root->r.r_hot_team;
#endif
  if (!use_hot_team) {

    /* install the master thread */
    team->t.t_threads[0] = master_th;
    __kmp_initialize_info(master_th, team, 0, master_gtid);

    /* now, install the worker threads */
    for (i = 1; i < team->t.t_nproc; i++) {

      /* fork or reallocate a new thread and install it in team */
      kmp_info_t *thr = __kmp_allocate_thread(root, team, i);
      team->t.t_threads[i] = thr;
      KMP_DEBUG_ASSERT(thr);
      KMP_DEBUG_ASSERT(thr->th.th_team == team);
      /* align team and thread arrived states */
      KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
                    "T#%d(%d:%d) join =%llu, plain=%llu\n",
                    __kmp_gtid_from_tid(0, team), team->t.t_id, 0,
                    __kmp_gtid_from_tid(i, team), team->t.t_id, i,
                    team->t.t_bar[bs_forkjoin_barrier].b_arrived,
                    team->t.t_bar[bs_plain_barrier].b_arrived));
      thr->th.th_teams_microtask = master_th->th.th_teams_microtask;
      thr->th.th_teams_level = master_th->th.th_teams_level;
      thr->th.th_teams_size = master_th->th.th_teams_size;
      { // Initialize threads' barrier data.
        int b;
        kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar;
        for (b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
      }
    }

#if KMP_AFFINITY_SUPPORTED
    __kmp_partition_places(team);
#endif
  }

  if (__kmp_display_affinity && team->t.t_display_affinity != 1) {
    for (i = 0; i < team->t.t_nproc; i++) {
      kmp_info_t *thr = team->t.t_threads[i];
      if (thr->th.th_prev_num_threads != team->t.t_nproc ||
          thr->th.th_prev_level != team->t.t_level) {
        team->t.t_display_affinity = 1;
        break;
      }
    }
  }

  KMP_MB();
}

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
// Propagate any changes to the floating point control registers out to the team
// We try to avoid unnecessary writes to the relevant cache line in the team
// structure, so we don't make changes unless they are needed.
inline static void propagateFPControl(kmp_team_t *team) {
  if (__kmp_inherit_fp_control) {
    kmp_int16 x87_fpu_control_word;
    kmp_uint32 mxcsr;

    // Get master values of FPU control flags (both X87 and vector)
    __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
    __kmp_store_mxcsr(&mxcsr);
    mxcsr &= KMP_X86_MXCSR_MASK;

    // There is no point looking at t_fp_control_saved here.
    // If it is TRUE, we still have to update the values if they are different
    // from those we now have. If it is FALSE we didn't save anything yet, but
    // our objective is the same. We have to ensure that the values in the team
    // are the same as those we have.
    // So, this code achieves what we need whether or not t_fp_control_saved is
    // true. By checking whether the value needs updating we avoid unnecessary
    // writes that would put the cache-line into a written state, causing all
    // threads in the team to have to read it again.
    KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word);
    KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr);
    // Although we don't use this value, other code in the runtime wants to know
    // whether it should restore them. So we must ensure it is correct.
    KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE);
  } else {
    // Similarly here. Don't write to this cache-line in the team structure
    // unless we have to.
    KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE);
  }
}

// Do the opposite, setting the hardware registers to the updated values from
// the team.
inline static void updateHWFPControl(kmp_team_t *team) {
  if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) {
    // Only reset the fp control regs if they have been changed in the team.
    // the parallel region that we are exiting.
    kmp_int16 x87_fpu_control_word;
    kmp_uint32 mxcsr;
    __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
    __kmp_store_mxcsr(&mxcsr);
    mxcsr &= KMP_X86_MXCSR_MASK;

    if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) {
      __kmp_clear_x87_fpu_status_word();
      __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word);
    }

    if (team->t.t_mxcsr != mxcsr) {
      __kmp_load_mxcsr(&team->t.t_mxcsr);
    }
  }
}
#else
#define propagateFPControl(x) ((void)0)
#define updateHWFPControl(x) ((void)0)
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team,
                                     int realloc); // forward declaration

/* Run a parallel region that has been serialized, so runs only in a team of the
   single master thread. */
void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
  kmp_info_t *this_thr;
  kmp_team_t *serial_team;

  KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid));

  /* Skip all this code for autopar serialized loops since it results in
     unacceptable overhead */
  if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
    return;

  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();
  __kmp_resume_if_soft_paused();

  this_thr = __kmp_threads[global_tid];
  serial_team = this_thr->th.th_serial_team;

  /* utilize the serialized team held by this thread */
  KMP_DEBUG_ASSERT(serial_team);
  KMP_MB();

  if (__kmp_tasking_mode != tskm_immediate_exec) {
    KMP_DEBUG_ASSERT(
        this_thr->th.th_task_team ==
        this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]);
    KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] ==
                     NULL);
    KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / "
                  "team %p, new task_team = NULL\n",
                  global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
    this_thr->th.th_task_team = NULL;
  }

  kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind;
  if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
    proc_bind = proc_bind_false;
  } else if (proc_bind == proc_bind_default) {
    // No proc_bind clause was specified, so use the current value
    // of proc-bind-var for this parallel region.
    proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind;
  }
  // Reset for next parallel region
  this_thr->th.th_set_proc_bind = proc_bind_default;

#if OMPT_SUPPORT
  ompt_data_t ompt_parallel_data = ompt_data_none;
  ompt_data_t *implicit_task_data;
  void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
  if (ompt_enabled.enabled &&
      this_thr->th.ompt_thread_info.state != ompt_state_overhead) {

    ompt_task_info_t *parent_task_info;
    parent_task_info = OMPT_CUR_TASK_INFO(this_thr);

    parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
    if (ompt_enabled.ompt_callback_parallel_begin) {
      int team_size = 1;

      ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
          &(parent_task_info->task_data), &(parent_task_info->frame),
          &ompt_parallel_data, team_size,
          ompt_parallel_invoker_program | ompt_parallel_team, codeptr);
    }
  }
#endif // OMPT_SUPPORT

  if (this_thr->th.th_team != serial_team) {
    // Nested level will be an index in the nested nthreads array
    int level = this_thr->th.th_team->t.t_level;

    if (serial_team->t.t_serialized) {
      /* this serial team was already used
         TODO increase performance by making this locks more specific */
      kmp_team_t *new_team;

      __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

      new_team =
          __kmp_allocate_team(this_thr->th.th_root, 1, 1,
#if OMPT_SUPPORT
                              ompt_parallel_data,
#endif
                              proc_bind, &this_thr->th.th_current_task->td_icvs,
                              0 USE_NESTED_HOT_ARG(NULL));
      __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
      KMP_ASSERT(new_team);

      /* setup new serialized team and install it */
      new_team->t.t_threads[0] = this_thr;
      new_team->t.t_parent = this_thr->th.th_team;
      serial_team = new_team;
      this_thr->th.th_serial_team = serial_team;

      KF_TRACE(
          10,
          ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
           global_tid, serial_team));

      /* TODO the above breaks the requirement that if we run out of resources,
         then we can still guarantee that serialized teams are ok, since we may
         need to allocate a new one */
    } else {
      KF_TRACE(
          10,
          ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
           global_tid, serial_team));
    }

    /* we have to initialize this serial team */
    KMP_DEBUG_ASSERT(serial_team->t.t_threads);
    KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
    KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team);
    serial_team->t.t_ident = loc;
    serial_team->t.t_serialized = 1;
    serial_team->t.t_nproc = 1;
    serial_team->t.t_parent = this_thr->th.th_team;
    serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched;
    this_thr->th.th_team = serial_team;
    serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid;

    KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid,
                  this_thr->th.th_current_task));
    KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1);
    this_thr->th.th_current_task->td_flags.executing = 0;

    __kmp_push_current_task_to_thread(this_thr, serial_team, 0);

    /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
       implicit task for each serialized task represented by
       team->t.t_serialized? */
    copy_icvs(&this_thr->th.th_current_task->td_icvs,
              &this_thr->th.th_current_task->td_parent->td_icvs);

    // Thread value exists in the nested nthreads array for the next nested
    // level
    if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
      this_thr->th.th_current_task->td_icvs.nproc =
          __kmp_nested_nth.nth[level + 1];
    }

    if (__kmp_nested_proc_bind.used &&
        (level + 1 < __kmp_nested_proc_bind.used)) {
      this_thr->th.th_current_task->td_icvs.proc_bind =
          __kmp_nested_proc_bind.bind_types[level + 1];
    }

#if USE_DEBUGGER
    serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger.
#endif
    this_thr->th.th_info.ds.ds_tid = 0;

    /* set thread cache values */
    this_thr->th.th_team_nproc = 1;
    this_thr->th.th_team_master = this_thr;
    this_thr->th.th_team_serialized = 1;

    serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1;
    serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level;
    serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save

    propagateFPControl(serial_team);

    /* check if we need to allocate dispatch buffers stack */
    KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
    if (!serial_team->t.t_dispatch->th_disp_buffer) {
      serial_team->t.t_dispatch->th_disp_buffer =
          (dispatch_private_info_t *)__kmp_allocate(
              sizeof(dispatch_private_info_t));
    }
    this_thr->th.th_dispatch = serial_team->t.t_dispatch;

    KMP_MB();

  } else {
    /* this serialized team is already being used,
     * that's fine, just add another nested level */
    KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
    KMP_DEBUG_ASSERT(serial_team->t.t_threads);
    KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
    ++serial_team->t.t_serialized;
    this_thr->th.th_team_serialized = serial_team->t.t_serialized;

    // Nested level will be an index in the nested nthreads array
    int level = this_thr->th.th_team->t.t_level;
    // Thread value exists in the nested nthreads array for the next nested
    // level
    if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
      this_thr->th.th_current_task->td_icvs.nproc =
          __kmp_nested_nth.nth[level + 1];
    }
    serial_team->t.t_level++;
    KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
                  "of serial team %p to %d\n",
                  global_tid, serial_team, serial_team->t.t_level));

    /* allocate/push dispatch buffers stack */
    KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
    {
      dispatch_private_info_t *disp_buffer =
          (dispatch_private_info_t *)__kmp_allocate(
              sizeof(dispatch_private_info_t));
      disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer;
      serial_team->t.t_dispatch->th_disp_buffer = disp_buffer;
    }
    this_thr->th.th_dispatch = serial_team->t.t_dispatch;

    KMP_MB();
  }
  KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq);

  // Perform the display affinity functionality for
  // serialized parallel regions
  if (__kmp_display_affinity) {
    if (this_thr->th.th_prev_level != serial_team->t.t_level ||
        this_thr->th.th_prev_num_threads != 1) {
      // NULL means use the affinity-format-var ICV
      __kmp_aux_display_affinity(global_tid, NULL);
      this_thr->th.th_prev_level = serial_team->t.t_level;
      this_thr->th.th_prev_num_threads = 1;
    }
  }

  if (__kmp_env_consistency_check)
    __kmp_push_parallel(global_tid, NULL);
#if OMPT_SUPPORT
  serial_team->t.ompt_team_info.master_return_address = codeptr;
  if (ompt_enabled.enabled &&
      this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
    OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);

    ompt_lw_taskteam_t lw_taskteam;
    __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid,
                            &ompt_parallel_data, codeptr);

    __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1);
    // don't use lw_taskteam after linking. content was swaped

    /* OMPT implicit task begin */
    implicit_task_data = OMPT_CUR_TASK_DATA(this_thr);
    if (ompt_enabled.ompt_callback_implicit_task) {
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr),
          OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
      OMPT_CUR_TASK_INFO(this_thr)
          ->thread_num = __kmp_tid_from_gtid(global_tid);
    }

    /* OMPT state */
    this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
    OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
  }
#endif
}

/* most of the work for a fork */
/* return true if we really went parallel, false if serialized */
int __kmp_fork_call(ident_t *loc, int gtid,
                    enum fork_context_e call_context, // Intel, GNU, ...
                    kmp_int32 argc, microtask_t microtask, launch_t invoker,
                    kmp_va_list ap) {
  void **argv;
  int i;
  int master_tid;
  int master_this_cons;
  kmp_team_t *team;
  kmp_team_t *parent_team;
  kmp_info_t *master_th;
  kmp_root_t *root;
  int nthreads;
  int master_active;
  int master_set_numthreads;
  int level;
  int active_level;
  int teams_level;
#if KMP_NESTED_HOT_TEAMS
  kmp_hot_team_ptr_t **p_hot_teams;
#endif
  { // KMP_TIME_BLOCK
    KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call);
    KMP_COUNT_VALUE(OMP_PARALLEL_args, argc);

    KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid));
    if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) {
      /* Some systems prefer the stack for the root thread(s) to start with */
      /* some gap from the parent stack to prevent false sharing. */
      void *dummy = KMP_ALLOCA(__kmp_stkpadding);
      /* These 2 lines below are so this does not get optimized out */
      if (__kmp_stkpadding > KMP_MAX_STKPADDING)
        __kmp_stkpadding += (short)((kmp_int64)dummy);
    }

    /* initialize if needed */
    KMP_DEBUG_ASSERT(
        __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown
    if (!TCR_4(__kmp_init_parallel))
      __kmp_parallel_initialize();
    __kmp_resume_if_soft_paused();

    /* setup current data */
    master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with
    // shutdown
    parent_team = master_th->th.th_team;
    master_tid = master_th->th.th_info.ds.ds_tid;
    master_this_cons = master_th->th.th_local.this_construct;
    root = master_th->th.th_root;
    master_active = root->r.r_active;
    master_set_numthreads = master_th->th.th_set_nproc;

#if OMPT_SUPPORT
    ompt_data_t ompt_parallel_data = ompt_data_none;
    ompt_data_t *parent_task_data;
    ompt_frame_t *ompt_frame;
    ompt_data_t *implicit_task_data;
    void *return_address = NULL;

    if (ompt_enabled.enabled) {
      __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame,
                                    NULL, NULL);
      return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
    }
#endif

    // Nested level will be an index in the nested nthreads array
    level = parent_team->t.t_level;
    // used to launch non-serial teams even if nested is not allowed
    active_level = parent_team->t.t_active_level;
    // needed to check nesting inside the teams
    teams_level = master_th->th.th_teams_level;
#if KMP_NESTED_HOT_TEAMS
    p_hot_teams = &master_th->th.th_hot_teams;
    if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) {
      *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate(
          sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level);
      (*p_hot_teams)[0].hot_team = root->r.r_hot_team;
      // it is either actual or not needed (when active_level > 0)
      (*p_hot_teams)[0].hot_team_nth = 1;
    }
#endif

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      if (ompt_enabled.ompt_callback_parallel_begin) {
        int team_size = master_set_numthreads
                            ? master_set_numthreads
                            : get__nproc_2(parent_team, master_tid);
        int flags = OMPT_INVOKER(call_context) |
                    ((microtask == (microtask_t)__kmp_teams_master)
                         ? ompt_parallel_league
                         : ompt_parallel_team);
        ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
            parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags,
            return_address);
      }
      master_th->th.ompt_thread_info.state = ompt_state_overhead;
    }
#endif

    master_th->th.th_ident = loc;

    if (master_th->th.th_teams_microtask && ap &&
        microtask != (microtask_t)__kmp_teams_master && level == teams_level) {
      // AC: This is start of parallel that is nested inside teams construct.
      // The team is actual (hot), all workers are ready at the fork barrier.
      // No lock needed to initialize the team a bit, then free workers.
      parent_team->t.t_ident = loc;
      __kmp_alloc_argv_entries(argc, parent_team, TRUE);
      parent_team->t.t_argc = argc;
      argv = (void **)parent_team->t.t_argv;
      for (i = argc - 1; i >= 0; --i)
        *argv++ = va_arg(kmp_va_deref(ap), void *);
      // Increment our nested depth levels, but not increase the serialization
      if (parent_team == master_th->th.th_serial_team) {
        // AC: we are in serialized parallel
        __kmpc_serialized_parallel(loc, gtid);
        KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1);

        if (call_context == fork_context_gnu) {
          // AC: need to decrement t_serialized for enquiry functions to work
          // correctly, will restore at join time
          parent_team->t.t_serialized--;
          return TRUE;
        }

#if OMPT_SUPPORT
        void *dummy;
        void **exit_frame_p;

        ompt_lw_taskteam_t lw_taskteam;

        if (ompt_enabled.enabled) {
          __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                  &ompt_parallel_data, return_address);
          exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr);

          __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
          // don't use lw_taskteam after linking. content was swaped

          /* OMPT implicit task begin */
          implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
          if (ompt_enabled.ompt_callback_implicit_task) {
            OMPT_CUR_TASK_INFO(master_th)
                ->thread_num = __kmp_tid_from_gtid(gtid);
            ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
                implicit_task_data, 1,
                OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
          }

          /* OMPT state */
          master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
        } else {
          exit_frame_p = &dummy;
        }
#endif
        // AC: need to decrement t_serialized for enquiry functions to work
        // correctly, will restore at join time
        parent_team->t.t_serialized--;

        {
          KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
          KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
          __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
#if OMPT_SUPPORT
                                 ,
                                 exit_frame_p
#endif
                                 );
        }

#if OMPT_SUPPORT
        if (ompt_enabled.enabled) {
          *exit_frame_p = NULL;
          OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none;
          if (ompt_enabled.ompt_callback_implicit_task) {
            ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                ompt_scope_end, NULL, implicit_task_data, 1,
                OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
          }
          ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
          __ompt_lw_taskteam_unlink(master_th);
          if (ompt_enabled.ompt_callback_parallel_end) {
            ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th),
                OMPT_INVOKER(call_context) | ompt_parallel_team,
                return_address);
          }
          master_th->th.ompt_thread_info.state = ompt_state_overhead;
        }
#endif
        return TRUE;
      }

      parent_team->t.t_pkfn = microtask;
      parent_team->t.t_invoke = invoker;
      KMP_ATOMIC_INC(&root->r.r_in_parallel);
      parent_team->t.t_active_level++;
      parent_team->t.t_level++;
      parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save

#if OMPT_SUPPORT
      if (ompt_enabled.enabled) {
        ompt_lw_taskteam_t lw_taskteam;
        __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                &ompt_parallel_data, return_address);
        __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true);
      }
#endif

      /* Change number of threads in the team if requested */
      if (master_set_numthreads) { // The parallel has num_threads clause
        if (master_set_numthreads < master_th->th.th_teams_size.nth) {
          // AC: only can reduce number of threads dynamically, can't increase
          kmp_info_t **other_threads = parent_team->t.t_threads;
          parent_team->t.t_nproc = master_set_numthreads;
          for (i = 0; i < master_set_numthreads; ++i) {
            other_threads[i]->th.th_team_nproc = master_set_numthreads;
          }
          // Keep extra threads hot in the team for possible next parallels
        }
        master_th->th.th_set_nproc = 0;
      }

#if USE_DEBUGGER
      if (__kmp_debugging) { // Let debugger override number of threads.
        int nth = __kmp_omp_num_threads(loc);
        if (nth > 0) { // 0 means debugger doesn't want to change num threads
          master_set_numthreads = nth;
        }
      }
#endif

#if USE_ITT_BUILD && USE_ITT_NOTIFY
      if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) ||
           KMP_ITT_DEBUG) &&
          __kmp_forkjoin_frames_mode == 3 &&
          parent_team->t.t_active_level == 1 // only report frames at level 1
          && master_th->th.th_teams_size.nteams == 1) {
        kmp_uint64 tmp_time = __itt_get_timestamp();
        master_th->th.th_frame_time = tmp_time;
        parent_team->t.t_region_time = tmp_time;
      }
      if (__itt_stack_caller_create_ptr) {
        // create new stack stitching id before entering fork barrier
        parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
      }
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */

      KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, "
                    "master_th=%p, gtid=%d\n",
                    root, parent_team, master_th, gtid));
      __kmp_internal_fork(loc, gtid, parent_team);
      KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, "
                    "master_th=%p, gtid=%d\n",
                    root, parent_team, master_th, gtid));

      if (call_context == fork_context_gnu)
        return TRUE;

      /* Invoke microtask for MASTER thread */
      KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
                    parent_team->t.t_id, parent_team->t.t_pkfn));

      if (!parent_team->t.t_invoke(gtid)) {
        KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread");
      }
      KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
                    parent_team->t.t_id, parent_team->t.t_pkfn));
      KMP_MB(); /* Flush all pending memory write invalidates.  */

      KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));

      return TRUE;
    } // Parallel closely nested in teams construct

#if KMP_DEBUG
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
                       parent_team->t.t_task_team[master_th->th.th_task_state]);
    }
#endif

    if (parent_team->t.t_active_level >=
        master_th->th.th_current_task->td_icvs.max_active_levels) {
      nthreads = 1;
    } else {
      int enter_teams = ((ap == NULL && active_level == 0) ||
                         (ap && teams_level > 0 && teams_level == level));
      nthreads =
          master_set_numthreads
              ? master_set_numthreads
              : get__nproc_2(
                    parent_team,
                    master_tid); // TODO: get nproc directly from current task

      // Check if we need to take forkjoin lock? (no need for serialized
      // parallel out of teams construct). This code moved here from
      // __kmp_reserve_threads() to speedup nested serialized parallels.
      if (nthreads > 1) {
        if ((get__max_active_levels(master_th) == 1 &&
             (root->r.r_in_parallel && !enter_teams)) ||
            (__kmp_library == library_serial)) {
          KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d"
                        " threads\n",
                        gtid, nthreads));
          nthreads = 1;
        }
      }
      if (nthreads > 1) {
        /* determine how many new threads we can use */
        __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
        /* AC: If we execute teams from parallel region (on host), then teams
           should be created but each can only have 1 thread if nesting is
           disabled. If teams called from serial region, then teams and their
           threads should be created regardless of the nesting setting. */
        nthreads = __kmp_reserve_threads(root, parent_team, master_tid,
                                         nthreads, enter_teams);
        if (nthreads == 1) {
          // Free lock for single thread execution here; for multi-thread
          // execution it will be freed later after team of threads created
          // and initialized
          __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
        }
      }
    }
    KMP_DEBUG_ASSERT(nthreads > 0);

    // If we temporarily changed the set number of threads then restore it now
    master_th->th.th_set_nproc = 0;

    /* create a serialized parallel region? */
    if (nthreads == 1) {
/* josh todo: hypothetical question: what do we do for OS X*? */
#if KMP_OS_LINUX &&                                                            \
    (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
      void *args[argc];
#else
      void **args = (void **)KMP_ALLOCA(argc * sizeof(void *));
#endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
          KMP_ARCH_AARCH64) */

      KA_TRACE(20,
               ("__kmp_fork_call: T#%d serializing parallel region\n", gtid));

      __kmpc_serialized_parallel(loc, gtid);

      if (call_context == fork_context_intel) {
        /* TODO this sucks, use the compiler itself to pass args! :) */
        master_th->th.th_serial_team->t.t_ident = loc;
        if (!ap) {
          // revert change made in __kmpc_serialized_parallel()
          master_th->th.th_serial_team->t.t_level--;
// Get args from parent team for teams construct

#if OMPT_SUPPORT
          void *dummy;
          void **exit_frame_p;
          ompt_task_info_t *task_info;

          ompt_lw_taskteam_t lw_taskteam;

          if (ompt_enabled.enabled) {
            __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                    &ompt_parallel_data, return_address);

            __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
            // don't use lw_taskteam after linking. content was swaped

            task_info = OMPT_CUR_TASK_INFO(master_th);
            exit_frame_p = &(task_info->frame.exit_frame.ptr);
            if (ompt_enabled.ompt_callback_implicit_task) {
              OMPT_CUR_TASK_INFO(master_th)
                  ->thread_num = __kmp_tid_from_gtid(gtid);
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
                  &(task_info->task_data), 1,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num,
                  ompt_task_implicit);
            }

            /* OMPT state */
            master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
          } else {
            exit_frame_p = &dummy;
          }
#endif

          {
            KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
            KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
            __kmp_invoke_microtask(microtask, gtid, 0, argc,
                                   parent_team->t.t_argv
#if OMPT_SUPPORT
                                   ,
                                   exit_frame_p
#endif
                                   );
          }

#if OMPT_SUPPORT
          if (ompt_enabled.enabled) {
            *exit_frame_p = NULL;
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_end, NULL, &(task_info->task_data), 1,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num,
                  ompt_task_implicit);
            }
            ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
            __ompt_lw_taskteam_unlink(master_th);
            if (ompt_enabled.ompt_callback_parallel_end) {
              ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                  &ompt_parallel_data, parent_task_data,
                  OMPT_INVOKER(call_context) | ompt_parallel_team,
                  return_address);
            }
            master_th->th.ompt_thread_info.state = ompt_state_overhead;
          }
#endif
        } else if (microtask == (microtask_t)__kmp_teams_master) {
          KMP_DEBUG_ASSERT(master_th->th.th_team ==
                           master_th->th.th_serial_team);
          team = master_th->th.th_team;
          // team->t.t_pkfn = microtask;
          team->t.t_invoke = invoker;
          __kmp_alloc_argv_entries(argc, team, TRUE);
          team->t.t_argc = argc;
          argv = (void **)team->t.t_argv;
          if (ap) {
            for (i = argc - 1; i >= 0; --i)
              *argv++ = va_arg(kmp_va_deref(ap), void *);
          } else {
            for (i = 0; i < argc; ++i)
              // Get args from parent team for teams construct
              argv[i] = parent_team->t.t_argv[i];
          }
          // AC: revert change made in __kmpc_serialized_parallel()
          //     because initial code in teams should have level=0
          team->t.t_level--;
          // AC: call special invoker for outer "parallel" of teams construct
          invoker(gtid);
#if OMPT_SUPPORT
          if (ompt_enabled.enabled) {
            ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th);
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_end, NULL, &(task_info->task_data), 0,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial);
            }
            if (ompt_enabled.ompt_callback_parallel_end) {
              ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                  &ompt_parallel_data, parent_task_data,
                  OMPT_INVOKER(call_context) | ompt_parallel_league,
                  return_address);
            }
            master_th->th.ompt_thread_info.state = ompt_state_overhead;
          }
#endif
        } else {
          argv = args;
          for (i = argc - 1; i >= 0; --i)
            *argv++ = va_arg(kmp_va_deref(ap), void *);
          KMP_MB();

#if OMPT_SUPPORT
          void *dummy;
          void **exit_frame_p;
          ompt_task_info_t *task_info;

          ompt_lw_taskteam_t lw_taskteam;

          if (ompt_enabled.enabled) {
            __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
                                    &ompt_parallel_data, return_address);
            __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
            // don't use lw_taskteam after linking. content was swaped
            task_info = OMPT_CUR_TASK_INFO(master_th);
            exit_frame_p = &(task_info->frame.exit_frame.ptr);

            /* OMPT implicit task begin */
            implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
                  implicit_task_data, 1, __kmp_tid_from_gtid(gtid),
                  ompt_task_implicit);
              OMPT_CUR_TASK_INFO(master_th)
                  ->thread_num = __kmp_tid_from_gtid(gtid);
            }

            /* OMPT state */
            master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
          } else {
            exit_frame_p = &dummy;
          }
#endif

          {
            KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
            KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
            __kmp_invoke_microtask(microtask, gtid, 0, argc, args
#if OMPT_SUPPORT
                                   ,
                                   exit_frame_p
#endif
                                   );
          }

#if OMPT_SUPPORT
          if (ompt_enabled.enabled) {
            *exit_frame_p = NULL;
            if (ompt_enabled.ompt_callback_implicit_task) {
              ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
                  ompt_scope_end, NULL, &(task_info->task_data), 1,
                  OMPT_CUR_TASK_INFO(master_th)->thread_num,
                  ompt_task_implicit);
            }

            ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
            __ompt_lw_taskteam_unlink(master_th);
            if (ompt_enabled.ompt_callback_parallel_end) {
              ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
                  &ompt_parallel_data, parent_task_data,
                  OMPT_INVOKER(call_context) | ompt_parallel_team,
                  return_address);
            }
            master_th->th.ompt_thread_info.state = ompt_state_overhead;
          }
#endif
        }
      } else if (call_context == fork_context_gnu) {
#if OMPT_SUPPORT
        ompt_lw_taskteam_t lwt;
        __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data,
                                return_address);

        lwt.ompt_task_info.frame.exit_frame = ompt_data_none;
        __ompt_lw_taskteam_link(&lwt, master_th, 1);
// don't use lw_taskteam after linking. content was swaped
#endif

        // we were called from GNU native code
        KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
        return FALSE;
      } else {
        KMP_ASSERT2(call_context < fork_context_last,
                    "__kmp_fork_call: unknown fork_context parameter");
      }

      KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
      KMP_MB();
      return FALSE;
    } // if (nthreads == 1)

    // GEH: only modify the executing flag in the case when not serialized
    //      serialized case is handled in kmpc_serialized_parallel
    KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
                  "curtask=%p, curtask_max_aclevel=%d\n",
                  parent_team->t.t_active_level, master_th,
                  master_th->th.th_current_task,
                  master_th->th.th_current_task->td_icvs.max_active_levels));
    // TODO: GEH - cannot do this assertion because root thread not set up as
    // executing
    // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
    master_th->th.th_current_task->td_flags.executing = 0;

    if (!master_th->th.th_teams_microtask || level > teams_level) {
      /* Increment our nested depth level */
      KMP_ATOMIC_INC(&root->r.r_in_parallel);
    }

    // See if we need to make a copy of the ICVs.
    int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc;
    if ((level + 1 < __kmp_nested_nth.used) &&
        (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) {
      nthreads_icv = __kmp_nested_nth.nth[level + 1];
    } else {
      nthreads_icv = 0; // don't update
    }

    // Figure out the proc_bind_policy for the new team.
    kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
    kmp_proc_bind_t proc_bind_icv =
        proc_bind_default; // proc_bind_default means don't update
    if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
      proc_bind = proc_bind_false;
    } else {
      if (proc_bind == proc_bind_default) {
        // No proc_bind clause specified; use current proc-bind-var for this
        // parallel region
        proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
      }
      /* else: The proc_bind policy was specified explicitly on parallel clause.
         This overrides proc-bind-var for this parallel region, but does not
         change proc-bind-var. */
      // Figure the value of proc-bind-var for the child threads.
      if ((level + 1 < __kmp_nested_proc_bind.used) &&
          (__kmp_nested_proc_bind.bind_types[level + 1] !=
           master_th->th.th_current_task->td_icvs.proc_bind)) {
        proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
      }
    }

    // Reset for next parallel region
    master_th->th.th_set_proc_bind = proc_bind_default;

    if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) {
      kmp_internal_control_t new_icvs;
      copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs);
      new_icvs.next = NULL;
      if (nthreads_icv > 0) {
        new_icvs.nproc = nthreads_icv;
      }
      if (proc_bind_icv != proc_bind_default) {
        new_icvs.proc_bind = proc_bind_icv;
      }

      /* allocate a new parallel team */
      KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
      team = __kmp_allocate_team(root, nthreads, nthreads,
#if OMPT_SUPPORT
                                 ompt_parallel_data,
#endif
                                 proc_bind, &new_icvs,
                                 argc USE_NESTED_HOT_ARG(master_th));
    } else {
      /* allocate a new parallel team */
      KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
      team = __kmp_allocate_team(root, nthreads, nthreads,
#if OMPT_SUPPORT
                                 ompt_parallel_data,
#endif
                                 proc_bind,
                                 &master_th->th.th_current_task->td_icvs,
                                 argc USE_NESTED_HOT_ARG(master_th));
    }
    KF_TRACE(
        10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team));

    /* setup the new team */
    KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid);
    KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons);
    KMP_CHECK_UPDATE(team->t.t_ident, loc);
    KMP_CHECK_UPDATE(team->t.t_parent, parent_team);
    KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask);
#if OMPT_SUPPORT
    KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address,
                          return_address);
#endif
    KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe
    // TODO: parent_team->t.t_level == INT_MAX ???
    if (!master_th->th.th_teams_microtask || level > teams_level) {
      int new_level = parent_team->t.t_level + 1;
      KMP_CHECK_UPDATE(team->t.t_level, new_level);
      new_level = parent_team->t.t_active_level + 1;
      KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
    } else {
      // AC: Do not increase parallel level at start of the teams construct
      int new_level = parent_team->t.t_level;
      KMP_CHECK_UPDATE(team->t.t_level, new_level);
      new_level = parent_team->t.t_active_level;
      KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
    }
    kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid);
    // set master's schedule as new run-time schedule
    KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);

    KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq);
    KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator);

    // Update the floating point rounding in the team if required.
    propagateFPControl(team);

    if (__kmp_tasking_mode != tskm_immediate_exec) {
      // Set master's task team to team's task team. Unless this is hot team, it
      // should be NULL.
      KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
                       parent_team->t.t_task_team[master_th->th.th_task_state]);
      KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team "
                    "%p, new task_team %p / team %p\n",
                    __kmp_gtid_from_thread(master_th),
                    master_th->th.th_task_team, parent_team,
                    team->t.t_task_team[master_th->th.th_task_state], team));

      if (active_level || master_th->th.th_task_team) {
        // Take a memo of master's task_state
        KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
        if (master_th->th.th_task_state_top >=
            master_th->th.th_task_state_stack_sz) { // increase size
          kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz;
          kmp_uint8 *old_stack, *new_stack;
          kmp_uint32 i;
          new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
          for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) {
            new_stack[i] = master_th->th.th_task_state_memo_stack[i];
          }
          for (i = master_th->th.th_task_state_stack_sz; i < new_size;
               ++i) { // zero-init rest of stack
            new_stack[i] = 0;
          }
          old_stack = master_th->th.th_task_state_memo_stack;
          master_th->th.th_task_state_memo_stack = new_stack;
          master_th->th.th_task_state_stack_sz = new_size;
          __kmp_free(old_stack);
        }
        // Store master's task_state on stack
        master_th->th
            .th_task_state_memo_stack[master_th->th.th_task_state_top] =
            master_th->th.th_task_state;
        master_th->th.th_task_state_top++;
#if KMP_NESTED_HOT_TEAMS
        if (master_th->th.th_hot_teams &&
            active_level < __kmp_hot_teams_max_level &&
            team == master_th->th.th_hot_teams[active_level].hot_team) {
          // Restore master's nested state if nested hot team
          master_th->th.th_task_state =
              master_th->th
                  .th_task_state_memo_stack[master_th->th.th_task_state_top];
        } else {
#endif
          master_th->th.th_task_state = 0;
#if KMP_NESTED_HOT_TEAMS
        }
#endif
      }
#if !KMP_NESTED_HOT_TEAMS
      KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) ||
                       (team == root->r.r_hot_team));
#endif
    }

    KA_TRACE(
        20,
        ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
         gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id,
         team->t.t_nproc));
    KMP_DEBUG_ASSERT(team != root->r.r_hot_team ||
                     (team->t.t_master_tid == 0 &&
                      (team->t.t_parent == root->r.r_root_team ||
                       team->t.t_parent->t.t_serialized)));
    KMP_MB();

    /* now, setup the arguments */
    argv = (void **)team->t.t_argv;
    if (ap) {
      for (i = argc - 1; i >= 0; --i) {
        void *new_argv = va_arg(kmp_va_deref(ap), void *);
        KMP_CHECK_UPDATE(*argv, new_argv);
        argv++;
      }
    } else {
      for (i = 0; i < argc; ++i) {
        // Get args from parent team for teams construct
        KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]);
      }
    }

    /* now actually fork the threads */
    KMP_CHECK_UPDATE(team->t.t_master_active, master_active);
    if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong
      root->r.r_active = TRUE;

    __kmp_fork_team_threads(root, team, master_th, gtid);
    __kmp_setup_icv_copy(team, nthreads,
                         &master_th->th.th_current_task->td_icvs, loc);

#if OMPT_SUPPORT
    master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
#endif

    __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

#if USE_ITT_BUILD
    if (team->t.t_active_level == 1 // only report frames at level 1
        && !master_th->th.th_teams_microtask) { // not in teams construct
#if USE_ITT_NOTIFY
      if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
          (__kmp_forkjoin_frames_mode == 3 ||
           __kmp_forkjoin_frames_mode == 1)) {
        kmp_uint64 tmp_time = 0;
        if (__itt_get_timestamp_ptr)
          tmp_time = __itt_get_timestamp();
        // Internal fork - report frame begin
        master_th->th.th_frame_time = tmp_time;
        if (__kmp_forkjoin_frames_mode == 3)
          team->t.t_region_time = tmp_time;
      } else
// only one notification scheme (either "submit" or "forking/joined", not both)
#endif /* USE_ITT_NOTIFY */
          if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) &&
              __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) {
        // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
        __kmp_itt_region_forking(gtid, team->t.t_nproc, 0);
      }
    }
#endif /* USE_ITT_BUILD */

    /* now go on and do the work */
    KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team);
    KMP_MB();
    KF_TRACE(10,
             ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
              root, team, master_th, gtid));

#if USE_ITT_BUILD
    if (__itt_stack_caller_create_ptr) {
      team->t.t_stack_id =
          __kmp_itt_stack_caller_create(); // create new stack stitching id
      // before entering fork barrier
    }
#endif /* USE_ITT_BUILD */

    // AC: skip __kmp_internal_fork at teams construct, let only master
    // threads execute
    if (ap) {
      __kmp_internal_fork(loc, gtid, team);
      KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
                    "master_th=%p, gtid=%d\n",
                    root, team, master_th, gtid));
    }

    if (call_context == fork_context_gnu) {
      KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
      return TRUE;
    }

    /* Invoke microtask for MASTER thread */
    KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
                  team->t.t_id, team->t.t_pkfn));
  } // END of timer KMP_fork_call block

#if KMP_STATS_ENABLED
  // If beginning a teams construct, then change thread state
  stats_state_e previous_state = KMP_GET_THREAD_STATE();
  if (!ap) {
    KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION);
  }
#endif

  if (!team->t.t_invoke(gtid)) {
    KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread");
  }

#if KMP_STATS_ENABLED
  // If was beginning of a teams construct, then reset thread state
  if (!ap) {
    KMP_SET_THREAD_STATE(previous_state);
  }
#endif

  KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
                team->t.t_id, team->t.t_pkfn));
  KMP_MB(); /* Flush all pending memory write invalidates.  */

  KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));

#if OMPT_SUPPORT
  if (ompt_enabled.enabled) {
    master_th->th.ompt_thread_info.state = ompt_state_overhead;
  }
#endif

  return TRUE;
}

#if OMPT_SUPPORT
static inline void __kmp_join_restore_state(kmp_info_t *thread,
                                            kmp_team_t *team) {
  // restore state outside the region
  thread->th.ompt_thread_info.state =
      ((team->t.t_serialized) ? ompt_state_work_serial
                              : ompt_state_work_parallel);
}

static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread,
                                   kmp_team_t *team, ompt_data_t *parallel_data,
                                   int flags, void *codeptr) {
  ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
  if (ompt_enabled.ompt_callback_parallel_end) {
    ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
        parallel_data, &(task_info->task_data), flags, codeptr);
  }

  task_info->frame.enter_frame = ompt_data_none;
  __kmp_join_restore_state(thread, team);
}
#endif

void __kmp_join_call(ident_t *loc, int gtid
#if OMPT_SUPPORT
                     ,
                     enum fork_context_e fork_context
#endif
                     ,
                     int exit_teams) {
  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call);
  kmp_team_t *team;
  kmp_team_t *parent_team;
  kmp_info_t *master_th;
  kmp_root_t *root;
  int master_active;

  KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid));

  /* setup current data */
  master_th = __kmp_threads[gtid];
  root = master_th->th.th_root;
  team = master_th->th.th_team;
  parent_team = team->t.t_parent;

  master_th->th.th_ident = loc;

#if OMPT_SUPPORT
  void *team_microtask = (void *)team->t.t_pkfn;
  // For GOMP interface with serialized parallel, need the
  // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task
  // and end-parallel events.
  if (ompt_enabled.enabled &&
      !(team->t.t_serialized && fork_context == fork_context_gnu)) {
    master_th->th.ompt_thread_info.state = ompt_state_overhead;
  }
#endif

#if KMP_DEBUG
  if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) {
    KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
                  "th_task_team = %p\n",
                  __kmp_gtid_from_thread(master_th), team,
                  team->t.t_task_team[master_th->th.th_task_state],
                  master_th->th.th_task_team));
    KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
                     team->t.t_task_team[master_th->th.th_task_state]);
  }
#endif

  if (team->t.t_serialized) {
    if (master_th->th.th_teams_microtask) {
      // We are in teams construct
      int level = team->t.t_level;
      int tlevel = master_th->th.th_teams_level;
      if (level == tlevel) {
        // AC: we haven't incremented it earlier at start of teams construct,
        //     so do it here - at the end of teams construct
        team->t.t_level++;
      } else if (level == tlevel + 1) {
        // AC: we are exiting parallel inside teams, need to increment
        // serialization in order to restore it in the next call to
        // __kmpc_end_serialized_parallel
        team->t.t_serialized++;
      }
    }
    __kmpc_end_serialized_parallel(loc, gtid);

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      __kmp_join_restore_state(master_th, parent_team);
    }
#endif

    return;
  }

  master_active = team->t.t_master_active;

  if (!exit_teams) {
    // AC: No barrier for internal teams at exit from teams construct.
    //     But there is barrier for external team (league).
    __kmp_internal_join(loc, gtid, team);
  } else {
    master_th->th.th_task_state =
        0; // AC: no tasking in teams (out of any parallel)
  }

  KMP_MB();

#if OMPT_SUPPORT
  ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data);
  void *codeptr = team->t.ompt_team_info.master_return_address;
#endif

#if USE_ITT_BUILD
  if (__itt_stack_caller_create_ptr) {
    // destroy the stack stitching id after join barrier
    __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id);
  }
  // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
  if (team->t.t_active_level == 1 &&
      (!master_th->th.th_teams_microtask || /* not in teams construct */
       master_th->th.th_teams_size.nteams == 1)) {
    master_th->th.th_ident = loc;
    // only one notification scheme (either "submit" or "forking/joined", not
    // both)
    if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
        __kmp_forkjoin_frames_mode == 3)
      __kmp_itt_frame_submit(gtid, team->t.t_region_time,
                             master_th->th.th_frame_time, 0, loc,
                             master_th->th.th_team_nproc, 1);
    else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) &&
             !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames)
      __kmp_itt_region_joined(gtid);
  } // active_level == 1
#endif /* USE_ITT_BUILD */

  if (master_th->th.th_teams_microtask && !exit_teams &&
      team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
      team->t.t_level == master_th->th.th_teams_level + 1) {
// AC: We need to leave the team structure intact at the end of parallel
// inside the teams construct, so that at the next parallel same (hot) team
// works, only adjust nesting levels
#if OMPT_SUPPORT
    ompt_data_t ompt_parallel_data = ompt_data_none;
    if (ompt_enabled.enabled) {
      ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
      if (ompt_enabled.ompt_callback_implicit_task) {
        int ompt_team_size = team->t.t_nproc;
        ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
            ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
            OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
      }
      task_info->frame.exit_frame = ompt_data_none;
      task_info->task_data = ompt_data_none;
      ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
      __ompt_lw_taskteam_unlink(master_th);
    }
#endif
    /* Decrement our nested depth level */
    team->t.t_level--;
    team->t.t_active_level--;
    KMP_ATOMIC_DEC(&root->r.r_in_parallel);

    // Restore number of threads in the team if needed. This code relies on
    // the proper adjustment of th_teams_size.nth after the fork in
    // __kmp_teams_master on each teams master in the case that
    // __kmp_reserve_threads reduced it.
    if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) {
      int old_num = master_th->th.th_team_nproc;
      int new_num = master_th->th.th_teams_size.nth;
      kmp_info_t **other_threads = team->t.t_threads;
      team->t.t_nproc = new_num;
      for (int i = 0; i < old_num; ++i) {
        other_threads[i]->th.th_team_nproc = new_num;
      }
      // Adjust states of non-used threads of the team
      for (int i = old_num; i < new_num; ++i) {
        // Re-initialize thread's barrier data.
        KMP_DEBUG_ASSERT(other_threads[i]);
        kmp_balign_t *balign = other_threads[i]->th.th_bar;
        for (int b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
        if (__kmp_tasking_mode != tskm_immediate_exec) {
          // Synchronize thread's task state
          other_threads[i]->th.th_task_state = master_th->th.th_task_state;
        }
      }
    }

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data,
                      OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr);
    }
#endif

    return;
  }

  /* do cleanup and restore the parent team */
  master_th->th.th_info.ds.ds_tid = team->t.t_master_tid;
  master_th->th.th_local.this_construct = team->t.t_master_this_cons;

  master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid];

  /* jc: The following lock has instructions with REL and ACQ semantics,
     separating the parallel user code called in this parallel region
     from the serial user code called after this function returns. */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

  if (!master_th->th.th_teams_microtask ||
      team->t.t_level > master_th->th.th_teams_level) {
    /* Decrement our nested depth level */
    KMP_ATOMIC_DEC(&root->r.r_in_parallel);
  }
  KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0);

#if OMPT_SUPPORT
  if (ompt_enabled.enabled) {
    ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
    if (ompt_enabled.ompt_callback_implicit_task) {
      int flags = (team_microtask == (void *)__kmp_teams_master)
                      ? ompt_task_initial
                      : ompt_task_implicit;
      int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc;
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
          OMPT_CUR_TASK_INFO(master_th)->thread_num, flags);
    }
    task_info->frame.exit_frame = ompt_data_none;
    task_info->task_data = ompt_data_none;
  }
#endif

  KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
                master_th, team));
  __kmp_pop_current_task_from_thread(master_th);

#if KMP_AFFINITY_SUPPORTED
  // Restore master thread's partition.
  master_th->th.th_first_place = team->t.t_first_place;
  master_th->th.th_last_place = team->t.t_last_place;
#endif // KMP_AFFINITY_SUPPORTED
  master_th->th.th_def_allocator = team->t.t_def_allocator;

  updateHWFPControl(team);

  if (root->r.r_active != master_active)
    root->r.r_active = master_active;

  __kmp_free_team(root, team USE_NESTED_HOT_ARG(
                            master_th)); // this will free worker threads

  /* this race was fun to find. make sure the following is in the critical
     region otherwise assertions may fail occasionally since the old team may be
     reallocated and the hierarchy appears inconsistent. it is actually safe to
     run and won't cause any bugs, but will cause those assertion failures. it's
     only one deref&assign so might as well put this in the critical region */
  master_th->th.th_team = parent_team;
  master_th->th.th_team_nproc = parent_team->t.t_nproc;
  master_th->th.th_team_master = parent_team->t.t_threads[0];
  master_th->th.th_team_serialized = parent_team->t.t_serialized;

  /* restore serialized team, if need be */
  if (parent_team->t.t_serialized &&
      parent_team != master_th->th.th_serial_team &&
      parent_team != root->r.r_root_team) {
    __kmp_free_team(root,
                    master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL));
    master_th->th.th_serial_team = parent_team;
  }

  if (__kmp_tasking_mode != tskm_immediate_exec) {
    if (master_th->th.th_task_state_top >
        0) { // Restore task state from memo stack
      KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
      // Remember master's state if we re-use this nested hot team
      master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] =
          master_th->th.th_task_state;
      --master_th->th.th_task_state_top; // pop
      // Now restore state at this level
      master_th->th.th_task_state =
          master_th->th
              .th_task_state_memo_stack[master_th->th.th_task_state_top];
    }
    // Copy the task team from the parent team to the master thread
    master_th->th.th_task_team =
        parent_team->t.t_task_team[master_th->th.th_task_state];
    KA_TRACE(20,
             ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n",
              __kmp_gtid_from_thread(master_th), master_th->th.th_task_team,
              parent_team));
  }

  // TODO: GEH - cannot do this assertion because root thread not set up as
  // executing
  // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
  master_th->th.th_current_task->td_flags.executing = 1;

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

#if OMPT_SUPPORT
  int flags =
      OMPT_INVOKER(fork_context) |
      ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league
                                                      : ompt_parallel_team);
  if (ompt_enabled.enabled) {
    __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags,
                    codeptr);
  }
#endif

  KMP_MB();
  KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid));
}

/* Check whether we should push an internal control record onto the
   serial team stack.  If so, do it.  */
void __kmp_save_internal_controls(kmp_info_t *thread) {

  if (thread->th.th_team != thread->th.th_serial_team) {
    return;
  }
  if (thread->th.th_team->t.t_serialized > 1) {
    int push = 0;

    if (thread->th.th_team->t.t_control_stack_top == NULL) {
      push = 1;
    } else {
      if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level !=
          thread->th.th_team->t.t_serialized) {
        push = 1;
      }
    }
    if (push) { /* push a record on the serial team's stack */
      kmp_internal_control_t *control =
          (kmp_internal_control_t *)__kmp_allocate(
              sizeof(kmp_internal_control_t));

      copy_icvs(control, &thread->th.th_current_task->td_icvs);

      control->serial_nesting_level = thread->th.th_team->t.t_serialized;

      control->next = thread->th.th_team->t.t_control_stack_top;
      thread->th.th_team->t.t_control_stack_top = control;
    }
  }
}

/* Changes set_nproc */
void __kmp_set_num_threads(int new_nth, int gtid) {
  kmp_info_t *thread;
  kmp_root_t *root;

  KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  if (new_nth < 1)
    new_nth = 1;
  else if (new_nth > __kmp_max_nth)
    new_nth = __kmp_max_nth;

  KMP_COUNT_VALUE(OMP_set_numthreads, new_nth);
  thread = __kmp_threads[gtid];
  if (thread->th.th_current_task->td_icvs.nproc == new_nth)
    return; // nothing to do

  __kmp_save_internal_controls(thread);

  set__nproc(thread, new_nth);

  // If this omp_set_num_threads() call will cause the hot team size to be
  // reduced (in the absence of a num_threads clause), then reduce it now,
  // rather than waiting for the next parallel region.
  root = thread->th.th_root;
  if (__kmp_init_parallel && (!root->r.r_active) &&
      (root->r.r_hot_team->t.t_nproc > new_nth)
#if KMP_NESTED_HOT_TEAMS
      && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode
#endif
      ) {
    kmp_team_t *hot_team = root->r.r_hot_team;
    int f;

    __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

    // Release the extra threads we don't need any more.
    for (f = new_nth; f < hot_team->t.t_nproc; f++) {
      KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
      if (__kmp_tasking_mode != tskm_immediate_exec) {
        // When decreasing team size, threads no longer in the team should unref
        // task team.
        hot_team->t.t_threads[f]->th.th_task_team = NULL;
      }
      __kmp_free_thread(hot_team->t.t_threads[f]);
      hot_team->t.t_threads[f] = NULL;
    }
    hot_team->t.t_nproc = new_nth;
#if KMP_NESTED_HOT_TEAMS
    if (thread->th.th_hot_teams) {
      KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team);
      thread->th.th_hot_teams[0].hot_team_nth = new_nth;
    }
#endif

    __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

    // Update the t_nproc field in the threads that are still active.
    for (f = 0; f < new_nth; f++) {
      KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
      hot_team->t.t_threads[f]->th.th_team_nproc = new_nth;
    }
    // Special flag in case omp_set_num_threads() call
    hot_team->t.t_size_changed = -1;
  }
}

/* Changes max_active_levels */
void __kmp_set_max_active_levels(int gtid, int max_active_levels) {
  kmp_info_t *thread;

  KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
                "%d = (%d)\n",
                gtid, max_active_levels));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // validate max_active_levels
  if (max_active_levels < 0) {
    KMP_WARNING(ActiveLevelsNegative, max_active_levels);
    // We ignore this call if the user has specified a negative value.
    // The current setting won't be changed. The last valid setting will be
    // used. A warning will be issued (if warnings are allowed as controlled by
    // the KMP_WARNINGS env var).
    KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
                  "max_active_levels for thread %d = (%d)\n",
                  gtid, max_active_levels));
    return;
  }
  if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) {
    // it's OK, the max_active_levels is within the valid range: [ 0;
    // KMP_MAX_ACTIVE_LEVELS_LIMIT ]
    // We allow a zero value. (implementation defined behavior)
  } else {
    KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels,
                KMP_MAX_ACTIVE_LEVELS_LIMIT);
    max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
    // Current upper limit is MAX_INT. (implementation defined behavior)
    // If the input exceeds the upper limit, we correct the input to be the
    // upper limit. (implementation defined behavior)
    // Actually, the flow should never get here until we use MAX_INT limit.
  }
  KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
                "max_active_levels for thread %d = (%d)\n",
                gtid, max_active_levels));

  thread = __kmp_threads[gtid];

  __kmp_save_internal_controls(thread);

  set__max_active_levels(thread, max_active_levels);
}

/* Gets max_active_levels */
int __kmp_get_max_active_levels(int gtid) {
  kmp_info_t *thread;

  KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  thread = __kmp_threads[gtid];
  KMP_DEBUG_ASSERT(thread->th.th_current_task);
  KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
                "curtask_maxaclevel=%d\n",
                gtid, thread->th.th_current_task,
                thread->th.th_current_task->td_icvs.max_active_levels));
  return thread->th.th_current_task->td_icvs.max_active_levels;
}

KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int));
KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int));

/* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) {
  kmp_info_t *thread;
  kmp_sched_t orig_kind;
  //    kmp_team_t *team;

  KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
                gtid, (int)kind, chunk));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // Check if the kind parameter is valid, correct if needed.
  // Valid parameters should fit in one of two intervals - standard or extended:
  //       <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
  // 2008-01-25: 0,  1 - 4,       5,         100,     101 - 102, 103
  orig_kind = kind;
  kind = __kmp_sched_without_mods(kind);

  if (kind <= kmp_sched_lower || kind >= kmp_sched_upper ||
      (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) {
    // TODO: Hint needs attention in case we change the default schedule.
    __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind),
              KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"),
              __kmp_msg_null);
    kind = kmp_sched_default;
    chunk = 0; // ignore chunk value in case of bad kind
  }

  thread = __kmp_threads[gtid];

  __kmp_save_internal_controls(thread);

  if (kind < kmp_sched_upper_std) {
    if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) {
      // differ static chunked vs. unchunked:  chunk should be invalid to
      // indicate unchunked schedule (which is the default)
      thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static;
    } else {
      thread->th.th_current_task->td_icvs.sched.r_sched_type =
          __kmp_sch_map[kind - kmp_sched_lower - 1];
    }
  } else {
    //    __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
    //    kmp_sched_lower - 2 ];
    thread->th.th_current_task->td_icvs.sched.r_sched_type =
        __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std -
                      kmp_sched_lower - 2];
  }
  __kmp_sched_apply_mods_intkind(
      orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type));
  if (kind == kmp_sched_auto || chunk < 1) {
    // ignore parameter chunk for schedule auto
    thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK;
  } else {
    thread->th.th_current_task->td_icvs.sched.chunk = chunk;
  }
}

/* Gets def_sched_var ICV values */
void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) {
  kmp_info_t *thread;
  enum sched_type th_type;

  KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  thread = __kmp_threads[gtid];

  th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type;
  switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) {
  case kmp_sch_static:
  case kmp_sch_static_greedy:
  case kmp_sch_static_balanced:
    *kind = kmp_sched_static;
    __kmp_sched_apply_mods_stdkind(kind, th_type);
    *chunk = 0; // chunk was not set, try to show this fact via zero value
    return;
  case kmp_sch_static_chunked:
    *kind = kmp_sched_static;
    break;
  case kmp_sch_dynamic_chunked:
    *kind = kmp_sched_dynamic;
    break;
  case kmp_sch_guided_chunked:
  case kmp_sch_guided_iterative_chunked:
  case kmp_sch_guided_analytical_chunked:
    *kind = kmp_sched_guided;
    break;
  case kmp_sch_auto:
    *kind = kmp_sched_auto;
    break;
  case kmp_sch_trapezoidal:
    *kind = kmp_sched_trapezoidal;
    break;
#if KMP_STATIC_STEAL_ENABLED
  case kmp_sch_static_steal:
    *kind = kmp_sched_static_steal;
    break;
#endif
  default:
    KMP_FATAL(UnknownSchedulingType, th_type);
  }

  __kmp_sched_apply_mods_stdkind(kind, th_type);
  *chunk = thread->th.th_current_task->td_icvs.sched.chunk;
}

int __kmp_get_ancestor_thread_num(int gtid, int level) {

  int ii, dd;
  kmp_team_t *team;
  kmp_info_t *thr;

  KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // validate level
  if (level == 0)
    return 0;
  if (level < 0)
    return -1;
  thr = __kmp_threads[gtid];
  team = thr->th.th_team;
  ii = team->t.t_level;
  if (level > ii)
    return -1;

  if (thr->th.th_teams_microtask) {
    // AC: we are in teams region where multiple nested teams have same level
    int tlevel = thr->th.th_teams_level; // the level of the teams construct
    if (level <=
        tlevel) { // otherwise usual algorithm works (will not touch the teams)
      KMP_DEBUG_ASSERT(ii >= tlevel);
      // AC: As we need to pass by the teams league, we need to artificially
      // increase ii
      if (ii == tlevel) {
        ii += 2; // three teams have same level
      } else {
        ii++; // two teams have same level
      }
    }
  }

  if (ii == level)
    return __kmp_tid_from_gtid(gtid);

  dd = team->t.t_serialized;
  level++;
  while (ii > level) {
    for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
    }
    if ((team->t.t_serialized) && (!dd)) {
      team = team->t.t_parent;
      continue;
    }
    if (ii > level) {
      team = team->t.t_parent;
      dd = team->t.t_serialized;
      ii--;
    }
  }

  return (dd > 1) ? (0) : (team->t.t_master_tid);
}

int __kmp_get_team_size(int gtid, int level) {

  int ii, dd;
  kmp_team_t *team;
  kmp_info_t *thr;

  KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level));
  KMP_DEBUG_ASSERT(__kmp_init_serial);

  // validate level
  if (level == 0)
    return 1;
  if (level < 0)
    return -1;
  thr = __kmp_threads[gtid];
  team = thr->th.th_team;
  ii = team->t.t_level;
  if (level > ii)
    return -1;

  if (thr->th.th_teams_microtask) {
    // AC: we are in teams region where multiple nested teams have same level
    int tlevel = thr->th.th_teams_level; // the level of the teams construct
    if (level <=
        tlevel) { // otherwise usual algorithm works (will not touch the teams)
      KMP_DEBUG_ASSERT(ii >= tlevel);
      // AC: As we need to pass by the teams league, we need to artificially
      // increase ii
      if (ii == tlevel) {
        ii += 2; // three teams have same level
      } else {
        ii++; // two teams have same level
      }
    }
  }

  while (ii > level) {
    for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
    }
    if (team->t.t_serialized && (!dd)) {
      team = team->t.t_parent;
      continue;
    }
    if (ii > level) {
      team = team->t.t_parent;
      ii--;
    }
  }

  return team->t.t_nproc;
}

kmp_r_sched_t __kmp_get_schedule_global() {
  // This routine created because pairs (__kmp_sched, __kmp_chunk) and
  // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
  // independently. So one can get the updated schedule here.

  kmp_r_sched_t r_sched;

  // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
  // __kmp_guided. __kmp_sched should keep original value, so that user can set
  // KMP_SCHEDULE multiple times, and thus have different run-time schedules in
  // different roots (even in OMP 2.5)
  enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched);
  enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched);
  if (s == kmp_sch_static) {
    // replace STATIC with more detailed schedule (balanced or greedy)
    r_sched.r_sched_type = __kmp_static;
  } else if (s == kmp_sch_guided_chunked) {
    // replace GUIDED with more detailed schedule (iterative or analytical)
    r_sched.r_sched_type = __kmp_guided;
  } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
    r_sched.r_sched_type = __kmp_sched;
  }
  SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers);

  if (__kmp_chunk < KMP_DEFAULT_CHUNK) {
    // __kmp_chunk may be wrong here (if it was not ever set)
    r_sched.chunk = KMP_DEFAULT_CHUNK;
  } else {
    r_sched.chunk = __kmp_chunk;
  }

  return r_sched;
}

/* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
   at least argc number of *t_argv entries for the requested team. */
static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) {

  KMP_DEBUG_ASSERT(team);
  if (!realloc || argc > team->t.t_max_argc) {

    KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
                   "current entries=%d\n",
                   team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0));
    /* if previously allocated heap space for args, free them */
    if (realloc && team->t.t_argv != &team->t.t_inline_argv[0])
      __kmp_free((void *)team->t.t_argv);

    if (argc <= KMP_INLINE_ARGV_ENTRIES) {
      /* use unused space in the cache line for arguments */
      team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES;
      KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
                     "argv entries\n",
                     team->t.t_id, team->t.t_max_argc));
      team->t.t_argv = &team->t.t_inline_argv[0];
      if (__kmp_storage_map) {
        __kmp_print_storage_map_gtid(
            -1, &team->t.t_inline_argv[0],
            &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES],
            (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv",
            team->t.t_id);
      }
    } else {
      /* allocate space for arguments in the heap */
      team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1))
                               ? KMP_MIN_MALLOC_ARGV_ENTRIES
                               : 2 * argc;
      KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
                     "argv entries\n",
                     team->t.t_id, team->t.t_max_argc));
      team->t.t_argv =
          (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc);
      if (__kmp_storage_map) {
        __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0],
                                     &team->t.t_argv[team->t.t_max_argc],
                                     sizeof(void *) * team->t.t_max_argc,
                                     "team_%d.t_argv", team->t.t_id);
      }
    }
  }
}

static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) {
  int i;
  int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2;
  team->t.t_threads =
      (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth);
  team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate(
      sizeof(dispatch_shared_info_t) * num_disp_buff);
  team->t.t_dispatch =
      (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth);
  team->t.t_implicit_task_taskdata =
      (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth);
  team->t.t_max_nproc = max_nth;

  /* setup dispatch buffers */
  for (i = 0; i < num_disp_buff; ++i) {
    team->t.t_disp_buffer[i].buffer_index = i;
    team->t.t_disp_buffer[i].doacross_buf_idx = i;
  }
}

static void __kmp_free_team_arrays(kmp_team_t *team) {
  /* Note: this does not free the threads in t_threads (__kmp_free_threads) */
  int i;
  for (i = 0; i < team->t.t_max_nproc; ++i) {
    if (team->t.t_dispatch[i].th_disp_buffer != NULL) {
      __kmp_free(team->t.t_dispatch[i].th_disp_buffer);
      team->t.t_dispatch[i].th_disp_buffer = NULL;
    }
  }
#if KMP_USE_HIER_SCHED
  __kmp_dispatch_free_hierarchies(team);
#endif
  __kmp_free(team->t.t_threads);
  __kmp_free(team->t.t_disp_buffer);
  __kmp_free(team->t.t_dispatch);
  __kmp_free(team->t.t_implicit_task_taskdata);
  team->t.t_threads = NULL;
  team->t.t_disp_buffer = NULL;
  team->t.t_dispatch = NULL;
  team->t.t_implicit_task_taskdata = 0;
}

static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) {
  kmp_info_t **oldThreads = team->t.t_threads;

  __kmp_free(team->t.t_disp_buffer);
  __kmp_free(team->t.t_dispatch);
  __kmp_free(team->t.t_implicit_task_taskdata);
  __kmp_allocate_team_arrays(team, max_nth);

  KMP_MEMCPY(team->t.t_threads, oldThreads,
             team->t.t_nproc * sizeof(kmp_info_t *));

  __kmp_free(oldThreads);
}

static kmp_internal_control_t __kmp_get_global_icvs(void) {

  kmp_r_sched_t r_sched =
      __kmp_get_schedule_global(); // get current state of scheduling globals

  KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0);

  kmp_internal_control_t g_icvs = {
    0, // int serial_nesting_level; //corresponds to value of th_team_serialized
    (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic
    // adjustment of threads (per thread)
    (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for
    // whether blocktime is explicitly set
    __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime
#if KMP_USE_MONITOR
    __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime
// intervals
#endif
    __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for
    // next parallel region (per thread)
    // (use a max ub on value if __kmp_parallel_initialize not called yet)
    __kmp_cg_max_nth, // int thread_limit;
    __kmp_dflt_max_active_levels, // int max_active_levels; //internal control
    // for max_active_levels
    r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule
    // {sched,chunk} pair
    __kmp_nested_proc_bind.bind_types[0],
    __kmp_default_device,
    NULL // struct kmp_internal_control *next;
  };

  return g_icvs;
}

static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) {

  kmp_internal_control_t gx_icvs;
  gx_icvs.serial_nesting_level =
      0; // probably =team->t.t_serial like in save_inter_controls
  copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs);
  gx_icvs.next = NULL;

  return gx_icvs;
}

static void __kmp_initialize_root(kmp_root_t *root) {
  int f;
  kmp_team_t *root_team;
  kmp_team_t *hot_team;
  int hot_team_max_nth;
  kmp_r_sched_t r_sched =
      __kmp_get_schedule_global(); // get current state of scheduling globals
  kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
  KMP_DEBUG_ASSERT(root);
  KMP_ASSERT(!root->r.r_begin);

  /* setup the root state structure */
  __kmp_init_lock(&root->r.r_begin_lock);
  root->r.r_begin = FALSE;
  root->r.r_active = FALSE;
  root->r.r_in_parallel = 0;
  root->r.r_blocktime = __kmp_dflt_blocktime;

  /* setup the root team for this task */
  /* allocate the root team structure */
  KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));

  root_team =
      __kmp_allocate_team(root,
                          1, // new_nproc
                          1, // max_nproc
#if OMPT_SUPPORT
                          ompt_data_none, // root parallel id
#endif
                          __kmp_nested_proc_bind.bind_types[0], &r_icvs,
                          0 // argc
                          USE_NESTED_HOT_ARG(NULL) // master thread is unknown
                          );
#if USE_DEBUGGER
  // Non-NULL value should be assigned to make the debugger display the root
  // team.
  TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0));
#endif

  KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team));

  root->r.r_root_team = root_team;
  root_team->t.t_control_stack_top = NULL;

  /* initialize root team */
  root_team->t.t_threads[0] = NULL;
  root_team->t.t_nproc = 1;
  root_team->t.t_serialized = 1;
  // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
  root_team->t.t_sched.sched = r_sched.sched;
  KA_TRACE(
      20,
      ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
       root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));

  /* setup the  hot team for this task */
  /* allocate the hot team structure */
  KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));

  hot_team =
      __kmp_allocate_team(root,
                          1, // new_nproc
                          __kmp_dflt_team_nth_ub * 2, // max_nproc
#if OMPT_SUPPORT
                          ompt_data_none, // root parallel id
#endif
                          __kmp_nested_proc_bind.bind_types[0], &r_icvs,
                          0 // argc
                          USE_NESTED_HOT_ARG(NULL) // master thread is unknown
                          );
  KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team));

  root->r.r_hot_team = hot_team;
  root_team->t.t_control_stack_top = NULL;

  /* first-time initialization */
  hot_team->t.t_parent = root_team;

  /* initialize hot team */
  hot_team_max_nth = hot_team->t.t_max_nproc;
  for (f = 0; f < hot_team_max_nth; ++f) {
    hot_team->t.t_threads[f] = NULL;
  }
  hot_team->t.t_nproc = 1;
  // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
  hot_team->t.t_sched.sched = r_sched.sched;
  hot_team->t.t_size_changed = 0;
}

#ifdef KMP_DEBUG

typedef struct kmp_team_list_item {
  kmp_team_p const *entry;
  struct kmp_team_list_item *next;
} kmp_team_list_item_t;
typedef kmp_team_list_item_t *kmp_team_list_t;

static void __kmp_print_structure_team_accum( // Add team to list of teams.
    kmp_team_list_t list, // List of teams.
    kmp_team_p const *team // Team to add.
    ) {

  // List must terminate with item where both entry and next are NULL.
  // Team is added to the list only once.
  // List is sorted in ascending order by team id.
  // Team id is *not* a key.

  kmp_team_list_t l;

  KMP_DEBUG_ASSERT(list != NULL);
  if (team == NULL) {
    return;
  }

  __kmp_print_structure_team_accum(list, team->t.t_parent);
  __kmp_print_structure_team_accum(list, team->t.t_next_pool);

  // Search list for the team.
  l = list;
  while (l->next != NULL && l->entry != team) {
    l = l->next;
  }
  if (l->next != NULL) {
    return; // Team has been added before, exit.
  }

  // Team is not found. Search list again for insertion point.
  l = list;
  while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) {
    l = l->next;
  }

  // Insert team.
  {
    kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(
        sizeof(kmp_team_list_item_t));
    *item = *l;
    l->entry = team;
    l->next = item;
  }
}

static void __kmp_print_structure_team(char const *title, kmp_team_p const *team

                                       ) {
  __kmp_printf("%s", title);
  if (team != NULL) {
    __kmp_printf("%2x %p\n", team->t.t_id, team);
  } else {
    __kmp_printf(" - (nil)\n");
  }
}

static void __kmp_print_structure_thread(char const *title,
                                         kmp_info_p const *thread) {
  __kmp_printf("%s", title);
  if (thread != NULL) {
    __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread);
  } else {
    __kmp_printf(" - (nil)\n");
  }
}

void __kmp_print_structure(void) {

  kmp_team_list_t list;

  // Initialize list of teams.
  list =
      (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t));
  list->entry = NULL;
  list->next = NULL;

  __kmp_printf("\n------------------------------\nGlobal Thread "
               "Table\n------------------------------\n");
  {
    int gtid;
    for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
      __kmp_printf("%2d", gtid);
      if (__kmp_threads != NULL) {
        __kmp_printf(" %p", __kmp_threads[gtid]);
      }
      if (__kmp_root != NULL) {
        __kmp_printf(" %p", __kmp_root[gtid]);
      }
      __kmp_printf("\n");
    }
  }

  // Print out __kmp_threads array.
  __kmp_printf("\n------------------------------\nThreads\n--------------------"
               "----------\n");
  if (__kmp_threads != NULL) {
    int gtid;
    for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
      kmp_info_t const *thread = __kmp_threads[gtid];
      if (thread != NULL) {
        __kmp_printf("GTID %2d %p:\n", gtid, thread);
        __kmp_printf("    Our Root:        %p\n", thread->th.th_root);
        __kmp_print_structure_team("    Our Team:     ", thread->th.th_team);
        __kmp_print_structure_team("    Serial Team:  ",
                                   thread->th.th_serial_team);
        __kmp_printf("    Threads:      %2d\n", thread->th.th_team_nproc);
        __kmp_print_structure_thread("    Master:       ",
                                     thread->th.th_team_master);
        __kmp_printf("    Serialized?:  %2d\n", thread->th.th_team_serialized);
        __kmp_printf("    Set NProc:    %2d\n", thread->th.th_set_nproc);
        __kmp_printf("    Set Proc Bind: %2d\n", thread->th.th_set_proc_bind);
        __kmp_print_structure_thread("    Next in pool: ",
                                     thread->th.th_next_pool);
        __kmp_printf("\n");
        __kmp_print_structure_team_accum(list, thread->th.th_team);
        __kmp_print_structure_team_accum(list, thread->th.th_serial_team);
      }
    }
  } else {
    __kmp_printf("Threads array is not allocated.\n");
  }

  // Print out __kmp_root array.
  __kmp_printf("\n------------------------------\nUbers\n----------------------"
               "--------\n");
  if (__kmp_root != NULL) {
    int gtid;
    for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
      kmp_root_t const *root = __kmp_root[gtid];
      if (root != NULL) {
        __kmp_printf("GTID %2d %p:\n", gtid, root);
        __kmp_print_structure_team("    Root Team:    ", root->r.r_root_team);
        __kmp_print_structure_team("    Hot Team:     ", root->r.r_hot_team);
        __kmp_print_structure_thread("    Uber Thread:  ",
                                     root->r.r_uber_thread);
        __kmp_printf("    Active?:      %2d\n", root->r.r_active);
        __kmp_printf("    In Parallel:  %2d\n",
                     KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel));
        __kmp_printf("\n");
        __kmp_print_structure_team_accum(list, root->r.r_root_team);
        __kmp_print_structure_team_accum(list, root->r.r_hot_team);
      }
    }
  } else {
    __kmp_printf("Ubers array is not allocated.\n");
  }

  __kmp_printf("\n------------------------------\nTeams\n----------------------"
               "--------\n");
  while (list->next != NULL) {
    kmp_team_p const *team = list->entry;
    int i;
    __kmp_printf("Team %2x %p:\n", team->t.t_id, team);
    __kmp_print_structure_team("    Parent Team:      ", team->t.t_parent);
    __kmp_printf("    Master TID:       %2d\n", team->t.t_master_tid);
    __kmp_printf("    Max threads:      %2d\n", team->t.t_max_nproc);
    __kmp_printf("    Levels of serial: %2d\n", team->t.t_serialized);
    __kmp_printf("    Number threads:   %2d\n", team->t.t_nproc);
    for (i = 0; i < team->t.t_nproc; ++i) {
      __kmp_printf("    Thread %2d:      ", i);
      __kmp_print_structure_thread("", team->t.t_threads[i]);
    }
    __kmp_print_structure_team("    Next in pool:     ", team->t.t_next_pool);
    __kmp_printf("\n");
    list = list->next;
  }

  // Print out __kmp_thread_pool and __kmp_team_pool.
  __kmp_printf("\n------------------------------\nPools\n----------------------"
               "--------\n");
  __kmp_print_structure_thread("Thread pool:          ",
                               CCAST(kmp_info_t *, __kmp_thread_pool));
  __kmp_print_structure_team("Team pool:            ",
                             CCAST(kmp_team_t *, __kmp_team_pool));
  __kmp_printf("\n");

  // Free team list.
  while (list != NULL) {
    kmp_team_list_item_t *item = list;
    list = list->next;
    KMP_INTERNAL_FREE(item);
  }
}

#endif

//---------------------------------------------------------------------------
//  Stuff for per-thread fast random number generator
//  Table of primes
static const unsigned __kmp_primes[] = {
    0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
    0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
    0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
    0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
    0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
    0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
    0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
    0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
    0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
    0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
    0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};

//---------------------------------------------------------------------------
//  __kmp_get_random: Get a random number using a linear congruential method.
unsigned short __kmp_get_random(kmp_info_t *thread) {
  unsigned x = thread->th.th_x;
  unsigned short r = (unsigned short)(x >> 16);

  thread->th.th_x = x * thread->th.th_a + 1;

  KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
                thread->th.th_info.ds.ds_tid, r));

  return r;
}
//--------------------------------------------------------
// __kmp_init_random: Initialize a random number generator
void __kmp_init_random(kmp_info_t *thread) {
  unsigned seed = thread->th.th_info.ds.ds_tid;

  thread->th.th_a =
      __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))];
  thread->th.th_x = (seed + 1) * thread->th.th_a + 1;
  KA_TRACE(30,
           ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a));
}

#if KMP_OS_WINDOWS
/* reclaim array entries for root threads that are already dead, returns number
 * reclaimed */
static int __kmp_reclaim_dead_roots(void) {
  int i, r = 0;

  for (i = 0; i < __kmp_threads_capacity; ++i) {
    if (KMP_UBER_GTID(i) &&
        !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) &&
        !__kmp_root[i]
             ->r.r_active) { // AC: reclaim only roots died in non-active state
      r += __kmp_unregister_root_other_thread(i);
    }
  }
  return r;
}
#endif

/* This function attempts to create free entries in __kmp_threads and
   __kmp_root, and returns the number of free entries generated.

   For Windows* OS static library, the first mechanism used is to reclaim array
   entries for root threads that are already dead.

   On all platforms, expansion is attempted on the arrays __kmp_threads_ and
   __kmp_root, with appropriate update to __kmp_threads_capacity. Array
   capacity is increased by doubling with clipping to __kmp_tp_capacity, if
   threadprivate cache array has been created. Synchronization with
   __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.

   After any dead root reclamation, if the clipping value allows array expansion
   to result in the generation of a total of nNeed free slots, the function does
   that expansion. If not, nothing is done beyond the possible initial root
   thread reclamation.

   If any argument is negative, the behavior is undefined. */
static int __kmp_expand_threads(int nNeed) {
  int added = 0;
  int minimumRequiredCapacity;
  int newCapacity;
  kmp_info_t **newThreads;
  kmp_root_t **newRoot;

// All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
// resizing __kmp_threads does not need additional protection if foreign
// threads are present

#if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
  /* only for Windows static library */
  /* reclaim array entries for root threads that are already dead */
  added = __kmp_reclaim_dead_roots();

  if (nNeed) {
    nNeed -= added;
    if (nNeed < 0)
      nNeed = 0;
  }
#endif
  if (nNeed <= 0)
    return added;

  // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
  // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
  // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
  // > __kmp_max_nth in one of two ways:
  //
  // 1) The initialization thread (gtid = 0) exits.  __kmp_threads[0]
  //    may not be reused by another thread, so we may need to increase
  //    __kmp_threads_capacity to __kmp_max_nth + 1.
  //
  // 2) New foreign root(s) are encountered.  We always register new foreign
  //    roots. This may cause a smaller # of threads to be allocated at
  //    subsequent parallel regions, but the worker threads hang around (and
  //    eventually go to sleep) and need slots in the __kmp_threads[] array.
  //
  // Anyway, that is the reason for moving the check to see if
  // __kmp_max_nth was exceeded into __kmp_reserve_threads()
  // instead of having it performed here. -BB

  KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity);

  /* compute expansion headroom to check if we can expand */
  if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) {
    /* possible expansion too small -- give up */
    return added;
  }
  minimumRequiredCapacity = __kmp_threads_capacity + nNeed;

  newCapacity = __kmp_threads_capacity;
  do {
    newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1)
                                                          : __kmp_sys_max_nth;
  } while (newCapacity < minimumRequiredCapacity);
  newThreads = (kmp_info_t **)__kmp_allocate(
      (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE);
  newRoot =
      (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity);
  KMP_MEMCPY(newThreads, __kmp_threads,
             __kmp_threads_capacity * sizeof(kmp_info_t *));
  KMP_MEMCPY(newRoot, __kmp_root,
             __kmp_threads_capacity * sizeof(kmp_root_t *));

  kmp_info_t **temp_threads = __kmp_threads;
  *(kmp_info_t * *volatile *)&__kmp_threads = newThreads;
  *(kmp_root_t * *volatile *)&__kmp_root = newRoot;
  __kmp_free(temp_threads);
  added += newCapacity - __kmp_threads_capacity;
  *(volatile int *)&__kmp_threads_capacity = newCapacity;

  if (newCapacity > __kmp_tp_capacity) {
    __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock);
    if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) {
      __kmp_threadprivate_resize_cache(newCapacity);
    } else { // increase __kmp_tp_capacity to correspond with kmp_threads size
      *(volatile int *)&__kmp_tp_capacity = newCapacity;
    }
    __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock);
  }

  return added;
}

/* Register the current thread as a root thread and obtain our gtid. We must
   have the __kmp_initz_lock held at this point. Argument TRUE only if are the
   thread that calls from __kmp_do_serial_initialize() */
int __kmp_register_root(int initial_thread) {
  kmp_info_t *root_thread;
  kmp_root_t *root;
  int gtid;
  int capacity;
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
  KA_TRACE(20, ("__kmp_register_root: entered\n"));
  KMP_MB();

  /* 2007-03-02:
     If initial thread did not invoke OpenMP RTL yet, and this thread is not an
     initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
     work as expected -- it may return false (that means there is at least one
     empty slot in __kmp_threads array), but it is possible the only free slot
     is #0, which is reserved for initial thread and so cannot be used for this
     one. Following code workarounds this bug.

     However, right solution seems to be not reserving slot #0 for initial
     thread because:
     (1) there is no magic in slot #0,
     (2) we cannot detect initial thread reliably (the first thread which does
        serial initialization may be not a real initial thread).
  */
  capacity = __kmp_threads_capacity;
  if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
    --capacity;
  }

  // If it is not for initializing the hidden helper team, we need to take
  // __kmp_hidden_helper_threads_num out of the capacity because it is included
  // in __kmp_threads_capacity.
  if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
    capacity -= __kmp_hidden_helper_threads_num;
  }

  /* see if there are too many threads */
  if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) {
    if (__kmp_tp_cached) {
      __kmp_fatal(KMP_MSG(CantRegisterNewThread),
                  KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
                  KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
    } else {
      __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads),
                  __kmp_msg_null);
    }
  }

  // When hidden helper task is enabled, __kmp_threads is organized as follows:
  // 0: initial thread, also a regular OpenMP thread.
  // [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads.
  // [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for
  // regular OpenMP threads.
  if (TCR_4(__kmp_init_hidden_helper_threads)) {
    // Find an available thread slot for hidden helper thread. Slots for hidden
    // helper threads start from 1 to __kmp_hidden_helper_threads_num.
    for (gtid = 1; TCR_PTR(__kmp_threads[gtid]) != NULL &&
                   gtid <= __kmp_hidden_helper_threads_num;
         gtid++)
      ;
    KMP_ASSERT(gtid <= __kmp_hidden_helper_threads_num);
    KA_TRACE(1, ("__kmp_register_root: found slot in threads array for "
                 "hidden helper thread: T#%d\n",
                 gtid));
  } else {
    /* find an available thread slot */
    // Don't reassign the zero slot since we need that to only be used by
    // initial thread. Slots for hidden helper threads should also be skipped.
    if (initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
      gtid = 0;
    } else {
      for (gtid = __kmp_hidden_helper_threads_num + 1;
           TCR_PTR(__kmp_threads[gtid]) != NULL; gtid++)
        ;
    }
    KA_TRACE(
        1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid));
    KMP_ASSERT(gtid < __kmp_threads_capacity);
  }

  /* update global accounting */
  __kmp_all_nth++;
  TCW_4(__kmp_nth, __kmp_nth + 1);

  // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
  // numbers of procs, and method #2 (keyed API call) for higher numbers.
  if (__kmp_adjust_gtid_mode) {
    if (__kmp_all_nth >= __kmp_tls_gtid_min) {
      if (TCR_4(__kmp_gtid_mode) != 2) {
        TCW_4(__kmp_gtid_mode, 2);
      }
    } else {
      if (TCR_4(__kmp_gtid_mode) != 1) {
        TCW_4(__kmp_gtid_mode, 1);
      }
    }
  }

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime to zero if necessary            */
  /* Middle initialization might not have occurred yet */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    if (__kmp_nth > __kmp_avail_proc) {
      __kmp_zero_bt = TRUE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* setup this new hierarchy */
  if (!(root = __kmp_root[gtid])) {
    root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t));
    KMP_DEBUG_ASSERT(!root->r.r_root_team);
  }

#if KMP_STATS_ENABLED
  // Initialize stats as soon as possible (right after gtid assignment).
  __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid);
  __kmp_stats_thread_ptr->startLife();
  KMP_SET_THREAD_STATE(SERIAL_REGION);
  KMP_INIT_PARTITIONED_TIMERS(OMP_serial);
#endif
  __kmp_initialize_root(root);

  /* setup new root thread structure */
  if (root->r.r_uber_thread) {
    root_thread = root->r.r_uber_thread;
  } else {
    root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
    if (__kmp_storage_map) {
      __kmp_print_thread_storage_map(root_thread, gtid);
    }
    root_thread->th.th_info.ds.ds_gtid = gtid;
#if OMPT_SUPPORT
    root_thread->th.ompt_thread_info.thread_data = ompt_data_none;
#endif
    root_thread->th.th_root = root;
    if (__kmp_env_consistency_check) {
      root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid);
    }
#if USE_FAST_MEMORY
    __kmp_initialize_fast_memory(root_thread);
#endif /* USE_FAST_MEMORY */

#if KMP_USE_BGET
    KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL);
    __kmp_initialize_bget(root_thread);
#endif
    __kmp_init_random(root_thread); // Initialize random number generator
  }

  /* setup the serial team held in reserve by the root thread */
  if (!root_thread->th.th_serial_team) {
    kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
    KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
    root_thread->th.th_serial_team = __kmp_allocate_team(
        root, 1, 1,
#if OMPT_SUPPORT
        ompt_data_none, // root parallel id
#endif
        proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
  }
  KMP_ASSERT(root_thread->th.th_serial_team);
  KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
                root_thread->th.th_serial_team));

  /* drop root_thread into place */
  TCW_SYNC_PTR(__kmp_threads[gtid], root_thread);

  root->r.r_root_team->t.t_threads[0] = root_thread;
  root->r.r_hot_team->t.t_threads[0] = root_thread;
  root_thread->th.th_serial_team->t.t_threads[0] = root_thread;
  // AC: the team created in reserve, not for execution (it is unused for now).
  root_thread->th.th_serial_team->t.t_serialized = 0;
  root->r.r_uber_thread = root_thread;

  /* initialize the thread, get it ready to go */
  __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid);
  TCW_4(__kmp_init_gtid, TRUE);

  /* prepare the master thread for get_gtid() */
  __kmp_gtid_set_specific(gtid);

#if USE_ITT_BUILD
  __kmp_itt_thread_name(gtid);
#endif /* USE_ITT_BUILD */

#ifdef KMP_TDATA_GTID
  __kmp_gtid = gtid;
#endif
  __kmp_create_worker(gtid, root_thread, __kmp_stksize);
  KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid);

  KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
                "plain=%u\n",
                gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team),
                root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE,
                KMP_INIT_BARRIER_STATE));
  { // Initialize barrier data.
    int b;
    for (b = 0; b < bs_last_barrier; ++b) {
      root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE;
#if USE_DEBUGGER
      root_thread->th.th_bar[b].bb.b_worker_arrived = 0;
#endif
    }
  }
  KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived ==
                   KMP_INIT_BARRIER_STATE);

#if KMP_AFFINITY_SUPPORTED
  root_thread->th.th_current_place = KMP_PLACE_UNDEFINED;
  root_thread->th.th_new_place = KMP_PLACE_UNDEFINED;
  root_thread->th.th_first_place = KMP_PLACE_UNDEFINED;
  root_thread->th.th_last_place = KMP_PLACE_UNDEFINED;
  if (TCR_4(__kmp_init_middle)) {
    __kmp_affinity_set_init_mask(gtid, TRUE);
  }
#endif /* KMP_AFFINITY_SUPPORTED */
  root_thread->th.th_def_allocator = __kmp_def_allocator;
  root_thread->th.th_prev_level = 0;
  root_thread->th.th_prev_num_threads = 1;

  kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
  tmp->cg_root = root_thread;
  tmp->cg_thread_limit = __kmp_cg_max_nth;
  tmp->cg_nthreads = 1;
  KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
                 " cg_nthreads init to 1\n",
                 root_thread, tmp));
  tmp->up = NULL;
  root_thread->th.th_cg_roots = tmp;

  __kmp_root_counter++;

#if OMPT_SUPPORT
  if (!initial_thread && ompt_enabled.enabled) {

    kmp_info_t *root_thread = ompt_get_thread();

    ompt_set_thread_state(root_thread, ompt_state_overhead);

    if (ompt_enabled.ompt_callback_thread_begin) {
      ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
          ompt_thread_initial, __ompt_get_thread_data_internal());
    }
    ompt_data_t *task_data;
    ompt_data_t *parallel_data;
    __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data, NULL);
    if (ompt_enabled.ompt_callback_implicit_task) {
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial);
    }

    ompt_set_thread_state(root_thread, ompt_state_work_serial);
  }
#endif

  KMP_MB();
  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);

  return gtid;
}

#if KMP_NESTED_HOT_TEAMS
static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level,
                                const int max_level) {
  int i, n, nth;
  kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams;
  if (!hot_teams || !hot_teams[level].hot_team) {
    return 0;
  }
  KMP_DEBUG_ASSERT(level < max_level);
  kmp_team_t *team = hot_teams[level].hot_team;
  nth = hot_teams[level].hot_team_nth;
  n = nth - 1; // master is not freed
  if (level < max_level - 1) {
    for (i = 0; i < nth; ++i) {
      kmp_info_t *th = team->t.t_threads[i];
      n += __kmp_free_hot_teams(root, th, level + 1, max_level);
      if (i > 0 && th->th.th_hot_teams) {
        __kmp_free(th->th.th_hot_teams);
        th->th.th_hot_teams = NULL;
      }
    }
  }
  __kmp_free_team(root, team, NULL);
  return n;
}
#endif

// Resets a root thread and clear its root and hot teams.
// Returns the number of __kmp_threads entries directly and indirectly freed.
static int __kmp_reset_root(int gtid, kmp_root_t *root) {
  kmp_team_t *root_team = root->r.r_root_team;
  kmp_team_t *hot_team = root->r.r_hot_team;
  int n = hot_team->t.t_nproc;
  int i;

  KMP_DEBUG_ASSERT(!root->r.r_active);

  root->r.r_root_team = NULL;
  root->r.r_hot_team = NULL;
  // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
  // before call to __kmp_free_team().
  __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL));
#if KMP_NESTED_HOT_TEAMS
  if (__kmp_hot_teams_max_level >
      0) { // need to free nested hot teams and their threads if any
    for (i = 0; i < hot_team->t.t_nproc; ++i) {
      kmp_info_t *th = hot_team->t.t_threads[i];
      if (__kmp_hot_teams_max_level > 1) {
        n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level);
      }
      if (th->th.th_hot_teams) {
        __kmp_free(th->th.th_hot_teams);
        th->th.th_hot_teams = NULL;
      }
    }
  }
#endif
  __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL));

  // Before we can reap the thread, we need to make certain that all other
  // threads in the teams that had this root as ancestor have stopped trying to
  // steal tasks.
  if (__kmp_tasking_mode != tskm_immediate_exec) {
    __kmp_wait_to_unref_task_teams();
  }

#if KMP_OS_WINDOWS
  /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
  KA_TRACE(
      10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
           "\n",
           (LPVOID) & (root->r.r_uber_thread->th),
           root->r.r_uber_thread->th.th_info.ds.ds_thread));
  __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread);
#endif /* KMP_OS_WINDOWS */

#if OMPT_SUPPORT
  ompt_data_t *task_data;
  ompt_data_t *parallel_data;
  __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data, NULL);
  if (ompt_enabled.ompt_callback_implicit_task) {
    ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
        ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial);
  }
  if (ompt_enabled.ompt_callback_thread_end) {
    ompt_callbacks.ompt_callback(ompt_callback_thread_end)(
        &(root->r.r_uber_thread->th.ompt_thread_info.thread_data));
  }
#endif

  TCW_4(__kmp_nth,
        __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth.
  i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--;
  KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
                 " to %d\n",
                 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots,
                 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads));
  if (i == 1) {
    // need to free contention group structure
    KMP_DEBUG_ASSERT(root->r.r_uber_thread ==
                     root->r.r_uber_thread->th.th_cg_roots->cg_root);
    KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL);
    __kmp_free(root->r.r_uber_thread->th.th_cg_roots);
    root->r.r_uber_thread->th.th_cg_roots = NULL;
  }
  __kmp_reap_thread(root->r.r_uber_thread, 1);

  // We canot put root thread to __kmp_thread_pool, so we have to reap it
  // instead of freeing.
  root->r.r_uber_thread = NULL;
  /* mark root as no longer in use */
  root->r.r_begin = FALSE;

  return n;
}

void __kmp_unregister_root_current_thread(int gtid) {
  KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid));
  /* this lock should be ok, since unregister_root_current_thread is never
     called during an abort, only during a normal close. furthermore, if you
     have the forkjoin lock, you should never try to get the initz lock */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
                  "exiting T#%d\n",
                  gtid));
    __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
    return;
  }
  kmp_root_t *root = __kmp_root[gtid];

  KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
  KMP_ASSERT(KMP_UBER_GTID(gtid));
  KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
  KMP_ASSERT(root->r.r_active == FALSE);

  KMP_MB();

  kmp_info_t *thread = __kmp_threads[gtid];
  kmp_team_t *team = thread->th.th_team;
  kmp_task_team_t *task_team = thread->th.th_task_team;

  // we need to wait for the proxy tasks before finishing the thread
  if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) {
#if OMPT_SUPPORT
    // the runtime is shutting down so we won't report any events
    thread->th.ompt_thread_info.state = ompt_state_undefined;
#endif
    __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL));
  }

  __kmp_reset_root(gtid, root);

  KMP_MB();
  KC_TRACE(10,
           ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid));

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
}

#if KMP_OS_WINDOWS
/* __kmp_forkjoin_lock must be already held
   Unregisters a root thread that is not the current thread.  Returns the number
   of __kmp_threads entries freed as a result. */
static int __kmp_unregister_root_other_thread(int gtid) {
  kmp_root_t *root = __kmp_root[gtid];
  int r;

  KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid));
  KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
  KMP_ASSERT(KMP_UBER_GTID(gtid));
  KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
  KMP_ASSERT(root->r.r_active == FALSE);

  r = __kmp_reset_root(gtid, root);
  KC_TRACE(10,
           ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid));
  return r;
}
#endif

#if KMP_DEBUG
void __kmp_task_info() {

  kmp_int32 gtid = __kmp_entry_gtid();
  kmp_int32 tid = __kmp_tid_from_gtid(gtid);
  kmp_info_t *this_thr = __kmp_threads[gtid];
  kmp_team_t *steam = this_thr->th.th_serial_team;
  kmp_team_t *team = this_thr->th.th_team;

  __kmp_printf(
      "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
      "ptask=%p\n",
      gtid, tid, this_thr, team, steam, this_thr->th.th_current_task,
      team->t.t_implicit_task_taskdata[tid].td_parent);
}
#endif // KMP_DEBUG

/* TODO optimize with one big memclr, take out what isn't needed, split
   responsibility to workers as much as possible, and delay initialization of
   features as much as possible  */
static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team,
                                  int tid, int gtid) {
  /* this_thr->th.th_info.ds.ds_gtid is setup in
     kmp_allocate_thread/create_worker.
     this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
  kmp_info_t *master = team->t.t_threads[0];
  KMP_DEBUG_ASSERT(this_thr != NULL);
  KMP_DEBUG_ASSERT(this_thr->th.th_serial_team);
  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(team->t.t_threads);
  KMP_DEBUG_ASSERT(team->t.t_dispatch);
  KMP_DEBUG_ASSERT(master);
  KMP_DEBUG_ASSERT(master->th.th_root);

  KMP_MB();

  TCW_SYNC_PTR(this_thr->th.th_team, team);

  this_thr->th.th_info.ds.ds_tid = tid;
  this_thr->th.th_set_nproc = 0;
  if (__kmp_tasking_mode != tskm_immediate_exec)
    // When tasking is possible, threads are not safe to reap until they are
    // done tasking; this will be set when tasking code is exited in wait
    this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
  else // no tasking --> always safe to reap
    this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
  this_thr->th.th_set_proc_bind = proc_bind_default;
#if KMP_AFFINITY_SUPPORTED
  this_thr->th.th_new_place = this_thr->th.th_current_place;
#endif
  this_thr->th.th_root = master->th.th_root;

  /* setup the thread's cache of the team structure */
  this_thr->th.th_team_nproc = team->t.t_nproc;
  this_thr->th.th_team_master = master;
  this_thr->th.th_team_serialized = team->t.t_serialized;
  TCW_PTR(this_thr->th.th_sleep_loc, NULL);

  KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata);

  KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
                tid, gtid, this_thr, this_thr->th.th_current_task));

  __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr,
                           team, tid, TRUE);

  KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
                tid, gtid, this_thr, this_thr->th.th_current_task));
  // TODO: Initialize ICVs from parent; GEH - isn't that already done in
  // __kmp_initialize_team()?

  /* TODO no worksharing in speculative threads */
  this_thr->th.th_dispatch = &team->t.t_dispatch[tid];

  this_thr->th.th_local.this_construct = 0;

  if (!this_thr->th.th_pri_common) {
    this_thr->th.th_pri_common =
        (struct common_table *)__kmp_allocate(sizeof(struct common_table));
    if (__kmp_storage_map) {
      __kmp_print_storage_map_gtid(
          gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1,
          sizeof(struct common_table), "th_%d.th_pri_common\n", gtid);
    }
    this_thr->th.th_pri_head = NULL;
  }

  if (this_thr != master && // Master's CG root is initialized elsewhere
      this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set
    // Make new thread's CG root same as master's
    KMP_DEBUG_ASSERT(master->th.th_cg_roots);
    kmp_cg_root_t *tmp = this_thr->th.th_cg_roots;
    if (tmp) {
      // worker changes CG, need to check if old CG should be freed
      int i = tmp->cg_nthreads--;
      KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads"
                     " on node %p of thread %p to %d\n",
                     this_thr, tmp, tmp->cg_root, tmp->cg_nthreads));
      if (i == 1) {
        __kmp_free(tmp); // last thread left CG --> free it
      }
    }
    this_thr->th.th_cg_roots = master->th.th_cg_roots;
    // Increment new thread's CG root's counter to add the new thread
    this_thr->th.th_cg_roots->cg_nthreads++;
    KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
                   " node %p of thread %p to %d\n",
                   this_thr, this_thr->th.th_cg_roots,
                   this_thr->th.th_cg_roots->cg_root,
                   this_thr->th.th_cg_roots->cg_nthreads));
    this_thr->th.th_current_task->td_icvs.thread_limit =
        this_thr->th.th_cg_roots->cg_thread_limit;
  }

  /* Initialize dynamic dispatch */
  {
    volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch;
    // Use team max_nproc since this will never change for the team.
    size_t disp_size =
        sizeof(dispatch_private_info_t) *
        (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers);
    KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid,
                  team->t.t_max_nproc));
    KMP_ASSERT(dispatch);
    KMP_DEBUG_ASSERT(team->t.t_dispatch);
    KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]);

    dispatch->th_disp_index = 0;
    dispatch->th_doacross_buf_idx = 0;
    if (!dispatch->th_disp_buffer) {
      dispatch->th_disp_buffer =
          (dispatch_private_info_t *)__kmp_allocate(disp_size);

      if (__kmp_storage_map) {
        __kmp_print_storage_map_gtid(
            gtid, &dispatch->th_disp_buffer[0],
            &dispatch->th_disp_buffer[team->t.t_max_nproc == 1
                                          ? 1
                                          : __kmp_dispatch_num_buffers],
            disp_size, "th_%d.th_dispatch.th_disp_buffer "
                       "(team_%d.t_dispatch[%d].th_disp_buffer)",
            gtid, team->t.t_id, gtid);
      }
    } else {
      memset(&dispatch->th_disp_buffer[0], '\0', disp_size);
    }

    dispatch->th_dispatch_pr_current = 0;
    dispatch->th_dispatch_sh_current = 0;

    dispatch->th_deo_fcn = 0; /* ORDERED     */
    dispatch->th_dxo_fcn = 0; /* END ORDERED */
  }

  this_thr->th.th_next_pool = NULL;

  if (!this_thr->th.th_task_state_memo_stack) {
    size_t i;
    this_thr->th.th_task_state_memo_stack =
        (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8));
    this_thr->th.th_task_state_top = 0;
    this_thr->th.th_task_state_stack_sz = 4;
    for (i = 0; i < this_thr->th.th_task_state_stack_sz;
         ++i) // zero init the stack
      this_thr->th.th_task_state_memo_stack[i] = 0;
  }

  KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
  KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);

  KMP_MB();
}

/* allocate a new thread for the requesting team. this is only called from
   within a forkjoin critical section. we will first try to get an available
   thread from the thread pool. if none is available, we will fork a new one
   assuming we are able to create a new one. this should be assured, as the
   caller should check on this first. */
kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
                                  int new_tid) {
  kmp_team_t *serial_team;
  kmp_info_t *new_thr;
  int new_gtid;

  KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
  KMP_DEBUG_ASSERT(root && team);
#if !KMP_NESTED_HOT_TEAMS
  KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
#endif
  KMP_MB();

  /* first, try to get one from the thread pool */
  if (__kmp_thread_pool) {
    new_thr = CCAST(kmp_info_t *, __kmp_thread_pool);
    __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool;
    if (new_thr == __kmp_thread_pool_insert_pt) {
      __kmp_thread_pool_insert_pt = NULL;
    }
    TCW_4(new_thr->th.th_in_pool, FALSE);
    __kmp_suspend_initialize_thread(new_thr);
    __kmp_lock_suspend_mx(new_thr);
    if (new_thr->th.th_active_in_pool == TRUE) {
      KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE);
      KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
      new_thr->th.th_active_in_pool = FALSE;
    }
    __kmp_unlock_suspend_mx(new_thr);

    KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
                  __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid));
    KMP_ASSERT(!new_thr->th.th_team);
    KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity);

    /* setup the thread structure */
    __kmp_initialize_info(new_thr, team, new_tid,
                          new_thr->th.th_info.ds.ds_gtid);
    KMP_DEBUG_ASSERT(new_thr->th.th_serial_team);

    TCW_4(__kmp_nth, __kmp_nth + 1);

    new_thr->th.th_task_state = 0;
    new_thr->th.th_task_state_top = 0;
    new_thr->th.th_task_state_stack_sz = 4;

#ifdef KMP_ADJUST_BLOCKTIME
    /* Adjust blocktime back to zero if necessary */
    /* Middle initialization might not have occurred yet */
    if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
      if (__kmp_nth > __kmp_avail_proc) {
        __kmp_zero_bt = TRUE;
      }
    }
#endif /* KMP_ADJUST_BLOCKTIME */

#if KMP_DEBUG
    // If thread entered pool via __kmp_free_thread, wait_flag should !=
    // KMP_BARRIER_PARENT_FLAG.
    int b;
    kmp_balign_t *balign = new_thr->th.th_bar;
    for (b = 0; b < bs_last_barrier; ++b)
      KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#endif

    KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
                  __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid));

    KMP_MB();
    return new_thr;
  }

  /* no, well fork a new one */
  KMP_ASSERT(__kmp_nth == __kmp_all_nth);
  KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity);

#if KMP_USE_MONITOR
  // If this is the first worker thread the RTL is creating, then also
  // launch the monitor thread.  We try to do this as early as possible.
  if (!TCR_4(__kmp_init_monitor)) {
    __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
    if (!TCR_4(__kmp_init_monitor)) {
      KF_TRACE(10, ("before __kmp_create_monitor\n"));
      TCW_4(__kmp_init_monitor, 1);
      __kmp_create_monitor(&__kmp_monitor);
      KF_TRACE(10, ("after __kmp_create_monitor\n"));
#if KMP_OS_WINDOWS
      // AC: wait until monitor has started. This is a fix for CQ232808.
      // The reason is that if the library is loaded/unloaded in a loop with
      // small (parallel) work in between, then there is high probability that
      // monitor thread started after the library shutdown. At shutdown it is
      // too late to cope with the problem, because when the master is in
      // DllMain (process detach) the monitor has no chances to start (it is
      // blocked), and master has no means to inform the monitor that the
      // library has gone, because all the memory which the monitor can access
      // is going to be released/reset.
      while (TCR_4(__kmp_init_monitor) < 2) {
        KMP_YIELD(TRUE);
      }
      KF_TRACE(10, ("after monitor thread has started\n"));
#endif
    }
    __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
  }
#endif

  KMP_MB();

  {
    int new_start_gtid = TCR_4(__kmp_init_hidden_helper_threads)
                             ? 1
                             : __kmp_hidden_helper_threads_num + 1;

    for (new_gtid = new_start_gtid; TCR_PTR(__kmp_threads[new_gtid]) != NULL;
         ++new_gtid) {
      KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity);
    }

    if (TCR_4(__kmp_init_hidden_helper_threads)) {
      KMP_DEBUG_ASSERT(new_gtid <= __kmp_hidden_helper_threads_num);
    }
  }

  /* allocate space for it. */
  new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));

  TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr);

#if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
  // suppress race conditions detection on synchronization flags in debug mode
  // this helps to analyze library internals eliminating false positives
  __itt_suppress_mark_range(
      __itt_suppress_range, __itt_suppress_threading_errors,
      &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc));
  __itt_suppress_mark_range(
      __itt_suppress_range, __itt_suppress_threading_errors,
      &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state));
#if KMP_OS_WINDOWS
  __itt_suppress_mark_range(
      __itt_suppress_range, __itt_suppress_threading_errors,
      &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init));
#else
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            &new_thr->th.th_suspend_init_count,
                            sizeof(new_thr->th.th_suspend_init_count));
#endif
  // TODO: check if we need to also suppress b_arrived flags
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go),
                            sizeof(new_thr->th.th_bar[0].bb.b_go));
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go),
                            sizeof(new_thr->th.th_bar[1].bb.b_go));
  __itt_suppress_mark_range(__itt_suppress_range,
                            __itt_suppress_threading_errors,
                            CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go),
                            sizeof(new_thr->th.th_bar[2].bb.b_go));
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
  if (__kmp_storage_map) {
    __kmp_print_thread_storage_map(new_thr, new_gtid);
  }

  // add the reserve serialized team, initialized from the team's master thread
  {
    kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team);
    KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
    new_thr->th.th_serial_team = serial_team =
        (kmp_team_t *)__kmp_allocate_team(root, 1, 1,
#if OMPT_SUPPORT
                                          ompt_data_none, // root parallel id
#endif
                                          proc_bind_default, &r_icvs,
                                          0 USE_NESTED_HOT_ARG(NULL));
  }
  KMP_ASSERT(serial_team);
  serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for
  // execution (it is unused for now).
  serial_team->t.t_threads[0] = new_thr;
  KF_TRACE(10,
           ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
            new_thr));

  /* setup the thread structures */
  __kmp_initialize_info(new_thr, team, new_tid, new_gtid);

#if USE_FAST_MEMORY
  __kmp_initialize_fast_memory(new_thr);
#endif /* USE_FAST_MEMORY */

#if KMP_USE_BGET
  KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL);
  __kmp_initialize_bget(new_thr);
#endif

  __kmp_init_random(new_thr); // Initialize random number generator

  /* Initialize these only once when thread is grabbed for a team allocation */
  KA_TRACE(20,
           ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
            __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));

  int b;
  kmp_balign_t *balign = new_thr->th.th_bar;
  for (b = 0; b < bs_last_barrier; ++b) {
    balign[b].bb.b_go = KMP_INIT_BARRIER_STATE;
    balign[b].bb.team = NULL;
    balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING;
    balign[b].bb.use_oncore_barrier = 0;
  }

  new_thr->th.th_spin_here = FALSE;
  new_thr->th.th_next_waiting = 0;
#if KMP_OS_UNIX
  new_thr->th.th_blocking = false;
#endif

#if KMP_AFFINITY_SUPPORTED
  new_thr->th.th_current_place = KMP_PLACE_UNDEFINED;
  new_thr->th.th_new_place = KMP_PLACE_UNDEFINED;
  new_thr->th.th_first_place = KMP_PLACE_UNDEFINED;
  new_thr->th.th_last_place = KMP_PLACE_UNDEFINED;
#endif
  new_thr->th.th_def_allocator = __kmp_def_allocator;
  new_thr->th.th_prev_level = 0;
  new_thr->th.th_prev_num_threads = 1;

  TCW_4(new_thr->th.th_in_pool, FALSE);
  new_thr->th.th_active_in_pool = FALSE;
  TCW_4(new_thr->th.th_active, TRUE);

  /* adjust the global counters */
  __kmp_all_nth++;
  __kmp_nth++;

  // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
  // numbers of procs, and method #2 (keyed API call) for higher numbers.
  if (__kmp_adjust_gtid_mode) {
    if (__kmp_all_nth >= __kmp_tls_gtid_min) {
      if (TCR_4(__kmp_gtid_mode) != 2) {
        TCW_4(__kmp_gtid_mode, 2);
      }
    } else {
      if (TCR_4(__kmp_gtid_mode) != 1) {
        TCW_4(__kmp_gtid_mode, 1);
      }
    }
  }

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime back to zero if necessary       */
  /* Middle initialization might not have occurred yet */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    if (__kmp_nth > __kmp_avail_proc) {
      __kmp_zero_bt = TRUE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* actually fork it and create the new worker thread */
  KF_TRACE(
      10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr));
  __kmp_create_worker(new_gtid, new_thr, __kmp_stksize);
  KF_TRACE(10,
           ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr));

  KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
                new_gtid));
  KMP_MB();
  return new_thr;
}

/* Reinitialize team for reuse.
   The hot team code calls this case at every fork barrier, so EPCC barrier
   test are extremely sensitive to changes in it, esp. writes to the team
   struct, which cause a cache invalidation in all threads.
   IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
static void __kmp_reinitialize_team(kmp_team_t *team,
                                    kmp_internal_control_t *new_icvs,
                                    ident_t *loc) {
  KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
                team->t.t_threads[0], team));
  KMP_DEBUG_ASSERT(team && new_icvs);
  KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
  KMP_CHECK_UPDATE(team->t.t_ident, loc);

  KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID());
  // Copy ICVs to the master thread's implicit taskdata
  __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE);
  copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs);

  KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
                team->t.t_threads[0], team));
}

/* Initialize the team data structure.
   This assumes the t_threads and t_max_nproc are already set.
   Also, we don't touch the arguments */
static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
                                  kmp_internal_control_t *new_icvs,
                                  ident_t *loc) {
  KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team));

  /* verify */
  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc);
  KMP_DEBUG_ASSERT(team->t.t_threads);
  KMP_MB();

  team->t.t_master_tid = 0; /* not needed */
  /* team->t.t_master_bar;        not needed */
  team->t.t_serialized = new_nproc > 1 ? 0 : 1;
  team->t.t_nproc = new_nproc;

  /* team->t.t_parent     = NULL; TODO not needed & would mess up hot team */
  team->t.t_next_pool = NULL;
  /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
   * up hot team */

  TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */
  team->t.t_invoke = NULL; /* not needed */

  // TODO???: team->t.t_max_active_levels       = new_max_active_levels;
  team->t.t_sched.sched = new_icvs->sched.sched;

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  team->t.t_fp_control_saved = FALSE; /* not needed */
  team->t.t_x87_fpu_control_word = 0; /* not needed */
  team->t.t_mxcsr = 0; /* not needed */
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

  team->t.t_construct = 0;

  team->t.t_ordered.dt.t_value = 0;
  team->t.t_master_active = FALSE;

#ifdef KMP_DEBUG
  team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */
#endif
#if KMP_OS_WINDOWS
  team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */
#endif

  team->t.t_control_stack_top = NULL;

  __kmp_reinitialize_team(team, new_icvs, loc);

  KMP_MB();
  KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team));
}

#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
/* Sets full mask for thread and returns old mask, no changes to structures. */
static void
__kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) {
  if (KMP_AFFINITY_CAPABLE()) {
    int status;
    if (old_mask != NULL) {
      status = __kmp_get_system_affinity(old_mask, TRUE);
      int error = errno;
      if (status != 0) {
        __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error),
                    __kmp_msg_null);
      }
    }
    __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE);
  }
}
#endif

#if KMP_AFFINITY_SUPPORTED

// __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
// It calculates the worker + master thread's partition based upon the parent
// thread's partition, and binds each worker to a thread in their partition.
// The master thread's partition should already include its current binding.
static void __kmp_partition_places(kmp_team_t *team, int update_master_only) {
  // Copy the master thread's place partition to the team struct
  kmp_info_t *master_th = team->t.t_threads[0];
  KMP_DEBUG_ASSERT(master_th != NULL);
  kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
  int first_place = master_th->th.th_first_place;
  int last_place = master_th->th.th_last_place;
  int masters_place = master_th->th.th_current_place;
  team->t.t_first_place = first_place;
  team->t.t_last_place = last_place;

  KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
                "bound to place %d partition = [%d,%d]\n",
                proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]),
                team->t.t_id, masters_place, first_place, last_place));

  switch (proc_bind) {

  case proc_bind_default:
    // serial teams might have the proc_bind policy set to proc_bind_default. It
    // doesn't matter, as we don't rebind master thread for any proc_bind policy
    KMP_DEBUG_ASSERT(team->t.t_nproc == 1);
    break;

  case proc_bind_master: {
    int f;
    int n_th = team->t.t_nproc;
    for (f = 1; f < n_th; f++) {
      kmp_info_t *th = team->t.t_threads[f];
      KMP_DEBUG_ASSERT(th != NULL);
      th->th.th_first_place = first_place;
      th->th.th_last_place = last_place;
      th->th.th_new_place = masters_place;
      if (__kmp_display_affinity && masters_place != th->th.th_current_place &&
          team->t.t_display_affinity != 1) {
        team->t.t_display_affinity = 1;
      }

      KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d "
                     "partition = [%d,%d]\n",
                     __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
                     f, masters_place, first_place, last_place));
    }
  } break;

  case proc_bind_close: {
    int f;
    int n_th = team->t.t_nproc;
    int n_places;
    if (first_place <= last_place) {
      n_places = last_place - first_place + 1;
    } else {
      n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
    }
    if (n_th <= n_places) {
      int place = masters_place;
      for (f = 1; f < n_th; f++) {
        kmp_info_t *th = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(th != NULL);

        if (place == last_place) {
          place = first_place;
        } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
          place = 0;
        } else {
          place++;
        }
        th->th.th_first_place = first_place;
        th->th.th_last_place = last_place;
        th->th.th_new_place = place;
        if (__kmp_display_affinity && place != th->th.th_current_place &&
            team->t.t_display_affinity != 1) {
          team->t.t_display_affinity = 1;
        }

        KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
                       "partition = [%d,%d]\n",
                       __kmp_gtid_from_thread(team->t.t_threads[f]),
                       team->t.t_id, f, place, first_place, last_place));
      }
    } else {
      int S, rem, gap, s_count;
      S = n_th / n_places;
      s_count = 0;
      rem = n_th - (S * n_places);
      gap = rem > 0 ? n_places / rem : n_places;
      int place = masters_place;
      int gap_ct = gap;
      for (f = 0; f < n_th; f++) {
        kmp_info_t *th = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(th != NULL);

        th->th.th_first_place = first_place;
        th->th.th_last_place = last_place;
        th->th.th_new_place = place;
        if (__kmp_display_affinity && place != th->th.th_current_place &&
            team->t.t_display_affinity != 1) {
          team->t.t_display_affinity = 1;
        }
        s_count++;

        if ((s_count == S) && rem && (gap_ct == gap)) {
          // do nothing, add an extra thread to place on next iteration
        } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
          // we added an extra thread to this place; move to next place
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          s_count = 0;
          gap_ct = 1;
          rem--;
        } else if (s_count == S) { // place full; don't add extra
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          gap_ct++;
          s_count = 0;
        }

        KA_TRACE(100,
                 ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
                  "partition = [%d,%d]\n",
                  __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f,
                  th->th.th_new_place, first_place, last_place));
      }
      KMP_DEBUG_ASSERT(place == masters_place);
    }
  } break;

  case proc_bind_spread: {
    int f;
    int n_th = team->t.t_nproc;
    int n_places;
    int thidx;
    if (first_place <= last_place) {
      n_places = last_place - first_place + 1;
    } else {
      n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
    }
    if (n_th <= n_places) {
      int place = -1;

      if (n_places != static_cast<int>(__kmp_affinity_num_masks)) {
        int S = n_places / n_th;
        int s_count, rem, gap, gap_ct;

        place = masters_place;
        rem = n_places - n_th * S;
        gap = rem ? n_th / rem : 1;
        gap_ct = gap;
        thidx = n_th;
        if (update_master_only == 1)
          thidx = 1;
        for (f = 0; f < thidx; f++) {
          kmp_info_t *th = team->t.t_threads[f];
          KMP_DEBUG_ASSERT(th != NULL);

          th->th.th_first_place = place;
          th->th.th_new_place = place;
          if (__kmp_display_affinity && place != th->th.th_current_place &&
              team->t.t_display_affinity != 1) {
            team->t.t_display_affinity = 1;
          }
          s_count = 1;
          while (s_count < S) {
            if (place == last_place) {
              place = first_place;
            } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
              place = 0;
            } else {
              place++;
            }
            s_count++;
          }
          if (rem && (gap_ct == gap)) {
            if (place == last_place) {
              place = first_place;
            } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
              place = 0;
            } else {
              place++;
            }
            rem--;
            gap_ct = 0;
          }
          th->th.th_last_place = place;
          gap_ct++;

          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }

          KA_TRACE(100,
                   ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
                    "partition = [%d,%d], __kmp_affinity_num_masks: %u\n",
                    __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
                    f, th->th.th_new_place, th->th.th_first_place,
                    th->th.th_last_place, __kmp_affinity_num_masks));
        }
      } else {
        /* Having uniform space of available computation places I can create
           T partitions of round(P/T) size and put threads into the first
           place of each partition. */
        double current = static_cast<double>(masters_place);
        double spacing =
            (static_cast<double>(n_places + 1) / static_cast<double>(n_th));
        int first, last;
        kmp_info_t *th;

        thidx = n_th + 1;
        if (update_master_only == 1)
          thidx = 1;
        for (f = 0; f < thidx; f++) {
          first = static_cast<int>(current);
          last = static_cast<int>(current + spacing) - 1;
          KMP_DEBUG_ASSERT(last >= first);
          if (first >= n_places) {
            if (masters_place) {
              first -= n_places;
              last -= n_places;
              if (first == (masters_place + 1)) {
                KMP_DEBUG_ASSERT(f == n_th);
                first--;
              }
              if (last == masters_place) {
                KMP_DEBUG_ASSERT(f == (n_th - 1));
                last--;
              }
            } else {
              KMP_DEBUG_ASSERT(f == n_th);
              first = 0;
              last = 0;
            }
          }
          if (last >= n_places) {
            last = (n_places - 1);
          }
          place = first;
          current += spacing;
          if (f < n_th) {
            KMP_DEBUG_ASSERT(0 <= first);
            KMP_DEBUG_ASSERT(n_places > first);
            KMP_DEBUG_ASSERT(0 <= last);
            KMP_DEBUG_ASSERT(n_places > last);
            KMP_DEBUG_ASSERT(last_place >= first_place);
            th = team->t.t_threads[f];
            KMP_DEBUG_ASSERT(th);
            th->th.th_first_place = first;
            th->th.th_new_place = place;
            th->th.th_last_place = last;
            if (__kmp_display_affinity && place != th->th.th_current_place &&
                team->t.t_display_affinity != 1) {
              team->t.t_display_affinity = 1;
            }
            KA_TRACE(100,
                     ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
                      "partition = [%d,%d], spacing = %.4f\n",
                      __kmp_gtid_from_thread(team->t.t_threads[f]),
                      team->t.t_id, f, th->th.th_new_place,
                      th->th.th_first_place, th->th.th_last_place, spacing));
          }
        }
      }
      KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
    } else {
      int S, rem, gap, s_count;
      S = n_th / n_places;
      s_count = 0;
      rem = n_th - (S * n_places);
      gap = rem > 0 ? n_places / rem : n_places;
      int place = masters_place;
      int gap_ct = gap;
      thidx = n_th;
      if (update_master_only == 1)
        thidx = 1;
      for (f = 0; f < thidx; f++) {
        kmp_info_t *th = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(th != NULL);

        th->th.th_first_place = place;
        th->th.th_last_place = place;
        th->th.th_new_place = place;
        if (__kmp_display_affinity && place != th->th.th_current_place &&
            team->t.t_display_affinity != 1) {
          team->t.t_display_affinity = 1;
        }
        s_count++;

        if ((s_count == S) && rem && (gap_ct == gap)) {
          // do nothing, add an extra thread to place on next iteration
        } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
          // we added an extra thread to this place; move on to next place
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          s_count = 0;
          gap_ct = 1;
          rem--;
        } else if (s_count == S) { // place is full; don't add extra thread
          if (place == last_place) {
            place = first_place;
          } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
            place = 0;
          } else {
            place++;
          }
          gap_ct++;
          s_count = 0;
        }

        KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
                       "partition = [%d,%d]\n",
                       __kmp_gtid_from_thread(team->t.t_threads[f]),
                       team->t.t_id, f, th->th.th_new_place,
                       th->th.th_first_place, th->th.th_last_place));
      }
      KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
    }
  } break;

  default:
    break;
  }

  KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id));
}

#endif // KMP_AFFINITY_SUPPORTED

/* allocate a new team data structure to use.  take one off of the free pool if
   available */
kmp_team_t *
__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
#if OMPT_SUPPORT
                    ompt_data_t ompt_parallel_data,
#endif
                    kmp_proc_bind_t new_proc_bind,
                    kmp_internal_control_t *new_icvs,
                    int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) {
  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team);
  int f;
  kmp_team_t *team;
  int use_hot_team = !root->r.r_active;
  int level = 0;

  KA_TRACE(20, ("__kmp_allocate_team: called\n"));
  KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0);
  KMP_DEBUG_ASSERT(max_nproc >= new_nproc);
  KMP_MB();

#if KMP_NESTED_HOT_TEAMS
  kmp_hot_team_ptr_t *hot_teams;
  if (master) {
    team = master->th.th_team;
    level = team->t.t_active_level;
    if (master->th.th_teams_microtask) { // in teams construct?
      if (master->th.th_teams_size.nteams > 1 &&
          ( // #teams > 1
              team->t.t_pkfn ==
                  (microtask_t)__kmp_teams_master || // inner fork of the teams
              master->th.th_teams_level <
                  team->t.t_level)) { // or nested parallel inside the teams
        ++level; // not increment if #teams==1, or for outer fork of the teams;
        // increment otherwise
      }
    }
    hot_teams = master->th.th_hot_teams;
    if (level < __kmp_hot_teams_max_level && hot_teams &&
        hot_teams[level].hot_team) {
      // hot team has already been allocated for given level
      use_hot_team = 1;
    } else {
      use_hot_team = 0;
    }
  } else {
    // check we won't access uninitialized hot_teams, just in case
    KMP_DEBUG_ASSERT(new_nproc == 1);
  }
#endif
  // Optimization to use a "hot" team
  if (use_hot_team && new_nproc > 1) {
    KMP_DEBUG_ASSERT(new_nproc <= max_nproc);
#if KMP_NESTED_HOT_TEAMS
    team = hot_teams[level].hot_team;
#else
    team = root->r.r_hot_team;
#endif
#if KMP_DEBUG
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
                    "task_team[1] = %p before reinit\n",
                    team->t.t_task_team[0], team->t.t_task_team[1]));
    }
#endif

    // Has the number of threads changed?
    /* Let's assume the most common case is that the number of threads is
       unchanged, and put that case first. */
    if (team->t.t_nproc == new_nproc) { // Check changes in number of threads
      KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
      // This case can mean that omp_set_num_threads() was called and the hot
      // team size was already reduced, so we check the special flag
      if (team->t.t_size_changed == -1) {
        team->t.t_size_changed = 1;
      } else {
        KMP_CHECK_UPDATE(team->t.t_size_changed, 0);
      }

      // TODO???: team->t.t_max_active_levels = new_max_active_levels;
      kmp_r_sched_t new_sched = new_icvs->sched;
      // set master's schedule as new run-time schedule
      KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);

      __kmp_reinitialize_team(team, new_icvs,
                              root->r.r_uber_thread->th.th_ident);

      KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
                    team->t.t_threads[0], team));
      __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);

#if KMP_AFFINITY_SUPPORTED
      if ((team->t.t_size_changed == 0) &&
          (team->t.t_proc_bind == new_proc_bind)) {
        if (new_proc_bind == proc_bind_spread) {
          __kmp_partition_places(
              team, 1); // add flag to update only master for spread
        }
        KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
                       "proc_bind = %d, partition = [%d,%d]\n",
                       team->t.t_id, new_proc_bind, team->t.t_first_place,
                       team->t.t_last_place));
      } else {
        KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
        __kmp_partition_places(team);
      }
#else
      KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
#endif /* KMP_AFFINITY_SUPPORTED */
    } else if (team->t.t_nproc > new_nproc) {
      KA_TRACE(20,
               ("__kmp_allocate_team: decreasing hot team thread count to %d\n",
                new_nproc));

      team->t.t_size_changed = 1;
#if KMP_NESTED_HOT_TEAMS
      if (__kmp_hot_teams_mode == 0) {
        // AC: saved number of threads should correspond to team's value in this
        // mode, can be bigger in mode 1, when hot team has threads in reserve
        KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc);
        hot_teams[level].hot_team_nth = new_nproc;
#endif // KMP_NESTED_HOT_TEAMS
        /* release the extra threads we don't need any more */
        for (f = new_nproc; f < team->t.t_nproc; f++) {
          KMP_DEBUG_ASSERT(team->t.t_threads[f]);
          if (__kmp_tasking_mode != tskm_immediate_exec) {
            // When decreasing team size, threads no longer in the team should
            // unref task team.
            team->t.t_threads[f]->th.th_task_team = NULL;
          }
          __kmp_free_thread(team->t.t_threads[f]);
          team->t.t_threads[f] = NULL;
        }
#if KMP_NESTED_HOT_TEAMS
      } // (__kmp_hot_teams_mode == 0)
      else {
        // When keeping extra threads in team, switch threads to wait on own
        // b_go flag
        for (f = new_nproc; f < team->t.t_nproc; ++f) {
          KMP_DEBUG_ASSERT(team->t.t_threads[f]);
          kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar;
          for (int b = 0; b < bs_last_barrier; ++b) {
            if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) {
              balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
            }
            KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0);
          }
        }
      }
#endif // KMP_NESTED_HOT_TEAMS
      team->t.t_nproc = new_nproc;
      // TODO???: team->t.t_max_active_levels = new_max_active_levels;
      KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched);
      __kmp_reinitialize_team(team, new_icvs,
                              root->r.r_uber_thread->th.th_ident);

      // Update remaining threads
      for (f = 0; f < new_nproc; ++f) {
        team->t.t_threads[f]->th.th_team_nproc = new_nproc;
      }

      // restore the current task state of the master thread: should be the
      // implicit task
      KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
                    team->t.t_threads[0], team));

      __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);

#ifdef KMP_DEBUG
      for (f = 0; f < team->t.t_nproc; f++) {
        KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
                         team->t.t_threads[f]->th.th_team_nproc ==
                             team->t.t_nproc);
      }
#endif

      KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
#if KMP_AFFINITY_SUPPORTED
      __kmp_partition_places(team);
#endif
    } else { // team->t.t_nproc < new_nproc
#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
      kmp_affin_mask_t *old_mask;
      if (KMP_AFFINITY_CAPABLE()) {
        KMP_CPU_ALLOC(old_mask);
      }
#endif

      KA_TRACE(20,
               ("__kmp_allocate_team: increasing hot team thread count to %d\n",
                new_nproc));

      team->t.t_size_changed = 1;

#if KMP_NESTED_HOT_TEAMS
      int avail_threads = hot_teams[level].hot_team_nth;
      if (new_nproc < avail_threads)
        avail_threads = new_nproc;
      kmp_info_t **other_threads = team->t.t_threads;
      for (f = team->t.t_nproc; f < avail_threads; ++f) {
        // Adjust barrier data of reserved threads (if any) of the team
        // Other data will be set in __kmp_initialize_info() below.
        int b;
        kmp_balign_t *balign = other_threads[f]->th.th_bar;
        for (b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
      }
      if (hot_teams[level].hot_team_nth >= new_nproc) {
        // we have all needed threads in reserve, no need to allocate any
        // this only possible in mode 1, cannot have reserved threads in mode 0
        KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1);
        team->t.t_nproc = new_nproc; // just get reserved threads involved
      } else {
        // we may have some threads in reserve, but not enough
        team->t.t_nproc =
            hot_teams[level]
                .hot_team_nth; // get reserved threads involved if any
        hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size
#endif // KMP_NESTED_HOT_TEAMS
        if (team->t.t_max_nproc < new_nproc) {
          /* reallocate larger arrays */
          __kmp_reallocate_team_arrays(team, new_nproc);
          __kmp_reinitialize_team(team, new_icvs, NULL);
        }

#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
        /* Temporarily set full mask for master thread before creation of
           workers. The reason is that workers inherit the affinity from master,
           so if a lot of workers are created on the single core quickly, they
           don't get a chance to set their own affinity for a long time. */
        __kmp_set_thread_affinity_mask_full_tmp(old_mask);
#endif

        /* allocate new threads for the hot team */
        for (f = team->t.t_nproc; f < new_nproc; f++) {
          kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f);
          KMP_DEBUG_ASSERT(new_worker);
          team->t.t_threads[f] = new_worker;

          KA_TRACE(20,
                   ("__kmp_allocate_team: team %d init T#%d arrived: "
                    "join=%llu, plain=%llu\n",
                    team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f,
                    team->t.t_bar[bs_forkjoin_barrier].b_arrived,
                    team->t.t_bar[bs_plain_barrier].b_arrived));

          { // Initialize barrier data for new threads.
            int b;
            kmp_balign_t *balign = new_worker->th.th_bar;
            for (b = 0; b < bs_last_barrier; ++b) {
              balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
              KMP_DEBUG_ASSERT(balign[b].bb.wait_flag !=
                               KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
              balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
            }
          }
        }

#if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
        if (KMP_AFFINITY_CAPABLE()) {
          /* Restore initial master thread's affinity mask */
          __kmp_set_system_affinity(old_mask, TRUE);
          KMP_CPU_FREE(old_mask);
        }
#endif
#if KMP_NESTED_HOT_TEAMS
      } // end of check of t_nproc vs. new_nproc vs. hot_team_nth
#endif // KMP_NESTED_HOT_TEAMS
      /* make sure everyone is syncronized */
      int old_nproc = team->t.t_nproc; // save old value and use to update only
      // new threads below
      __kmp_initialize_team(team, new_nproc, new_icvs,
                            root->r.r_uber_thread->th.th_ident);

      /* reinitialize the threads */
      KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc);
      for (f = 0; f < team->t.t_nproc; ++f)
        __kmp_initialize_info(team->t.t_threads[f], team, f,
                              __kmp_gtid_from_tid(f, team));

      if (level) { // set th_task_state for new threads in nested hot team
        // __kmp_initialize_info() no longer zeroes th_task_state, so we should
        // only need to set the th_task_state for the new threads. th_task_state
        // for master thread will not be accurate until after this in
        // __kmp_fork_call(), so we look to the master's memo_stack to get the
        // correct value.
        for (f = old_nproc; f < team->t.t_nproc; ++f)
          team->t.t_threads[f]->th.th_task_state =
              team->t.t_threads[0]->th.th_task_state_memo_stack[level];
      } else { // set th_task_state for new threads in non-nested hot team
        kmp_uint8 old_state =
            team->t.t_threads[0]->th.th_task_state; // copy master's state
        for (f = old_nproc; f < team->t.t_nproc; ++f)
          team->t.t_threads[f]->th.th_task_state = old_state;
      }

#ifdef KMP_DEBUG
      for (f = 0; f < team->t.t_nproc; ++f) {
        KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
                         team->t.t_threads[f]->th.th_team_nproc ==
                             team->t.t_nproc);
      }
#endif

      KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
#if KMP_AFFINITY_SUPPORTED
      __kmp_partition_places(team);
#endif
    } // Check changes in number of threads

    kmp_info_t *master = team->t.t_threads[0];
    if (master->th.th_teams_microtask) {
      for (f = 1; f < new_nproc; ++f) {
        // propagate teams construct specific info to workers
        kmp_info_t *thr = team->t.t_threads[f];
        thr->th.th_teams_microtask = master->th.th_teams_microtask;
        thr->th.th_teams_level = master->th.th_teams_level;
        thr->th.th_teams_size = master->th.th_teams_size;
      }
    }
#if KMP_NESTED_HOT_TEAMS
    if (level) {
      // Sync barrier state for nested hot teams, not needed for outermost hot
      // team.
      for (f = 1; f < new_nproc; ++f) {
        kmp_info_t *thr = team->t.t_threads[f];
        int b;
        kmp_balign_t *balign = thr->th.th_bar;
        for (b = 0; b < bs_last_barrier; ++b) {
          balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
          KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
#if USE_DEBUGGER
          balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
#endif
        }
      }
    }
#endif // KMP_NESTED_HOT_TEAMS

    /* reallocate space for arguments if necessary */
    __kmp_alloc_argv_entries(argc, team, TRUE);
    KMP_CHECK_UPDATE(team->t.t_argc, argc);
    // The hot team re-uses the previous task team,
    // if untouched during the previous release->gather phase.

    KF_TRACE(10, (" hot_team = %p\n", team));

#if KMP_DEBUG
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
                    "task_team[1] = %p after reinit\n",
                    team->t.t_task_team[0], team->t.t_task_team[1]));
    }
#endif

#if OMPT_SUPPORT
    __ompt_team_assign_id(team, ompt_parallel_data);
#endif

    KMP_MB();

    return team;
  }

  /* next, let's try to take one from the team pool */
  KMP_MB();
  for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) {
    /* TODO: consider resizing undersized teams instead of reaping them, now
       that we have a resizing mechanism */
    if (team->t.t_max_nproc >= max_nproc) {
      /* take this team from the team pool */
      __kmp_team_pool = team->t.t_next_pool;

      /* setup the team for fresh use */
      __kmp_initialize_team(team, new_nproc, new_icvs, NULL);

      KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
                    "task_team[1] %p to NULL\n",
                    &team->t.t_task_team[0], &team->t.t_task_team[1]));
      team->t.t_task_team[0] = NULL;
      team->t.t_task_team[1] = NULL;

      /* reallocate space for arguments if necessary */
      __kmp_alloc_argv_entries(argc, team, TRUE);
      KMP_CHECK_UPDATE(team->t.t_argc, argc);

      KA_TRACE(
          20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
               team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
      { // Initialize barrier data.
        int b;
        for (b = 0; b < bs_last_barrier; ++b) {
          team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
#if USE_DEBUGGER
          team->t.t_bar[b].b_master_arrived = 0;
          team->t.t_bar[b].b_team_arrived = 0;
#endif
        }
      }

      team->t.t_proc_bind = new_proc_bind;

      KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
                    team->t.t_id));

#if OMPT_SUPPORT
      __ompt_team_assign_id(team, ompt_parallel_data);
#endif

      KMP_MB();

      return team;
    }

    /* reap team if it is too small, then loop back and check the next one */
    // not sure if this is wise, but, will be redone during the hot-teams
    // rewrite.
    /* TODO: Use technique to find the right size hot-team, don't reap them */
    team = __kmp_reap_team(team);
    __kmp_team_pool = team;
  }

  /* nothing available in the pool, no matter, make a new team! */
  KMP_MB();
  team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t));

  /* and set it up */
  team->t.t_max_nproc = max_nproc;
  /* NOTE well, for some reason allocating one big buffer and dividing it up
     seems to really hurt performance a lot on the P4, so, let's not use this */
  __kmp_allocate_team_arrays(team, max_nproc);

  KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
  __kmp_initialize_team(team, new_nproc, new_icvs, NULL);

  KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
                "%p to NULL\n",
                &team->t.t_task_team[0], &team->t.t_task_team[1]));
  team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes
  // memory, no need to duplicate
  team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes
  // memory, no need to duplicate

  if (__kmp_storage_map) {
    __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc);
  }

  /* allocate space for arguments */
  __kmp_alloc_argv_entries(argc, team, FALSE);
  team->t.t_argc = argc;

  KA_TRACE(20,
           ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
            team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
  { // Initialize barrier data.
    int b;
    for (b = 0; b < bs_last_barrier; ++b) {
      team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
#if USE_DEBUGGER
      team->t.t_bar[b].b_master_arrived = 0;
      team->t.t_bar[b].b_team_arrived = 0;
#endif
    }
  }

  team->t.t_proc_bind = new_proc_bind;

#if OMPT_SUPPORT
  __ompt_team_assign_id(team, ompt_parallel_data);
  team->t.ompt_serialized_team_info = NULL;
#endif

  KMP_MB();

  KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
                team->t.t_id));

  return team;
}

/* TODO implement hot-teams at all levels */
/* TODO implement lazy thread release on demand (disband request) */

/* free the team.  return it to the team pool.  release all the threads
 * associated with it */
void __kmp_free_team(kmp_root_t *root,
                     kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) {
  int f;
  KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
                team->t.t_id));

  /* verify state */
  KMP_DEBUG_ASSERT(root);
  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc);
  KMP_DEBUG_ASSERT(team->t.t_threads);

  int use_hot_team = team == root->r.r_hot_team;
#if KMP_NESTED_HOT_TEAMS
  int level;
  kmp_hot_team_ptr_t *hot_teams;
  if (master) {
    level = team->t.t_active_level - 1;
    if (master->th.th_teams_microtask) { // in teams construct?
      if (master->th.th_teams_size.nteams > 1) {
        ++level; // level was not increased in teams construct for
        // team_of_masters
      }
      if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
          master->th.th_teams_level == team->t.t_level) {
        ++level; // level was not increased in teams construct for
        // team_of_workers before the parallel
      } // team->t.t_level will be increased inside parallel
    }
    hot_teams = master->th.th_hot_teams;
    if (level < __kmp_hot_teams_max_level) {
      KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team);
      use_hot_team = 1;
    }
  }
#endif // KMP_NESTED_HOT_TEAMS

  /* team is done working */
  TCW_SYNC_PTR(team->t.t_pkfn,
               NULL); // Important for Debugging Support Library.
#if KMP_OS_WINDOWS
  team->t.t_copyin_counter = 0; // init counter for possible reuse
#endif
  // Do not reset pointer to parent team to NULL for hot teams.

  /* if we are non-hot team, release our threads */
  if (!use_hot_team) {
    if (__kmp_tasking_mode != tskm_immediate_exec) {
      // Wait for threads to reach reapable state
      for (f = 1; f < team->t.t_nproc; ++f) {
        KMP_DEBUG_ASSERT(team->t.t_threads[f]);
        kmp_info_t *th = team->t.t_threads[f];
        volatile kmp_uint32 *state = &th->th.th_reap_state;
        while (*state != KMP_SAFE_TO_REAP) {
#if KMP_OS_WINDOWS
          // On Windows a thread can be killed at any time, check this
          DWORD ecode;
          if (!__kmp_is_thread_alive(th, &ecode)) {
            *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread
            break;
          }
#endif
          // first check if thread is sleeping
          kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th);
          if (fl.is_sleeping())
            fl.resume(__kmp_gtid_from_thread(th));
          KMP_CPU_PAUSE();
        }
      }

      // Delete task teams
      int tt_idx;
      for (tt_idx = 0; tt_idx < 2; ++tt_idx) {
        kmp_task_team_t *task_team = team->t.t_task_team[tt_idx];
        if (task_team != NULL) {
          for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams
            KMP_DEBUG_ASSERT(team->t.t_threads[f]);
            team->t.t_threads[f]->th.th_task_team = NULL;
          }
          KA_TRACE(
              20,
              ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
               __kmp_get_gtid(), task_team, team->t.t_id));
#if KMP_NESTED_HOT_TEAMS
          __kmp_free_task_team(master, task_team);
#endif
          team->t.t_task_team[tt_idx] = NULL;
        }
      }
    }

    // Reset pointer to parent team only for non-hot teams.
    team->t.t_parent = NULL;
    team->t.t_level = 0;
    team->t.t_active_level = 0;

    /* free the worker threads */
    for (f = 1; f < team->t.t_nproc; ++f) {
      KMP_DEBUG_ASSERT(team->t.t_threads[f]);
      __kmp_free_thread(team->t.t_threads[f]);
      team->t.t_threads[f] = NULL;
    }

    /* put the team back in the team pool */
    /* TODO limit size of team pool, call reap_team if pool too large */
    team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool);
    __kmp_team_pool = (volatile kmp_team_t *)team;
  } else { // Check if team was created for the masters in a teams construct
    // See if first worker is a CG root
    KMP_DEBUG_ASSERT(team->t.t_threads[1] &&
                     team->t.t_threads[1]->th.th_cg_roots);
    if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) {
      // Clean up the CG root nodes on workers so that this team can be re-used
      for (f = 1; f < team->t.t_nproc; ++f) {
        kmp_info_t *thr = team->t.t_threads[f];
        KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots &&
                         thr->th.th_cg_roots->cg_root == thr);
        // Pop current CG root off list
        kmp_cg_root_t *tmp = thr->th.th_cg_roots;
        thr->th.th_cg_roots = tmp->up;
        KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
                       " up to node %p. cg_nthreads was %d\n",
                       thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads));
        int i = tmp->cg_nthreads--;
        if (i == 1) {
          __kmp_free(tmp); // free CG if we are the last thread in it
        }
        // Restore current task's thread_limit from CG root
        if (thr->th.th_cg_roots)
          thr->th.th_current_task->td_icvs.thread_limit =
              thr->th.th_cg_roots->cg_thread_limit;
      }
    }
  }

  KMP_MB();
}

/* reap the team.  destroy it, reclaim all its resources and free its memory */
kmp_team_t *__kmp_reap_team(kmp_team_t *team) {
  kmp_team_t *next_pool = team->t.t_next_pool;

  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(team->t.t_dispatch);
  KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
  KMP_DEBUG_ASSERT(team->t.t_threads);
  KMP_DEBUG_ASSERT(team->t.t_argv);

  /* TODO clean the threads that are a part of this? */

  /* free stuff */
  __kmp_free_team_arrays(team);
  if (team->t.t_argv != &team->t.t_inline_argv[0])
    __kmp_free((void *)team->t.t_argv);
  __kmp_free(team);

  KMP_MB();
  return next_pool;
}

// Free the thread.  Don't reap it, just place it on the pool of available
// threads.
//
// Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
// binding for the affinity mechanism to be useful.
//
// Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
// However, we want to avoid a potential performance problem by always
// scanning through the list to find the correct point at which to insert
// the thread (potential N**2 behavior).  To do this we keep track of the
// last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
// With single-level parallelism, threads will always be added to the tail
// of the list, kept track of by __kmp_thread_pool_insert_pt.  With nested
// parallelism, all bets are off and we may need to scan through the entire
// free list.
//
// This change also has a potentially large performance benefit, for some
// applications.  Previously, as threads were freed from the hot team, they
// would be placed back on the free list in inverse order.  If the hot team
// grew back to it's original size, then the freed thread would be placed
// back on the hot team in reverse order.  This could cause bad cache
// locality problems on programs where the size of the hot team regularly
// grew and shrunk.
//
// Now, for single-level parallelism, the OMP tid is always == gtid.
void __kmp_free_thread(kmp_info_t *this_th) {
  int gtid;
  kmp_info_t **scan;

  KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
                __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid));

  KMP_DEBUG_ASSERT(this_th);

  // When moving thread to pool, switch thread to wait on own b_go flag, and
  // uninitialized (NULL team).
  int b;
  kmp_balign_t *balign = this_th->th.th_bar;
  for (b = 0; b < bs_last_barrier; ++b) {
    if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG)
      balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
    balign[b].bb.team = NULL;
    balign[b].bb.leaf_kids = 0;
  }
  this_th->th.th_task_state = 0;
  this_th->th.th_reap_state = KMP_SAFE_TO_REAP;

  /* put thread back on the free pool */
  TCW_PTR(this_th->th.th_team, NULL);
  TCW_PTR(this_th->th.th_root, NULL);
  TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */

  while (this_th->th.th_cg_roots) {
    this_th->th.th_cg_roots->cg_nthreads--;
    KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
                   " %p of thread  %p to %d\n",
                   this_th, this_th->th.th_cg_roots,
                   this_th->th.th_cg_roots->cg_root,
                   this_th->th.th_cg_roots->cg_nthreads));
    kmp_cg_root_t *tmp = this_th->th.th_cg_roots;
    if (tmp->cg_root == this_th) { // Thread is a cg_root
      KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0);
      KA_TRACE(
          5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp));
      this_th->th.th_cg_roots = tmp->up;
      __kmp_free(tmp);
    } else { // Worker thread
      if (tmp->cg_nthreads == 0) { // last thread leaves contention group
        __kmp_free(tmp);
      }
      this_th->th.th_cg_roots = NULL;
      break;
    }
  }

  /* If the implicit task assigned to this thread can be used by other threads
   * -> multiple threads can share the data and try to free the task at
   * __kmp_reap_thread at exit. This duplicate use of the task data can happen
   * with higher probability when hot team is disabled but can occurs even when
   * the hot team is enabled */
  __kmp_free_implicit_task(this_th);
  this_th->th.th_current_task = NULL;

  // If the __kmp_thread_pool_insert_pt is already past the new insert
  // point, then we need to re-scan the entire list.
  gtid = this_th->th.th_info.ds.ds_gtid;
  if (__kmp_thread_pool_insert_pt != NULL) {
    KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL);
    if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) {
      __kmp_thread_pool_insert_pt = NULL;
    }
  }

  // Scan down the list to find the place to insert the thread.
  // scan is the address of a link in the list, possibly the address of
  // __kmp_thread_pool itself.
  //
  // In the absence of nested parallelism, the for loop will have 0 iterations.
  if (__kmp_thread_pool_insert_pt != NULL) {
    scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool);
  } else {
    scan = CCAST(kmp_info_t **, &__kmp_thread_pool);
  }
  for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid);
       scan = &((*scan)->th.th_next_pool))
    ;

  // Insert the new element on the list, and set __kmp_thread_pool_insert_pt
  // to its address.
  TCW_PTR(this_th->th.th_next_pool, *scan);
  __kmp_thread_pool_insert_pt = *scan = this_th;
  KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) ||
                   (this_th->th.th_info.ds.ds_gtid <
                    this_th->th.th_next_pool->th.th_info.ds.ds_gtid));
  TCW_4(this_th->th.th_in_pool, TRUE);
  __kmp_suspend_initialize_thread(this_th);
  __kmp_lock_suspend_mx(this_th);
  if (this_th->th.th_active == TRUE) {
    KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
    this_th->th.th_active_in_pool = TRUE;
  }
#if KMP_DEBUG
  else {
    KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE);
  }
#endif
  __kmp_unlock_suspend_mx(this_th);

  TCW_4(__kmp_nth, __kmp_nth - 1);

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime back to user setting or default if necessary */
  /* Middle initialization might never have occurred                */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
    if (__kmp_nth <= __kmp_avail_proc) {
      __kmp_zero_bt = FALSE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  KMP_MB();
}

/* ------------------------------------------------------------------------ */

void *__kmp_launch_thread(kmp_info_t *this_thr) {
#if OMP_PROFILING_SUPPORT
  ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE");
  // TODO: add a configuration option for time granularity
  if (ProfileTraceFile)
    llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget");
#endif

  int gtid = this_thr->th.th_info.ds.ds_gtid;
  /*    void                 *stack_data;*/
  kmp_team_t **volatile pteam;

  KMP_MB();
  KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid));

  if (__kmp_env_consistency_check) {
    this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak?
  }

#if OMPT_SUPPORT
  ompt_data_t *thread_data;
  if (ompt_enabled.enabled) {
    thread_data = &(this_thr->th.ompt_thread_info.thread_data);
    *thread_data = ompt_data_none;

    this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    this_thr->th.ompt_thread_info.wait_id = 0;
    this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0);
    this_thr->th.ompt_thread_info.parallel_flags = 0;
    if (ompt_enabled.ompt_callback_thread_begin) {
      ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
          ompt_thread_worker, thread_data);
    }
    this_thr->th.ompt_thread_info.state = ompt_state_idle;
  }
#endif

  /* This is the place where threads wait for work */
  while (!TCR_4(__kmp_global.g.g_done)) {
    KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]);
    KMP_MB();

    /* wait for work to do */
    KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid));

    /* No tid yet since not part of a team */
    __kmp_fork_barrier(gtid, KMP_GTID_DNE);

#if OMPT_SUPPORT
    if (ompt_enabled.enabled) {
      this_thr->th.ompt_thread_info.state = ompt_state_overhead;
    }
#endif

    pteam = &this_thr->th.th_team;

    /* have we been allocated? */
    if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) {
      /* we were just woken up, so run our new task */
      if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) {
        int rc;
        KA_TRACE(20,
                 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
                  gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
                  (*pteam)->t.t_pkfn));

        updateHWFPControl(*pteam);

#if OMPT_SUPPORT
        if (ompt_enabled.enabled) {
          this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
        }
#endif

        rc = (*pteam)->t.t_invoke(gtid);
        KMP_ASSERT(rc);

        KMP_MB();
        KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
                      gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
                      (*pteam)->t.t_pkfn));
      }
#if OMPT_SUPPORT
      if (ompt_enabled.enabled) {
        /* no frame set while outside task */
        __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none;

        this_thr->th.ompt_thread_info.state = ompt_state_overhead;
      }
#endif
      /* join barrier after parallel region */
      __kmp_join_barrier(gtid);
    }
  }
  TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done);

#if OMPT_SUPPORT
  if (ompt_enabled.ompt_callback_thread_end) {
    ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data);
  }
#endif

  this_thr->th.th_task_team = NULL;
  /* run the destructors for the threadprivate data for this thread */
  __kmp_common_destroy_gtid(gtid);

  KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid));
  KMP_MB();

#if OMP_PROFILING_SUPPORT
  llvm::timeTraceProfilerFinishThread();
#endif
  return this_thr;
}

/* ------------------------------------------------------------------------ */

void __kmp_internal_end_dest(void *specific_gtid) {
  // Make sure no significant bits are lost
  int gtid;
  __kmp_type_convert((kmp_intptr_t)specific_gtid - 1, &gtid);

  KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid));
  /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
   * this is because 0 is reserved for the nothing-stored case */

  __kmp_internal_end_thread(gtid);
}

#if KMP_OS_UNIX && KMP_DYNAMIC_LIB

__attribute__((destructor)) void __kmp_internal_end_dtor(void) {
  __kmp_internal_end_atexit();
}

#endif

/* [Windows] josh: when the atexit handler is called, there may still be more
   than one thread alive */
void __kmp_internal_end_atexit(void) {
  KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
  /* [Windows]
     josh: ideally, we want to completely shutdown the library in this atexit
     handler, but stat code that depends on thread specific data for gtid fails
     because that data becomes unavailable at some point during the shutdown, so
     we call __kmp_internal_end_thread instead. We should eventually remove the
     dependency on __kmp_get_specific_gtid in the stat code and use
     __kmp_internal_end_library to cleanly shutdown the library.

     // TODO: Can some of this comment about GVS be removed?
     I suspect that the offending stat code is executed when the calling thread
     tries to clean up a dead root thread's data structures, resulting in GVS
     code trying to close the GVS structures for that thread, but since the stat
     code uses __kmp_get_specific_gtid to get the gtid with the assumption that
     the calling thread is cleaning up itself instead of another thread, it get
     confused. This happens because allowing a thread to unregister and cleanup
     another thread is a recent modification for addressing an issue.
     Based on the current design (20050722), a thread may end up
     trying to unregister another thread only if thread death does not trigger
     the calling of __kmp_internal_end_thread.  For Linux* OS, there is the
     thread specific data destructor function to detect thread death. For
     Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
     is nothing.  Thus, the workaround is applicable only for Windows static
     stat library. */
  __kmp_internal_end_library(-1);
#if KMP_OS_WINDOWS
  __kmp_close_console();
#endif
}

static void __kmp_reap_thread(kmp_info_t *thread, int is_root) {
  // It is assumed __kmp_forkjoin_lock is acquired.

  int gtid;

  KMP_DEBUG_ASSERT(thread != NULL);

  gtid = thread->th.th_info.ds.ds_gtid;

  if (!is_root) {
    if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
      /* Assume the threads are at the fork barrier here */
      KA_TRACE(
          20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
               gtid));
      /* Need release fence here to prevent seg faults for tree forkjoin barrier
       * (GEH) */
      ANNOTATE_HAPPENS_BEFORE(thread);
      kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
                         thread);
      __kmp_release_64(&flag);
    }

    // Terminate OS thread.
    __kmp_reap_worker(thread);

    // The thread was killed asynchronously.  If it was actively
    // spinning in the thread pool, decrement the global count.
    //
    // There is a small timing hole here - if the worker thread was just waking
    // up after sleeping in the pool, had reset it's th_active_in_pool flag but
    // not decremented the global counter __kmp_thread_pool_active_nth yet, then
    // the global counter might not get updated.
    //
    // Currently, this can only happen as the library is unloaded,
    // so there are no harmful side effects.
    if (thread->th.th_active_in_pool) {
      thread->th.th_active_in_pool = FALSE;
      KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
      KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0);
    }
  }

  __kmp_free_implicit_task(thread);

// Free the fast memory for tasking
#if USE_FAST_MEMORY
  __kmp_free_fast_memory(thread);
#endif /* USE_FAST_MEMORY */

  __kmp_suspend_uninitialize_thread(thread);

  KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread);
  TCW_SYNC_PTR(__kmp_threads[gtid], NULL);

  --__kmp_all_nth;
// __kmp_nth was decremented when thread is added to the pool.

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime back to user setting or default if necessary */
  /* Middle initialization might never have occurred                */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
    if (__kmp_nth <= __kmp_avail_proc) {
      __kmp_zero_bt = FALSE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* free the memory being used */
  if (__kmp_env_consistency_check) {
    if (thread->th.th_cons) {
      __kmp_free_cons_stack(thread->th.th_cons);
      thread->th.th_cons = NULL;
    }
  }

  if (thread->th.th_pri_common != NULL) {
    __kmp_free(thread->th.th_pri_common);
    thread->th.th_pri_common = NULL;
  }

  if (thread->th.th_task_state_memo_stack != NULL) {
    __kmp_free(thread->th.th_task_state_memo_stack);
    thread->th.th_task_state_memo_stack = NULL;
  }

#if KMP_USE_BGET
  if (thread->th.th_local.bget_data != NULL) {
    __kmp_finalize_bget(thread);
  }
#endif

#if KMP_AFFINITY_SUPPORTED
  if (thread->th.th_affin_mask != NULL) {
    KMP_CPU_FREE(thread->th.th_affin_mask);
    thread->th.th_affin_mask = NULL;
  }
#endif /* KMP_AFFINITY_SUPPORTED */

#if KMP_USE_HIER_SCHED
  if (thread->th.th_hier_bar_data != NULL) {
    __kmp_free(thread->th.th_hier_bar_data);
    thread->th.th_hier_bar_data = NULL;
  }
#endif

  __kmp_reap_team(thread->th.th_serial_team);
  thread->th.th_serial_team = NULL;
  __kmp_free(thread);

  KMP_MB();

} // __kmp_reap_thread

static void __kmp_internal_end(void) {
  int i;

  /* First, unregister the library */
  __kmp_unregister_library();

#if KMP_OS_WINDOWS
  /* In Win static library, we can't tell when a root actually dies, so we
     reclaim the data structures for any root threads that have died but not
     unregistered themselves, in order to shut down cleanly.
     In Win dynamic library we also can't tell when a thread dies.  */
  __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
// dead roots
#endif

  for (i = 0; i < __kmp_threads_capacity; i++)
    if (__kmp_root[i])
      if (__kmp_root[i]->r.r_active)
        break;
  KMP_MB(); /* Flush all pending memory write invalidates.  */
  TCW_SYNC_4(__kmp_global.g.g_done, TRUE);

  if (i < __kmp_threads_capacity) {
#if KMP_USE_MONITOR
    // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
    KMP_MB(); /* Flush all pending memory write invalidates.  */

    // Need to check that monitor was initialized before reaping it. If we are
    // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
    // __kmp_monitor will appear to contain valid data, but it is only valid in
    // the parent process, not the child.
    // New behavior (201008): instead of keying off of the flag
    // __kmp_init_parallel, the monitor thread creation is keyed off
    // of the new flag __kmp_init_monitor.
    __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
    if (TCR_4(__kmp_init_monitor)) {
      __kmp_reap_monitor(&__kmp_monitor);
      TCW_4(__kmp_init_monitor, 0);
    }
    __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
    KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
#endif // KMP_USE_MONITOR
  } else {
/* TODO move this to cleanup code */
#ifdef KMP_DEBUG
    /* make sure that everything has properly ended */
    for (i = 0; i < __kmp_threads_capacity; i++) {
      if (__kmp_root[i]) {
        //                    KMP_ASSERT( ! KMP_UBER_GTID( i ) );         // AC:
        //                    there can be uber threads alive here
        KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active?
      }
    }
#endif

    KMP_MB();

    // Reap the worker threads.
    // This is valid for now, but be careful if threads are reaped sooner.
    while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool.
      // Get the next thread from the pool.
      kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool);
      __kmp_thread_pool = thread->th.th_next_pool;
      // Reap it.
      KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP);
      thread->th.th_next_pool = NULL;
      thread->th.th_in_pool = FALSE;
      __kmp_reap_thread(thread, 0);
    }
    __kmp_thread_pool_insert_pt = NULL;

    // Reap teams.
    while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool.
      // Get the next team from the pool.
      kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool);
      __kmp_team_pool = team->t.t_next_pool;
      // Reap it.
      team->t.t_next_pool = NULL;
      __kmp_reap_team(team);
    }

    __kmp_reap_task_teams();

#if KMP_OS_UNIX
    // Threads that are not reaped should not access any resources since they
    // are going to be deallocated soon, so the shutdown sequence should wait
    // until all threads either exit the final spin-waiting loop or begin
    // sleeping after the given blocktime.
    for (i = 0; i < __kmp_threads_capacity; i++) {
      kmp_info_t *thr = __kmp_threads[i];
      while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking))
        KMP_CPU_PAUSE();
    }
#endif

    for (i = 0; i < __kmp_threads_capacity; ++i) {
      // TBD: Add some checking...
      // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
    }

    /* Make sure all threadprivate destructors get run by joining with all
       worker threads before resetting this flag */
    TCW_SYNC_4(__kmp_init_common, FALSE);

    KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
    KMP_MB();

#if KMP_USE_MONITOR
    // See note above: One of the possible fixes for CQ138434 / CQ140126
    //
    // FIXME: push both code fragments down and CSE them?
    // push them into __kmp_cleanup() ?
    __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
    if (TCR_4(__kmp_init_monitor)) {
      __kmp_reap_monitor(&__kmp_monitor);
      TCW_4(__kmp_init_monitor, 0);
    }
    __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
    KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
#endif
  } /* else !__kmp_global.t_active */
  TCW_4(__kmp_init_gtid, FALSE);
  KMP_MB(); /* Flush all pending memory write invalidates.  */

  __kmp_cleanup();
#if OMPT_SUPPORT
  ompt_fini();
#endif
}

void __kmp_internal_end_library(int gtid_req) {
  /* if we have already cleaned up, don't try again, it wouldn't be pretty */
  /* this shouldn't be a race condition because __kmp_internal_end() is the
     only place to clear __kmp_serial_init */
  /* we'll check this later too, after we get the lock */
  // 2009-09-06: We do not set g_abort without setting g_done. This check looks
  // redundant, because the next check will work in any case.
  if (__kmp_global.g.g_abort) {
    KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
    /* TODO abort? */
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
    return;
  }

  KMP_MB(); /* Flush all pending memory write invalidates.  */
  /* find out who we are and what we should do */
  {
    int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
    KA_TRACE(
        10, ("__kmp_internal_end_library: enter T#%d  (%d)\n", gtid, gtid_req));
    if (gtid == KMP_GTID_SHUTDOWN) {
      KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
                    "already shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_MONITOR) {
      KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
                    "registered, or system shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_DNE) {
      KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
                    "shutdown\n"));
      /* we don't know who we are, but we may still shutdown the library */
    } else if (KMP_UBER_GTID(gtid)) {
      /* unregister ourselves as an uber thread.  gtid is no longer valid */
      if (__kmp_root[gtid]->r.r_active) {
        __kmp_global.g.g_abort = -1;
        TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
        __kmp_unregister_library();
        KA_TRACE(10,
                 ("__kmp_internal_end_library: root still active, abort T#%d\n",
                  gtid));
        return;
      } else {
        KA_TRACE(
            10,
            ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid));
        __kmp_unregister_root_current_thread(gtid);
      }
    } else {
/* worker threads may call this function through the atexit handler, if they
 * call exit() */
/* For now, skip the usual subsequent processing and just dump the debug buffer.
   TODO: do a thorough shutdown instead */
#ifdef DUMP_DEBUG_ON_EXIT
      if (__kmp_debug_buf)
        __kmp_dump_debug_buffer();
#endif
      // added unregister library call here when we switch to shm linux
      // if we don't, it will leave lots of files in /dev/shm
      // cleanup shared memory file before exiting.
      __kmp_unregister_library();
      return;
    }
  }
  /* synchronize the termination process */
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);

  /* have we already finished */
  if (__kmp_global.g.g_abort) {
    KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
    /* TODO abort? */
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  /* We need this lock to enforce mutex between this reading of
     __kmp_threads_capacity and the writing by __kmp_register_root.
     Alternatively, we can use a counter of roots that is atomically updated by
     __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
     __kmp_internal_end_*.  */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

  /* now we can safely conduct the actual termination */
  __kmp_internal_end();

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);

  KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));

#ifdef DUMP_DEBUG_ON_EXIT
  if (__kmp_debug_buf)
    __kmp_dump_debug_buffer();
#endif

#if KMP_OS_WINDOWS
  __kmp_close_console();
#endif

  __kmp_fini_allocator();

} // __kmp_internal_end_library

void __kmp_internal_end_thread(int gtid_req) {
  int i;

  /* if we have already cleaned up, don't try again, it wouldn't be pretty */
  /* this shouldn't be a race condition because __kmp_internal_end() is the
   * only place to clear __kmp_serial_init */
  /* we'll check this later too, after we get the lock */
  // 2009-09-06: We do not set g_abort without setting g_done. This check looks
  // redundant, because the next check will work in any case.
  if (__kmp_global.g.g_abort) {
    KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
    /* TODO abort? */
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
    return;
  }

  // If hidden helper team has been initialized, we need to deinit it
  if (TCR_4(__kmp_init_hidden_helper)) {
    TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
    // First release the main thread to let it continue its work
    __kmp_hidden_helper_main_thread_release();
    // Wait until the hidden helper team has been destroyed
    __kmp_hidden_helper_threads_deinitz_wait();
  }

  KMP_MB(); /* Flush all pending memory write invalidates.  */

  /* find out who we are and what we should do */
  {
    int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
    KA_TRACE(10,
             ("__kmp_internal_end_thread: enter T#%d  (%d)\n", gtid, gtid_req));
    if (gtid == KMP_GTID_SHUTDOWN) {
      KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
                    "already shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_MONITOR) {
      KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
                    "registered, or system shutdown\n"));
      return;
    } else if (gtid == KMP_GTID_DNE) {
      KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
                    "shutdown\n"));
      return;
      /* we don't know who we are */
    } else if (KMP_UBER_GTID(gtid)) {
      /* unregister ourselves as an uber thread.  gtid is no longer valid */
      if (__kmp_root[gtid]->r.r_active) {
        __kmp_global.g.g_abort = -1;
        TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
        KA_TRACE(10,
                 ("__kmp_internal_end_thread: root still active, abort T#%d\n",
                  gtid));
        return;
      } else {
        KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
                      gtid));
        __kmp_unregister_root_current_thread(gtid);
      }
    } else {
      /* just a worker thread, let's leave */
      KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid));

      if (gtid >= 0) {
        __kmp_threads[gtid]->th.th_task_team = NULL;
      }

      KA_TRACE(10,
               ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
                gtid));
      return;
    }
  }
#if KMP_DYNAMIC_LIB
  if (__kmp_pause_status != kmp_hard_paused)
  // AC: lets not shutdown the dynamic library at the exit of uber thread,
  // because we will better shutdown later in the library destructor.
  {
    KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req));
    return;
  }
#endif
  /* synchronize the termination process */
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);

  /* have we already finished */
  if (__kmp_global.g.g_abort) {
    KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
    /* TODO abort? */
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  /* We need this lock to enforce mutex between this reading of
     __kmp_threads_capacity and the writing by __kmp_register_root.
     Alternatively, we can use a counter of roots that is atomically updated by
     __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
     __kmp_internal_end_*.  */

  /* should we finish the run-time?  are all siblings done? */
  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);

  for (i = 0; i < __kmp_threads_capacity; ++i) {
    if (KMP_UBER_GTID(i)) {
      KA_TRACE(
          10,
          ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i));
      __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
      __kmp_release_bootstrap_lock(&__kmp_initz_lock);
      return;
    }
  }

  /* now we can safely conduct the actual termination */

  __kmp_internal_end();

  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);

  KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req));

#ifdef DUMP_DEBUG_ON_EXIT
  if (__kmp_debug_buf)
    __kmp_dump_debug_buffer();
#endif
} // __kmp_internal_end_thread

// -----------------------------------------------------------------------------
// Library registration stuff.

static long __kmp_registration_flag = 0;
// Random value used to indicate library initialization.
static char *__kmp_registration_str = NULL;
// Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.

static inline char *__kmp_reg_status_name() {
/* On RHEL 3u5 if linked statically, getpid() returns different values in
   each thread. If registration and unregistration go in different threads
   (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
   env var can not be found, because the name will contain different pid. */
// macOS* complains about name being too long with additional getuid()
#if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB
  return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(),
                          (int)getuid());
#else
  return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
#endif
} // __kmp_reg_status_get

void __kmp_register_library_startup(void) {

  char *name = __kmp_reg_status_name(); // Name of the environment variable.
  int done = 0;
  union {
    double dtime;
    long ltime;
  } time;
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  __kmp_initialize_system_tick();
#endif
  __kmp_read_system_time(&time.dtime);
  __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL);
  __kmp_registration_str =
      __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag,
                       __kmp_registration_flag, KMP_LIBRARY_FILE);

  KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name,
                __kmp_registration_str));

  while (!done) {

    char *value = NULL; // Actual value of the environment variable.

#if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library
    char *shm_name = __kmp_str_format("/%s", name);
    int shm_preexist = 0;
    char *data1;
    int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666);
    if ((fd1 == -1) && (errno == EEXIST)) {
      // file didn't open because it already exists.
      // try opening existing file
      fd1 = shm_open(shm_name, O_RDWR, 0666);
      if (fd1 == -1) { // file didn't open
        // error out here
        __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0),
                    __kmp_msg_null);
      } else {
        // able to open existing file
        shm_preexist = 1;
      }
    } else if (fd1 == -1) { // SHM didn't open; it was due to error other than
      // already exists.
      // error out here.
      __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno),
                  __kmp_msg_null);
    }
    if (shm_preexist == 0) {
      // we created SHM now set size
      if (ftruncate(fd1, SHM_SIZE) == -1) {
        // error occured setting size;
        __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"),
                    KMP_ERR(errno), __kmp_msg_null);
      }
    }
    data1 =
        (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0);
    if (data1 == MAP_FAILED) {
      // failed to map shared memory
      __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno),
                  __kmp_msg_null);
    }
    if (shm_preexist == 0) { // set data to SHM, set value
      KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str);
    }
    // Read value from either what we just wrote or existing file.
    value = __kmp_str_format("%s", data1); // read value from SHM
    munmap(data1, SHM_SIZE);
    close(fd1);
#else // Windows and unix with static library
    // Set environment variable, but do not overwrite if it is exist.
    __kmp_env_set(name, __kmp_registration_str, 0);
    // read value to see if it got set
    value = __kmp_env_get(name);
#endif

    if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
      done = 1; // Ok, environment variable set successfully, exit the loop.
    } else {
      // Oops. Write failed. Another copy of OpenMP RTL is in memory.
      // Check whether it alive or dead.
      int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
      char *tail = value;
      char *flag_addr_str = NULL;
      char *flag_val_str = NULL;
      char const *file_name = NULL;
      __kmp_str_split(tail, '-', &flag_addr_str, &tail);
      __kmp_str_split(tail, '-', &flag_val_str, &tail);
      file_name = tail;
      if (tail != NULL) {
        long *flag_addr = 0;
        long flag_val = 0;
        KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr));
        KMP_SSCANF(flag_val_str, "%lx", &flag_val);
        if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) {
          // First, check whether environment-encoded address is mapped into
          // addr space.
          // If so, dereference it to see if it still has the right value.
          if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) {
            neighbor = 1;
          } else {
            // If not, then we know the other copy of the library is no longer
            // running.
            neighbor = 2;
          }
        }
      }
      switch (neighbor) {
      case 0: // Cannot parse environment variable -- neighbor status unknown.
        // Assume it is the incompatible format of future version of the
        // library. Assume the other library is alive.
        // WARN( ... ); // TODO: Issue a warning.
        file_name = "unknown library";
        KMP_FALLTHROUGH();
      // Attention! Falling to the next case. That's intentional.
      case 1: { // Neighbor is alive.
        // Check it is allowed.
        char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK");
        if (!__kmp_str_match_true(duplicate_ok)) {
          // That's not allowed. Issue fatal error.
          __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name),
                      KMP_HNT(DuplicateLibrary), __kmp_msg_null);
        }
        KMP_INTERNAL_FREE(duplicate_ok);
        __kmp_duplicate_library_ok = 1;
        done = 1; // Exit the loop.
      } break;
      case 2: { // Neighbor is dead.

#if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library
        // close shared memory.
        shm_unlink(shm_name); // this removes file in /dev/shm
#else
        // Clear the variable and try to register library again.
        __kmp_env_unset(name);
#endif
      } break;
      default: { KMP_DEBUG_ASSERT(0); } break;
      }
    }
    KMP_INTERNAL_FREE((void *)value);
#if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library
    KMP_INTERNAL_FREE((void *)shm_name);
#endif
  } // while
  KMP_INTERNAL_FREE((void *)name);

} // func __kmp_register_library_startup

void __kmp_unregister_library(void) {

  char *name = __kmp_reg_status_name();
  char *value = NULL;

#if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library
  char *shm_name = __kmp_str_format("/%s", name);
  int fd1 = shm_open(shm_name, O_RDONLY, 0666);
  if (fd1 == -1) {
    // file did not open. return.
    return;
  }
  char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0);
  if (data1 != MAP_FAILED) {
    value = __kmp_str_format("%s", data1); // read value from SHM
    munmap(data1, SHM_SIZE);
  }
  close(fd1);
#else
  value = __kmp_env_get(name);
#endif

  KMP_DEBUG_ASSERT(__kmp_registration_flag != 0);
  KMP_DEBUG_ASSERT(__kmp_registration_str != NULL);
  if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
//  Ok, this is our variable. Delete it.
#if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library
    shm_unlink(shm_name); // this removes file in /dev/shm
#else
    __kmp_env_unset(name);
#endif
  }

#if KMP_OS_UNIX && KMP_DYNAMIC_LIB // shared memory is with dynamic library
  KMP_INTERNAL_FREE(shm_name);
#endif

  KMP_INTERNAL_FREE(__kmp_registration_str);
  KMP_INTERNAL_FREE(value);
  KMP_INTERNAL_FREE(name);

  __kmp_registration_flag = 0;
  __kmp_registration_str = NULL;

} // __kmp_unregister_library

// End of Library registration stuff.
// -----------------------------------------------------------------------------

#if KMP_MIC_SUPPORTED

static void __kmp_check_mic_type() {
  kmp_cpuid_t cpuid_state = {0};
  kmp_cpuid_t *cs_p = &cpuid_state;
  __kmp_x86_cpuid(1, 0, cs_p);
  // We don't support mic1 at the moment
  if ((cs_p->eax & 0xff0) == 0xB10) {
    __kmp_mic_type = mic2;
  } else if ((cs_p->eax & 0xf0ff0) == 0x50670) {
    __kmp_mic_type = mic3;
  } else {
    __kmp_mic_type = non_mic;
  }
}

#endif /* KMP_MIC_SUPPORTED */

#if KMP_HAVE_UMWAIT
static void __kmp_user_level_mwait_init() {
  struct kmp_cpuid buf;
  __kmp_x86_cpuid(7, 0, &buf);
  __kmp_umwait_enabled = ((buf.ecx >> 5) & 1) && __kmp_user_level_mwait;
  KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n",
                __kmp_umwait_enabled));
}
#elif KMP_HAVE_MWAIT
#ifndef AT_INTELPHIUSERMWAIT
// Spurious, non-existent value that should always fail to return anything.
// Will be replaced with the correct value when we know that.
#define AT_INTELPHIUSERMWAIT 10000
#endif
// getauxval() function is available in RHEL7 and SLES12. If a system with an
// earlier OS is used to build the RTL, we'll use the following internal
// function when the entry is not found.
unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL;
unsigned long getauxval(unsigned long) { return 0; }

static void __kmp_user_level_mwait_init() {
  // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available
  // use them to find if the user-level mwait is enabled. Otherwise, forcibly
  // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable
  // KMP_USER_LEVEL_MWAIT was set to TRUE.
  if (__kmp_mic_type == mic3) {
    unsigned long res = getauxval(AT_INTELPHIUSERMWAIT);
    if ((res & 0x1) || __kmp_user_level_mwait) {
      __kmp_mwait_enabled = TRUE;
      if (__kmp_user_level_mwait) {
        KMP_INFORM(EnvMwaitWarn);
      }
    } else {
      __kmp_mwait_enabled = FALSE;
    }
  }
  KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, "
                "__kmp_mwait_enabled = %d\n",
                __kmp_mic_type, __kmp_mwait_enabled));
}
#endif /* KMP_HAVE_UMWAIT */

static void __kmp_do_serial_initialize(void) {
  int i, gtid;
  size_t size;

  KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));

  KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4);
  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4);
  KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8);
  KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8);
  KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *));

#if OMPT_SUPPORT
  ompt_pre_init();
#endif

  __kmp_validate_locks();

  /* Initialize internal memory allocator */
  __kmp_init_allocator();

  /* Register the library startup via an environment variable and check to see
     whether another copy of the library is already registered. */

  __kmp_register_library_startup();

  /* TODO reinitialization of library */
  if (TCR_4(__kmp_global.g.g_done)) {
    KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
  }

  __kmp_global.g.g_abort = 0;
  TCW_SYNC_4(__kmp_global.g.g_done, FALSE);

/* initialize the locks */
#if KMP_USE_ADAPTIVE_LOCKS
#if KMP_DEBUG_ADAPTIVE_LOCKS
  __kmp_init_speculative_stats();
#endif
#endif
#if KMP_STATS_ENABLED
  __kmp_stats_init();
#endif
  __kmp_init_lock(&__kmp_global_lock);
  __kmp_init_queuing_lock(&__kmp_dispatch_lock);
  __kmp_init_lock(&__kmp_debug_lock);
  __kmp_init_atomic_lock(&__kmp_atomic_lock);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_1i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_2i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_4i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_4r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_8i);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_8r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_8c);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_10r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_16r);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_16c);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_20c);
  __kmp_init_atomic_lock(&__kmp_atomic_lock_32c);
  __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock);
  __kmp_init_bootstrap_lock(&__kmp_exit_lock);
#if KMP_USE_MONITOR
  __kmp_init_bootstrap_lock(&__kmp_monitor_lock);
#endif
  __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock);

  /* conduct initialization and initial setup of configuration */

  __kmp_runtime_initialize();

#if KMP_MIC_SUPPORTED
  __kmp_check_mic_type();
#endif

// Some global variable initialization moved here from kmp_env_initialize()
#ifdef KMP_DEBUG
  kmp_diag = 0;
#endif
  __kmp_abort_delay = 0;

  // From __kmp_init_dflt_team_nth()
  /* assume the entire machine will be used */
  __kmp_dflt_team_nth_ub = __kmp_xproc;
  if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) {
    __kmp_dflt_team_nth_ub = KMP_MIN_NTH;
  }
  if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) {
    __kmp_dflt_team_nth_ub = __kmp_sys_max_nth;
  }
  __kmp_max_nth = __kmp_sys_max_nth;
  __kmp_cg_max_nth = __kmp_sys_max_nth;
  __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default
  if (__kmp_teams_max_nth > __kmp_sys_max_nth) {
    __kmp_teams_max_nth = __kmp_sys_max_nth;
  }

  // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
  // part
  __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
#if KMP_USE_MONITOR
  __kmp_monitor_wakeups =
      KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
  __kmp_bt_intervals =
      KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
#endif
  // From "KMP_LIBRARY" part of __kmp_env_initialize()
  __kmp_library = library_throughput;
  // From KMP_SCHEDULE initialization
  __kmp_static = kmp_sch_static_balanced;
// AC: do not use analytical here, because it is non-monotonous
//__kmp_guided = kmp_sch_guided_iterative_chunked;
//__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
// need to repeat assignment
// Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
// bit control and barrier method control parts
#if KMP_FAST_REDUCTION_BARRIER
#define kmp_reduction_barrier_gather_bb ((int)1)
#define kmp_reduction_barrier_release_bb ((int)1)
#define kmp_reduction_barrier_gather_pat bp_hyper_bar
#define kmp_reduction_barrier_release_pat bp_hyper_bar
#endif // KMP_FAST_REDUCTION_BARRIER
  for (i = bs_plain_barrier; i < bs_last_barrier; i++) {
    __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
    __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
    __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt;
    __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt;
#if KMP_FAST_REDUCTION_BARRIER
    if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only (
      // lin_64 ): hyper,1
      __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb;
      __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb;
      __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat;
      __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat;
    }
#endif // KMP_FAST_REDUCTION_BARRIER
  }
#if KMP_FAST_REDUCTION_BARRIER
#undef kmp_reduction_barrier_release_pat
#undef kmp_reduction_barrier_gather_pat
#undef kmp_reduction_barrier_release_bb
#undef kmp_reduction_barrier_gather_bb
#endif // KMP_FAST_REDUCTION_BARRIER
#if KMP_MIC_SUPPORTED
  if (__kmp_mic_type == mic2) { // KNC
    // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
    __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather
    __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] =
        1; // forkjoin release
    __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
    __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
  }
#if KMP_FAST_REDUCTION_BARRIER
  if (__kmp_mic_type == mic2) { // KNC
    __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
    __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
  }
#endif // KMP_FAST_REDUCTION_BARRIER
#endif // KMP_MIC_SUPPORTED

// From KMP_CHECKS initialization
#ifdef KMP_DEBUG
  __kmp_env_checks = TRUE; /* development versions have the extra checks */
#else
  __kmp_env_checks = FALSE; /* port versions do not have the extra checks */
#endif

  // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
  __kmp_foreign_tp = TRUE;

  __kmp_global.g.g_dynamic = FALSE;
  __kmp_global.g.g_dynamic_mode = dynamic_default;

  __kmp_env_initialize(NULL);

#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
  __kmp_user_level_mwait_init();
#endif
// Print all messages in message catalog for testing purposes.
#ifdef KMP_DEBUG
  char const *val = __kmp_env_get("KMP_DUMP_CATALOG");
  if (__kmp_str_match_true(val)) {
    kmp_str_buf_t buffer;
    __kmp_str_buf_init(&buffer);
    __kmp_i18n_dump_catalog(&buffer);
    __kmp_printf("%s", buffer.str);
    __kmp_str_buf_free(&buffer);
  }
  __kmp_env_free(&val);
#endif

  __kmp_threads_capacity =
      __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
  // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
  __kmp_tp_capacity = __kmp_default_tp_capacity(
      __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified);

  // If the library is shut down properly, both pools must be NULL. Just in
  // case, set them to NULL -- some memory may leak, but subsequent code will
  // work even if pools are not freed.
  KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL);
  KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL);
  KMP_DEBUG_ASSERT(__kmp_team_pool == NULL);
  __kmp_thread_pool = NULL;
  __kmp_thread_pool_insert_pt = NULL;
  __kmp_team_pool = NULL;

  /* Allocate all of the variable sized records */
  /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
   * expandable */
  /* Since allocation is cache-aligned, just add extra padding at the end */
  size =
      (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity +
      CACHE_LINE;
  __kmp_threads = (kmp_info_t **)__kmp_allocate(size);
  __kmp_root = (kmp_root_t **)((char *)__kmp_threads +
                               sizeof(kmp_info_t *) * __kmp_threads_capacity);

  /* init thread counts */
  KMP_DEBUG_ASSERT(__kmp_all_nth ==
                   0); // Asserts fail if the library is reinitializing and
  KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination.
  __kmp_all_nth = 0;
  __kmp_nth = 0;

  /* setup the uber master thread and hierarchy */
  gtid = __kmp_register_root(TRUE);
  KA_TRACE(10, ("__kmp_do_serial_initialize  T#%d\n", gtid));
  KMP_ASSERT(KMP_UBER_GTID(gtid));
  KMP_ASSERT(KMP_INITIAL_GTID(gtid));

  KMP_MB(); /* Flush all pending memory write invalidates.  */

  __kmp_common_initialize();

#if KMP_OS_UNIX
  /* invoke the child fork handler */
  __kmp_register_atfork();
#endif

#if !KMP_DYNAMIC_LIB
  {
    /* Invoke the exit handler when the program finishes, only for static
       library. For dynamic library, we already have _fini and DllMain. */
    int rc = atexit(__kmp_internal_end_atexit);
    if (rc != 0) {
      __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc),
                  __kmp_msg_null);
    }
  }
#endif

#if KMP_HANDLE_SIGNALS
#if KMP_OS_UNIX
  /* NOTE: make sure that this is called before the user installs their own
     signal handlers so that the user handlers are called first. this way they
     can return false, not call our handler, avoid terminating the library, and
     continue execution where they left off. */
  __kmp_install_signals(FALSE);
#endif /* KMP_OS_UNIX */
#if KMP_OS_WINDOWS
  __kmp_install_signals(TRUE);
#endif /* KMP_OS_WINDOWS */
#endif

  /* we have finished the serial initialization */
  __kmp_init_counter++;

  __kmp_init_serial = TRUE;

  if (__kmp_settings) {
    __kmp_env_print();
  }

  if (__kmp_display_env || __kmp_display_env_verbose) {
    __kmp_env_print_2();
  }

#if OMPT_SUPPORT
  ompt_post_init();
#endif

  KMP_MB();

  KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
}

void __kmp_serial_initialize(void) {
  if (__kmp_init_serial) {
    return;
  }
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (__kmp_init_serial) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  __kmp_do_serial_initialize();
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

static void __kmp_do_middle_initialize(void) {
  int i, j;
  int prev_dflt_team_nth;

  if (!__kmp_init_serial) {
    __kmp_do_serial_initialize();
  }

  KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));

  // Save the previous value for the __kmp_dflt_team_nth so that
  // we can avoid some reinitialization if it hasn't changed.
  prev_dflt_team_nth = __kmp_dflt_team_nth;

#if KMP_AFFINITY_SUPPORTED
  // __kmp_affinity_initialize() will try to set __kmp_ncores to the
  // number of cores on the machine.
  __kmp_affinity_initialize();

  // Run through the __kmp_threads array and set the affinity mask
  // for each root thread that is currently registered with the RTL.
  for (i = 0; i < __kmp_threads_capacity; i++) {
    if (TCR_PTR(__kmp_threads[i]) != NULL) {
      __kmp_affinity_set_init_mask(i, TRUE);
    }
  }
#endif /* KMP_AFFINITY_SUPPORTED */

  KMP_ASSERT(__kmp_xproc > 0);
  if (__kmp_avail_proc == 0) {
    __kmp_avail_proc = __kmp_xproc;
  }

  // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
  // correct them now
  j = 0;
  while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) {
    __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
        __kmp_avail_proc;
    j++;
  }

  if (__kmp_dflt_team_nth == 0) {
#ifdef KMP_DFLT_NTH_CORES
    // Default #threads = #cores
    __kmp_dflt_team_nth = __kmp_ncores;
    KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
                  "__kmp_ncores (%d)\n",
                  __kmp_dflt_team_nth));
#else
    // Default #threads = #available OS procs
    __kmp_dflt_team_nth = __kmp_avail_proc;
    KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
                  "__kmp_avail_proc(%d)\n",
                  __kmp_dflt_team_nth));
#endif /* KMP_DFLT_NTH_CORES */
  }

  if (__kmp_dflt_team_nth < KMP_MIN_NTH) {
    __kmp_dflt_team_nth = KMP_MIN_NTH;
  }
  if (__kmp_dflt_team_nth > __kmp_sys_max_nth) {
    __kmp_dflt_team_nth = __kmp_sys_max_nth;
  }

  // There's no harm in continuing if the following check fails,
  // but it indicates an error in the previous logic.
  KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub);

  if (__kmp_dflt_team_nth != prev_dflt_team_nth) {
    // Run through the __kmp_threads array and set the num threads icv for each
    // root thread that is currently registered with the RTL (which has not
    // already explicitly set its nthreads-var with a call to
    // omp_set_num_threads()).
    for (i = 0; i < __kmp_threads_capacity; i++) {
      kmp_info_t *thread = __kmp_threads[i];
      if (thread == NULL)
        continue;
      if (thread->th.th_current_task->td_icvs.nproc != 0)
        continue;

      set__nproc(__kmp_threads[i], __kmp_dflt_team_nth);
    }
  }
  KA_TRACE(
      20,
      ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
       __kmp_dflt_team_nth));

#ifdef KMP_ADJUST_BLOCKTIME
  /* Adjust blocktime to zero if necessary  now that __kmp_avail_proc is set */
  if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
    KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
    if (__kmp_nth > __kmp_avail_proc) {
      __kmp_zero_bt = TRUE;
    }
  }
#endif /* KMP_ADJUST_BLOCKTIME */

  /* we have finished middle initialization */
  TCW_SYNC_4(__kmp_init_middle, TRUE);

  KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
}

void __kmp_middle_initialize(void) {
  if (__kmp_init_middle) {
    return;
  }
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (__kmp_init_middle) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }
  __kmp_do_middle_initialize();
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

void __kmp_parallel_initialize(void) {
  int gtid = __kmp_entry_gtid(); // this might be a new root

  /* synchronize parallel initialization (for sibling) */
  if (TCR_4(__kmp_init_parallel))
    return;
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (TCR_4(__kmp_init_parallel)) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  /* TODO reinitialization after we have already shut down */
  if (TCR_4(__kmp_global.g.g_done)) {
    KA_TRACE(
        10,
        ("__kmp_parallel_initialize: attempt to init while shutting down\n"));
    __kmp_infinite_loop();
  }

  /* jc: The lock __kmp_initz_lock is already held, so calling
     __kmp_serial_initialize would cause a deadlock.  So we call
     __kmp_do_serial_initialize directly. */
  if (!__kmp_init_middle) {
    __kmp_do_middle_initialize();
  }
  __kmp_resume_if_hard_paused();

  /* begin initialization */
  KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
  KMP_ASSERT(KMP_UBER_GTID(gtid));

#if KMP_ARCH_X86 || KMP_ARCH_X86_64
  // Save the FP control regs.
  // Worker threads will set theirs to these values at thread startup.
  __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
  __kmp_store_mxcsr(&__kmp_init_mxcsr);
  __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK;
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */

#if KMP_OS_UNIX
#if KMP_HANDLE_SIGNALS
  /*  must be after __kmp_serial_initialize  */
  __kmp_install_signals(TRUE);
#endif
#endif

  __kmp_suspend_initialize();

#if defined(USE_LOAD_BALANCE)
  if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
    __kmp_global.g.g_dynamic_mode = dynamic_load_balance;
  }
#else
  if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
    __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
  }
#endif

  if (__kmp_version) {
    __kmp_print_version_2();
  }

  /* we have finished parallel initialization */
  TCW_SYNC_4(__kmp_init_parallel, TRUE);

  KMP_MB();
  KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));

  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

void __kmp_hidden_helper_initialize() {
  if (TCR_4(__kmp_init_hidden_helper))
    return;

  // __kmp_parallel_initialize is required before we initialize hidden helper
  if (!TCR_4(__kmp_init_parallel))
    __kmp_parallel_initialize();

  // Double check. Note that this double check should not be placed before
  // __kmp_parallel_initialize as it will cause dead lock.
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (TCR_4(__kmp_init_hidden_helper)) {
    __kmp_release_bootstrap_lock(&__kmp_initz_lock);
    return;
  }

  // Set the count of hidden helper tasks to be executed to zero
  KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks, 0);

  // Set the global variable indicating that we're initializing hidden helper
  // team/threads
  TCW_SYNC_4(__kmp_init_hidden_helper_threads, TRUE);

  // Platform independent initialization
  __kmp_do_initialize_hidden_helper_threads();

  // Wait here for the finish of initialization of hidden helper teams
  __kmp_hidden_helper_threads_initz_wait();

  // We have finished hidden helper initialization
  TCW_SYNC_4(__kmp_init_hidden_helper, TRUE);

  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

/* ------------------------------------------------------------------------ */

void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
                                   kmp_team_t *team) {
  kmp_disp_t *dispatch;

  KMP_MB();

  /* none of the threads have encountered any constructs, yet. */
  this_thr->th.th_local.this_construct = 0;
#if KMP_CACHE_MANAGE
  KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived);
#endif /* KMP_CACHE_MANAGE */
  dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch);
  KMP_DEBUG_ASSERT(dispatch);
  KMP_DEBUG_ASSERT(team->t.t_dispatch);
  // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
  // this_thr->th.th_info.ds.ds_tid ] );

  dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */
  dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter
  if (__kmp_env_consistency_check)
    __kmp_push_parallel(gtid, team->t.t_ident);

  KMP_MB(); /* Flush all pending memory write invalidates.  */
}

void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
                                  kmp_team_t *team) {
  if (__kmp_env_consistency_check)
    __kmp_pop_parallel(gtid, team->t.t_ident);

  __kmp_finish_implicit_task(this_thr);
}

int __kmp_invoke_task_func(int gtid) {
  int rc;
  int tid = __kmp_tid_from_gtid(gtid);
  kmp_info_t *this_thr = __kmp_threads[gtid];
  kmp_team_t *team = this_thr->th.th_team;

  __kmp_run_before_invoked_task(gtid, tid, this_thr, team);
#if USE_ITT_BUILD
  if (__itt_stack_caller_create_ptr) {
    __kmp_itt_stack_callee_enter(
        (__itt_caller)
            team->t.t_stack_id); // inform ittnotify about entering user's code
  }
#endif /* USE_ITT_BUILD */
#if INCLUDE_SSC_MARKS
  SSC_MARK_INVOKING();
#endif

#if OMPT_SUPPORT
  void *dummy;
  void **exit_frame_p;
  ompt_data_t *my_task_data;
  ompt_data_t *my_parallel_data;
  int ompt_team_size;

  if (ompt_enabled.enabled) {
    exit_frame_p = &(
        team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr);
  } else {
    exit_frame_p = &dummy;
  }

  my_task_data =
      &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data);
  my_parallel_data = &(team->t.ompt_team_info.parallel_data);
  if (ompt_enabled.ompt_callback_implicit_task) {
    ompt_team_size = team->t.t_nproc;
    ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
        ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size,
        __kmp_tid_from_gtid(gtid), ompt_task_implicit);
    OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid);
  }
#endif

#if KMP_STATS_ENABLED
  stats_state_e previous_state = KMP_GET_THREAD_STATE();
  if (previous_state == stats_state_e::TEAMS_REGION) {
    KMP_PUSH_PARTITIONED_TIMER(OMP_teams);
  } else {
    KMP_PUSH_PARTITIONED_TIMER(OMP_parallel);
  }
  KMP_SET_THREAD_STATE(IMPLICIT_TASK);
#endif

  rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid,
                              tid, (int)team->t.t_argc, (void **)team->t.t_argv
#if OMPT_SUPPORT
                              ,
                              exit_frame_p
#endif
                              );
#if OMPT_SUPPORT
  *exit_frame_p = NULL;
   this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team;
#endif

#if KMP_STATS_ENABLED
  if (previous_state == stats_state_e::TEAMS_REGION) {
    KMP_SET_THREAD_STATE(previous_state);
  }
  KMP_POP_PARTITIONED_TIMER();
#endif

#if USE_ITT_BUILD
  if (__itt_stack_caller_create_ptr) {
    __kmp_itt_stack_callee_leave(
        (__itt_caller)
            team->t.t_stack_id); // inform ittnotify about leaving user's code
  }
#endif /* USE_ITT_BUILD */
  __kmp_run_after_invoked_task(gtid, tid, this_thr, team);

  return rc;
}

void __kmp_teams_master(int gtid) {
  // This routine is called by all master threads in teams construct
  kmp_info_t *thr = __kmp_threads[gtid];
  kmp_team_t *team = thr->th.th_team;
  ident_t *loc = team->t.t_ident;
  thr->th.th_set_nproc = thr->th.th_teams_size.nth;
  KMP_DEBUG_ASSERT(thr->th.th_teams_microtask);
  KMP_DEBUG_ASSERT(thr->th.th_set_nproc);
  KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid,
                __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask));

  // This thread is a new CG root.  Set up the proper variables.
  kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
  tmp->cg_root = thr; // Make thr the CG root
  // Init to thread limit that was stored when league masters were forked
  tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit;
  tmp->cg_nthreads = 1; // Init counter to one active thread, this one
  KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
                 " cg_nthreads to 1\n",
                 thr, tmp));
  tmp->up = thr->th.th_cg_roots;
  thr->th.th_cg_roots = tmp;

// Launch league of teams now, but not let workers execute
// (they hang on fork barrier until next parallel)
#if INCLUDE_SSC_MARKS
  SSC_MARK_FORKING();
#endif
  __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc,
                  (microtask_t)thr->th.th_teams_microtask, // "wrapped" task
                  VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL);
#if INCLUDE_SSC_MARKS
  SSC_MARK_JOINING();
#endif
  // If the team size was reduced from the limit, set it to the new size
  if (thr->th.th_team_nproc < thr->th.th_teams_size.nth)
    thr->th.th_teams_size.nth = thr->th.th_team_nproc;
  // AC: last parameter "1" eliminates join barrier which won't work because
  // worker threads are in a fork barrier waiting for more parallel regions
  __kmp_join_call(loc, gtid
#if OMPT_SUPPORT
                  ,
                  fork_context_intel
#endif
                  ,
                  1);
}

int __kmp_invoke_teams_master(int gtid) {
  kmp_info_t *this_thr = __kmp_threads[gtid];
  kmp_team_t *team = this_thr->th.th_team;
#if KMP_DEBUG
  if (!__kmp_threads[gtid]->th.th_team->t.t_serialized)
    KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn ==
                     (void *)__kmp_teams_master);
#endif
  __kmp_run_before_invoked_task(gtid, 0, this_thr, team);
#if OMPT_SUPPORT
  int tid = __kmp_tid_from_gtid(gtid);
  ompt_data_t *task_data =
      &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data;
  ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data;
  if (ompt_enabled.ompt_callback_implicit_task) {
    ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
        ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid,
        ompt_task_initial);
    OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid;
  }
#endif
  __kmp_teams_master(gtid);
#if OMPT_SUPPORT
  this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league;
#endif
  __kmp_run_after_invoked_task(gtid, 0, this_thr, team);
  return 1;
}

/* this sets the requested number of threads for the next parallel region
   encountered by this team. since this should be enclosed in the forkjoin
   critical section it should avoid race conditions with asymmetrical nested
   parallelism */

void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) {
  kmp_info_t *thr = __kmp_threads[gtid];

  if (num_threads > 0)
    thr->th.th_set_nproc = num_threads;
}

/* this sets the requested number of teams for the teams region and/or
   the number of threads for the next parallel region encountered  */
void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams,
                          int num_threads) {
  kmp_info_t *thr = __kmp_threads[gtid];
  KMP_DEBUG_ASSERT(num_teams >= 0);
  KMP_DEBUG_ASSERT(num_threads >= 0);

  if (num_teams == 0)
    num_teams = 1; // default number of teams is 1.
  if (num_teams > __kmp_teams_max_nth) { // if too many teams requested?
    if (!__kmp_reserve_warn) {
      __kmp_reserve_warn = 1;
      __kmp_msg(kmp_ms_warning,
                KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
                KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
    }
    num_teams = __kmp_teams_max_nth;
  }
  // Set number of teams (number of threads in the outer "parallel" of the
  // teams)
  thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;

  // Remember the number of threads for inner parallel regions
  if (!TCR_4(__kmp_init_middle))
    __kmp_middle_initialize(); // get internal globals calculated
  KMP_DEBUG_ASSERT(__kmp_avail_proc);
  KMP_DEBUG_ASSERT(__kmp_dflt_team_nth);
  if (num_threads == 0) {
    num_threads = __kmp_avail_proc / num_teams;
    // adjust num_threads w/o warning as it is not user setting
    // num_threads = min(num_threads, nthreads-var, thread-limit-var)
    // no thread_limit clause specified -  do not change thread-limit-var ICV
    if (num_threads > __kmp_dflt_team_nth) {
      num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
    }
    if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) {
      num_threads = thr->th.th_current_task->td_icvs.thread_limit;
    } // prevent team size to exceed thread-limit-var
    if (num_teams * num_threads > __kmp_teams_max_nth) {
      num_threads = __kmp_teams_max_nth / num_teams;
    }
  } else {
    // This thread will be the master of the league masters
    // Store new thread limit; old limit is saved in th_cg_roots list
    thr->th.th_current_task->td_icvs.thread_limit = num_threads;
    // num_threads = min(num_threads, nthreads-var)
    if (num_threads > __kmp_dflt_team_nth) {
      num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
    }
    if (num_teams * num_threads > __kmp_teams_max_nth) {
      int new_threads = __kmp_teams_max_nth / num_teams;
      if (!__kmp_reserve_warn) { // user asked for too many threads
        __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
        __kmp_msg(kmp_ms_warning,
                  KMP_MSG(CantFormThrTeam, num_threads, new_threads),
                  KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
      }
      num_threads = new_threads;
    }
  }
  thr->th.th_teams_size.nth = num_threads;
}

// Set the proc_bind var to use in the following parallel region.
void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) {
  kmp_info_t *thr = __kmp_threads[gtid];
  thr->th.th_set_proc_bind = proc_bind;
}

/* Launch the worker threads into the microtask. */

void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) {
  kmp_info_t *this_thr = __kmp_threads[gtid];

#ifdef KMP_DEBUG
  int f;
#endif /* KMP_DEBUG */

  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
  KMP_ASSERT(KMP_MASTER_GTID(gtid));
  KMP_MB(); /* Flush all pending memory write invalidates.  */

  team->t.t_construct = 0; /* no single directives seen yet */
  team->t.t_ordered.dt.t_value =
      0; /* thread 0 enters the ordered section first */

  /* Reset the identifiers on the dispatch buffer */
  KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
  if (team->t.t_max_nproc > 1) {
    int i;
    for (i = 0; i < __kmp_dispatch_num_buffers; ++i) {
      team->t.t_disp_buffer[i].buffer_index = i;
      team->t.t_disp_buffer[i].doacross_buf_idx = i;
    }
  } else {
    team->t.t_disp_buffer[0].buffer_index = 0;
    team->t.t_disp_buffer[0].doacross_buf_idx = 0;
  }

  KMP_MB(); /* Flush all pending memory write invalidates.  */
  KMP_ASSERT(this_thr->th.th_team == team);

#ifdef KMP_DEBUG
  for (f = 0; f < team->t.t_nproc; f++) {
    KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
                     team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc);
  }
#endif /* KMP_DEBUG */

  /* release the worker threads so they may begin working */
  __kmp_fork_barrier(gtid, 0);
}

void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) {
  kmp_info_t *this_thr = __kmp_threads[gtid];

  KMP_DEBUG_ASSERT(team);
  KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
  KMP_ASSERT(KMP_MASTER_GTID(gtid));
  KMP_MB(); /* Flush all pending memory write invalidates.  */

/* Join barrier after fork */

#ifdef KMP_DEBUG
  if (__kmp_threads[gtid] &&
      __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) {
    __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid,
                 __kmp_threads[gtid]);
    __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
                 "team->t.t_nproc=%d\n",
                 gtid, __kmp_threads[gtid]->th.th_team_nproc, team,
                 team->t.t_nproc);
    __kmp_print_structure();
  }
  KMP_DEBUG_ASSERT(__kmp_threads[gtid] &&
                   __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc);
#endif /* KMP_DEBUG */

  __kmp_join_barrier(gtid); /* wait for everyone */
#if OMPT_SUPPORT
  if (ompt_enabled.enabled &&
      this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
    int ds_tid = this_thr->th.th_info.ds.ds_tid;
    ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr);
    this_thr->th.ompt_thread_info.state = ompt_state_overhead;
#if OMPT_OPTIONAL
    void *codeptr = NULL;
    if (KMP_MASTER_TID(ds_tid) &&
        (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
         ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
      codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address;

    if (ompt_enabled.ompt_callback_sync_region_wait) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
          codeptr);
    }
    if (ompt_enabled.ompt_callback_sync_region) {
      ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
          ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
          codeptr);
    }
#endif
    if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
      ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
          ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial?
    }
  }
#endif

  KMP_MB(); /* Flush all pending memory write invalidates.  */
  KMP_ASSERT(this_thr->th.th_team == team);
}

/* ------------------------------------------------------------------------ */

#ifdef USE_LOAD_BALANCE

// Return the worker threads actively spinning in the hot team, if we
// are at the outermost level of parallelism.  Otherwise, return 0.
static int __kmp_active_hot_team_nproc(kmp_root_t *root) {
  int i;
  int retval;
  kmp_team_t *hot_team;

  if (root->r.r_active) {
    return 0;
  }
  hot_team = root->r.r_hot_team;
  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
    return hot_team->t.t_nproc - 1; // Don't count master thread
  }

  // Skip the master thread - it is accounted for elsewhere.
  retval = 0;
  for (i = 1; i < hot_team->t.t_nproc; i++) {
    if (hot_team->t.t_threads[i]->th.th_active) {
      retval++;
    }
  }
  return retval;
}

// Perform an automatic adjustment to the number of
// threads used by the next parallel region.
static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) {
  int retval;
  int pool_active;
  int hot_team_active;
  int team_curr_active;
  int system_active;

  KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root,
                set_nproc));
  KMP_DEBUG_ASSERT(root);
  KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0]
                       ->th.th_current_task->td_icvs.dynamic == TRUE);
  KMP_DEBUG_ASSERT(set_nproc > 1);

  if (set_nproc == 1) {
    KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
    return 1;
  }

  // Threads that are active in the thread pool, active in the hot team for this
  // particular root (if we are at the outer par level), and the currently
  // executing thread (to become the master) are available to add to the new
  // team, but are currently contributing to the system load, and must be
  // accounted for.
  pool_active = __kmp_thread_pool_active_nth;
  hot_team_active = __kmp_active_hot_team_nproc(root);
  team_curr_active = pool_active + hot_team_active + 1;

  // Check the system load.
  system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active);
  KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
                "hot team active = %d\n",
                system_active, pool_active, hot_team_active));

  if (system_active < 0) {
    // There was an error reading the necessary info from /proc, so use the
    // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
    // = dynamic_thread_limit, we shouldn't wind up getting back here.
    __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
    KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit");

    // Make this call behave like the thread limit algorithm.
    retval = __kmp_avail_proc - __kmp_nth +
             (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
    if (retval > set_nproc) {
      retval = set_nproc;
    }
    if (retval < KMP_MIN_NTH) {
      retval = KMP_MIN_NTH;
    }

    KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
                  retval));
    return retval;
  }

  // There is a slight delay in the load balance algorithm in detecting new
  // running procs. The real system load at this instant should be at least as
  // large as the #active omp thread that are available to add to the team.
  if (system_active < team_curr_active) {
    system_active = team_curr_active;
  }
  retval = __kmp_avail_proc - system_active + team_curr_active;
  if (retval > set_nproc) {
    retval = set_nproc;
  }
  if (retval < KMP_MIN_NTH) {
    retval = KMP_MIN_NTH;
  }

  KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval));
  return retval;
} // __kmp_load_balance_nproc()

#endif /* USE_LOAD_BALANCE */

/* ------------------------------------------------------------------------ */

/* NOTE: this is called with the __kmp_init_lock held */
void __kmp_cleanup(void) {
  int f;

  KA_TRACE(10, ("__kmp_cleanup: enter\n"));

  if (TCR_4(__kmp_init_parallel)) {
#if KMP_HANDLE_SIGNALS
    __kmp_remove_signals();
#endif
    TCW_4(__kmp_init_parallel, FALSE);
  }

  if (TCR_4(__kmp_init_middle)) {
#if KMP_AFFINITY_SUPPORTED
    __kmp_affinity_uninitialize();
#endif /* KMP_AFFINITY_SUPPORTED */
    __kmp_cleanup_hierarchy();
    TCW_4(__kmp_init_middle, FALSE);
  }

  KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));

  if (__kmp_init_serial) {
    __kmp_runtime_destroy();
    __kmp_init_serial = FALSE;
  }

  __kmp_cleanup_threadprivate_caches();

  for (f = 0; f < __kmp_threads_capacity; f++) {
    if (__kmp_root[f] != NULL) {
      __kmp_free(__kmp_root[f]);
      __kmp_root[f] = NULL;
    }
  }
  __kmp_free(__kmp_threads);
  // __kmp_threads and __kmp_root were allocated at once, as single block, so
  // there is no need in freeing __kmp_root.
  __kmp_threads = NULL;
  __kmp_root = NULL;
  __kmp_threads_capacity = 0;

#if KMP_USE_DYNAMIC_LOCK
  __kmp_cleanup_indirect_user_locks();
#else
  __kmp_cleanup_user_locks();
#endif

#if KMP_AFFINITY_SUPPORTED
  KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file));
  __kmp_cpuinfo_file = NULL;
#endif /* KMP_AFFINITY_SUPPORTED */

#if KMP_USE_ADAPTIVE_LOCKS
#if KMP_DEBUG_ADAPTIVE_LOCKS
  __kmp_print_speculative_stats();
#endif
#endif
  KMP_INTERNAL_FREE(__kmp_nested_nth.nth);
  __kmp_nested_nth.nth = NULL;
  __kmp_nested_nth.size = 0;
  __kmp_nested_nth.used = 0;
  KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types);
  __kmp_nested_proc_bind.bind_types = NULL;
  __kmp_nested_proc_bind.size = 0;
  __kmp_nested_proc_bind.used = 0;
  if (__kmp_affinity_format) {
    KMP_INTERNAL_FREE(__kmp_affinity_format);
    __kmp_affinity_format = NULL;
  }

  __kmp_i18n_catclose();

#if KMP_USE_HIER_SCHED
  __kmp_hier_scheds.deallocate();
#endif

#if KMP_STATS_ENABLED
  __kmp_stats_fini();
#endif

  KA_TRACE(10, ("__kmp_cleanup: exit\n"));
}

/* ------------------------------------------------------------------------ */

int __kmp_ignore_mppbeg(void) {
  char *env;

  if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) {
    if (__kmp_str_match_false(env))
      return FALSE;
  }
  // By default __kmpc_begin() is no-op.
  return TRUE;
}

int __kmp_ignore_mppend(void) {
  char *env;

  if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) {
    if (__kmp_str_match_false(env))
      return FALSE;
  }
  // By default __kmpc_end() is no-op.
  return TRUE;
}

void __kmp_internal_begin(void) {
  int gtid;
  kmp_root_t *root;

  /* this is a very important step as it will register new sibling threads
     and assign these new uber threads a new gtid */
  gtid = __kmp_entry_gtid();
  root = __kmp_threads[gtid]->th.th_root;
  KMP_ASSERT(KMP_UBER_GTID(gtid));

  if (root->r.r_begin)
    return;
  __kmp_acquire_lock(&root->r.r_begin_lock, gtid);
  if (root->r.r_begin) {
    __kmp_release_lock(&root->r.r_begin_lock, gtid);
    return;
  }

  root->r.r_begin = TRUE;

  __kmp_release_lock(&root->r.r_begin_lock, gtid);
}

/* ------------------------------------------------------------------------ */

void __kmp_user_set_library(enum library_type arg) {
  int gtid;
  kmp_root_t *root;
  kmp_info_t *thread;

  /* first, make sure we are initialized so we can get our gtid */

  gtid = __kmp_entry_gtid();
  thread = __kmp_threads[gtid];

  root = thread->th.th_root;

  KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg,
                library_serial));
  if (root->r.r_in_parallel) { /* Must be called in serial section of top-level
                                  thread */
    KMP_WARNING(SetLibraryIncorrectCall);
    return;
  }

  switch (arg) {
  case library_serial:
    thread->th.th_set_nproc = 0;
    set__nproc(thread, 1);
    break;
  case library_turnaround:
    thread->th.th_set_nproc = 0;
    set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
                                           : __kmp_dflt_team_nth_ub);
    break;
  case library_throughput:
    thread->th.th_set_nproc = 0;
    set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
                                           : __kmp_dflt_team_nth_ub);
    break;
  default:
    KMP_FATAL(UnknownLibraryType, arg);
  }

  __kmp_aux_set_library(arg);
}

void __kmp_aux_set_stacksize(size_t arg) {
  if (!__kmp_init_serial)
    __kmp_serial_initialize();

#if KMP_OS_DARWIN
  if (arg & (0x1000 - 1)) {
    arg &= ~(0x1000 - 1);
    if (arg + 0x1000) /* check for overflow if we round up */
      arg += 0x1000;
  }
#endif
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);

  /* only change the default stacksize before the first parallel region */
  if (!TCR_4(__kmp_init_parallel)) {
    size_t value = arg; /* argument is in bytes */

    if (value < __kmp_sys_min_stksize)
      value = __kmp_sys_min_stksize;
    else if (value > KMP_MAX_STKSIZE)
      value = KMP_MAX_STKSIZE;

    __kmp_stksize = value;

    __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */
  }

  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

/* set the behaviour of the runtime library */
/* TODO this can cause some odd behaviour with sibling parallelism... */
void __kmp_aux_set_library(enum library_type arg) {
  __kmp_library = arg;

  switch (__kmp_library) {
  case library_serial: {
    KMP_INFORM(LibraryIsSerial);
  } break;
  case library_turnaround:
    if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set)
      __kmp_use_yield = 2; // only yield when oversubscribed
    break;
  case library_throughput:
    if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
      __kmp_dflt_blocktime = 200;
    break;
  default:
    KMP_FATAL(UnknownLibraryType, arg);
  }
}

/* Getting team information common for all team API */
// Returns NULL if not in teams construct
static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) {
  kmp_info_t *thr = __kmp_entry_thread();
  teams_serialized = 0;
  if (thr->th.th_teams_microtask) {
    kmp_team_t *team = thr->th.th_team;
    int tlevel = thr->th.th_teams_level; // the level of the teams construct
    int ii = team->t.t_level;
    teams_serialized = team->t.t_serialized;
    int level = tlevel + 1;
    KMP_DEBUG_ASSERT(ii >= tlevel);
    while (ii > level) {
      for (teams_serialized = team->t.t_serialized;
           (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) {
      }
      if (team->t.t_serialized && (!teams_serialized)) {
        team = team->t.t_parent;
        continue;
      }
      if (ii > level) {
        team = team->t.t_parent;
        ii--;
      }
    }
    return team;
  }
  return NULL;
}

int __kmp_aux_get_team_num() {
  int serialized;
  kmp_team_t *team = __kmp_aux_get_team_info(serialized);
  if (team) {
    if (serialized > 1) {
      return 0; // teams region is serialized ( 1 team of 1 thread ).
    } else {
      return team->t.t_master_tid;
    }
  }
  return 0;
}

int __kmp_aux_get_num_teams() {
  int serialized;
  kmp_team_t *team = __kmp_aux_get_team_info(serialized);
  if (team) {
    if (serialized > 1) {
      return 1;
    } else {
      return team->t.t_parent->t.t_nproc;
    }
  }
  return 1;
}

/* ------------------------------------------------------------------------ */

/*
 * Affinity Format Parser
 *
 * Field is in form of: %[[[0].]size]type
 * % and type are required (%% means print a literal '%')
 * type is either single char or long name surrounded by {},
 * e.g., N or {num_threads}
 * 0 => leading zeros
 * . => right justified when size is specified
 * by default output is left justified
 * size is the *minimum* field length
 * All other characters are printed as is
 *
 * Available field types:
 * L {thread_level}      - omp_get_level()
 * n {thread_num}        - omp_get_thread_num()
 * h {host}              - name of host machine
 * P {process_id}        - process id (integer)
 * T {thread_identifier} - native thread identifier (integer)
 * N {num_threads}       - omp_get_num_threads()
 * A {ancestor_tnum}     - omp_get_ancestor_thread_num(omp_get_level()-1)
 * a {thread_affinity}   - comma separated list of integers or integer ranges
 *                         (values of affinity mask)
 *
 * Implementation-specific field types can be added
 * If a type is unknown, print "undefined"
*/

// Structure holding the short name, long name, and corresponding data type
// for snprintf.  A table of these will represent the entire valid keyword
// field types.
typedef struct kmp_affinity_format_field_t {
  char short_name; // from spec e.g., L -> thread level
  const char *long_name; // from spec thread_level -> thread level
  char field_format; // data type for snprintf (typically 'd' or 's'
  // for integer or string)
} kmp_affinity_format_field_t;

static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = {
#if KMP_AFFINITY_SUPPORTED
    {'A', "thread_affinity", 's'},
#endif
    {'t', "team_num", 'd'},
    {'T', "num_teams", 'd'},
    {'L', "nesting_level", 'd'},
    {'n', "thread_num", 'd'},
    {'N', "num_threads", 'd'},
    {'a', "ancestor_tnum", 'd'},
    {'H', "host", 's'},
    {'P', "process_id", 'd'},
    {'i', "native_thread_id", 'd'}};

// Return the number of characters it takes to hold field
static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th,
                                            const char **ptr,
                                            kmp_str_buf_t *field_buffer) {
  int rc, format_index, field_value;
  const char *width_left, *width_right;
  bool pad_zeros, right_justify, parse_long_name, found_valid_name;
  static const int FORMAT_SIZE = 20;
  char format[FORMAT_SIZE] = {0};
  char absolute_short_name = 0;

  KMP_DEBUG_ASSERT(gtid >= 0);
  KMP_DEBUG_ASSERT(th);
  KMP_DEBUG_ASSERT(**ptr == '%');
  KMP_DEBUG_ASSERT(field_buffer);

  __kmp_str_buf_clear(field_buffer);

  // Skip the initial %
  (*ptr)++;

  // Check for %% first
  if (**ptr == '%') {
    __kmp_str_buf_cat(field_buffer, "%", 1);
    (*ptr)++; // skip over the second %
    return 1;
  }

  // Parse field modifiers if they are present
  pad_zeros = false;
  if (**ptr == '0') {
    pad_zeros = true;
    (*ptr)++; // skip over 0
  }
  right_justify = false;
  if (**ptr == '.') {
    right_justify = true;
    (*ptr)++; // skip over .
  }
  // Parse width of field: [width_left, width_right)
  width_left = width_right = NULL;
  if (**ptr >= '0' && **ptr <= '9') {
    width_left = *ptr;
    SKIP_DIGITS(*ptr);
    width_right = *ptr;
  }

  // Create the format for KMP_SNPRINTF based on flags parsed above
  format_index = 0;
  format[format_index++] = '%';
  if (!right_justify)
    format[format_index++] = '-';
  if (pad_zeros)
    format[format_index++] = '0';
  if (width_left && width_right) {
    int i = 0;
    // Only allow 8 digit number widths.
    // This also prevents overflowing format variable
    while (i < 8 && width_left < width_right) {
      format[format_index++] = *width_left;
      width_left++;
      i++;
    }
  }

  // Parse a name (long or short)
  // Canonicalize the name into absolute_short_name
  found_valid_name = false;
  parse_long_name = (**ptr == '{');
  if (parse_long_name)
    (*ptr)++; // skip initial left brace
  for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) /
                             sizeof(__kmp_affinity_format_table[0]);
       ++i) {
    char short_name = __kmp_affinity_format_table[i].short_name;
    const char *long_name = __kmp_affinity_format_table[i].long_name;
    char field_format = __kmp_affinity_format_table[i].field_format;
    if (parse_long_name) {
      size_t length = KMP_STRLEN(long_name);
      if (strncmp(*ptr, long_name, length) == 0) {
        found_valid_name = true;
        (*ptr) += length; // skip the long name
      }
    } else if (**ptr == short_name) {
      found_valid_name = true;
      (*ptr)++; // skip the short name
    }
    if (found_valid_name) {
      format[format_index++] = field_format;
      format[format_index++] = '\0';
      absolute_short_name = short_name;
      break;
    }
  }
  if (parse_long_name) {
    if (**ptr != '}') {
      absolute_short_name = 0;
    } else {
      (*ptr)++; // skip over the right brace
    }
  }

  // Attempt to fill the buffer with the requested
  // value using snprintf within __kmp_str_buf_print()
  switch (absolute_short_name) {
  case 't':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num());
    break;
  case 'T':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams());
    break;
  case 'L':
    rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level);
    break;
  case 'n':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid));
    break;
  case 'H': {
    static const int BUFFER_SIZE = 256;
    char buf[BUFFER_SIZE];
    __kmp_expand_host_name(buf, BUFFER_SIZE);
    rc = __kmp_str_buf_print(field_buffer, format, buf);
  } break;
  case 'P':
    rc = __kmp_str_buf_print(field_buffer, format, getpid());
    break;
  case 'i':
    rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid());
    break;
  case 'N':
    rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc);
    break;
  case 'a':
    field_value =
        __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1);
    rc = __kmp_str_buf_print(field_buffer, format, field_value);
    break;
#if KMP_AFFINITY_SUPPORTED
  case 'A': {
    kmp_str_buf_t buf;
    __kmp_str_buf_init(&buf);
    __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask);
    rc = __kmp_str_buf_print(field_buffer, format, buf.str);
    __kmp_str_buf_free(&buf);
  } break;
#endif
  default:
    // According to spec, If an implementation does not have info for field
    // type, then "undefined" is printed
    rc = __kmp_str_buf_print(field_buffer, "%s", "undefined");
    // Skip the field
    if (parse_long_name) {
      SKIP_TOKEN(*ptr);
      if (**ptr == '}')
        (*ptr)++;
    } else {
      (*ptr)++;
    }
  }

  KMP_ASSERT(format_index <= FORMAT_SIZE);
  return rc;
}

/*
 * Return number of characters needed to hold the affinity string
 * (not including null byte character)
 * The resultant string is printed to buffer, which the caller can then
 * handle afterwards
*/
size_t __kmp_aux_capture_affinity(int gtid, const char *format,
                                  kmp_str_buf_t *buffer) {
  const char *parse_ptr;
  size_t retval;
  const kmp_info_t *th;
  kmp_str_buf_t field;

  KMP_DEBUG_ASSERT(buffer);
  KMP_DEBUG_ASSERT(gtid >= 0);

  __kmp_str_buf_init(&field);
  __kmp_str_buf_clear(buffer);

  th = __kmp_threads[gtid];
  retval = 0;

  // If format is NULL or zero-length string, then we use
  // affinity-format-var ICV
  parse_ptr = format;
  if (parse_ptr == NULL || *parse_ptr == '\0') {
    parse_ptr = __kmp_affinity_format;
  }
  KMP_DEBUG_ASSERT(parse_ptr);

  while (*parse_ptr != '\0') {
    // Parse a field
    if (*parse_ptr == '%') {
      // Put field in the buffer
      int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field);
      __kmp_str_buf_catbuf(buffer, &field);
      retval += rc;
    } else {
      // Put literal character in buffer
      __kmp_str_buf_cat(buffer, parse_ptr, 1);
      retval++;
      parse_ptr++;
    }
  }
  __kmp_str_buf_free(&field);
  return retval;
}

// Displays the affinity string to stdout
void __kmp_aux_display_affinity(int gtid, const char *format) {
  kmp_str_buf_t buf;
  __kmp_str_buf_init(&buf);
  __kmp_aux_capture_affinity(gtid, format, &buf);
  __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str);
  __kmp_str_buf_free(&buf);
}

/* ------------------------------------------------------------------------ */

void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) {
  int blocktime = arg; /* argument is in milliseconds */
#if KMP_USE_MONITOR
  int bt_intervals;
#endif
  kmp_int8 bt_set;

  __kmp_save_internal_controls(thread);

  /* Normalize and set blocktime for the teams */
  if (blocktime < KMP_MIN_BLOCKTIME)
    blocktime = KMP_MIN_BLOCKTIME;
  else if (blocktime > KMP_MAX_BLOCKTIME)
    blocktime = KMP_MAX_BLOCKTIME;

  set__blocktime_team(thread->th.th_team, tid, blocktime);
  set__blocktime_team(thread->th.th_serial_team, 0, blocktime);

#if KMP_USE_MONITOR
  /* Calculate and set blocktime intervals for the teams */
  bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups);

  set__bt_intervals_team(thread->th.th_team, tid, bt_intervals);
  set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals);
#endif

  /* Set whether blocktime has been set to "TRUE" */
  bt_set = TRUE;

  set__bt_set_team(thread->th.th_team, tid, bt_set);
  set__bt_set_team(thread->th.th_serial_team, 0, bt_set);
#if KMP_USE_MONITOR
  KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
                "bt_intervals=%d, monitor_updates=%d\n",
                __kmp_gtid_from_tid(tid, thread->th.th_team),
                thread->th.th_team->t.t_id, tid, blocktime, bt_intervals,
                __kmp_monitor_wakeups));
#else
  KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
                __kmp_gtid_from_tid(tid, thread->th.th_team),
                thread->th.th_team->t.t_id, tid, blocktime));
#endif
}

void __kmp_aux_set_defaults(char const *str, size_t len) {
  if (!__kmp_init_serial) {
    __kmp_serial_initialize();
  }
  __kmp_env_initialize(str);

  if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) {
    __kmp_env_print();
  }
} // __kmp_aux_set_defaults

/* ------------------------------------------------------------------------ */
/* internal fast reduction routines */

PACKED_REDUCTION_METHOD_T
__kmp_determine_reduction_method(
    ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
    void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
    kmp_critical_name *lck) {

  // Default reduction method: critical construct ( lck != NULL, like in current
  // PAROPT )
  // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
  // can be selected by RTL
  // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
  // can be selected by RTL
  // Finally, it's up to OpenMP RTL to make a decision on which method to select
  // among generated by PAROPT.

  PACKED_REDUCTION_METHOD_T retval;

  int team_size;

  KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 )
  KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 )

#define FAST_REDUCTION_ATOMIC_METHOD_GENERATED                                 \
  ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE))
#define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))

  retval = critical_reduce_block;

  // another choice of getting a team size (with 1 dynamic deference) is slower
  team_size = __kmp_get_team_num_threads(global_tid);
  if (team_size == 1) {

    retval = empty_reduce_block;

  } else {

    int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;

#if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 ||                   \
    KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64

#if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
    KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD

    int teamsize_cutoff = 4;

#if KMP_MIC_SUPPORTED
    if (__kmp_mic_type != non_mic) {
      teamsize_cutoff = 8;
    }
#endif
    int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
    if (tree_available) {
      if (team_size <= teamsize_cutoff) {
        if (atomic_available) {
          retval = atomic_reduce_block;
        }
      } else {
        retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
      }
    } else if (atomic_available) {
      retval = atomic_reduce_block;
    }
#else
#error "Unknown or unsupported OS"
#endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
       // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD

#elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS

#if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD

    // basic tuning

    if (atomic_available) {
      if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ???
        retval = atomic_reduce_block;
      }
    } // otherwise: use critical section

#elif KMP_OS_DARWIN

    int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
    if (atomic_available && (num_vars <= 3)) {
      retval = atomic_reduce_block;
    } else if (tree_available) {
      if ((reduce_size > (9 * sizeof(kmp_real64))) &&
          (reduce_size < (2000 * sizeof(kmp_real64)))) {
        retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER;
      }
    } // otherwise: use critical section

#else
#error "Unknown or unsupported OS"
#endif

#else
#error "Unknown or unsupported architecture"
#endif
  }

  // KMP_FORCE_REDUCTION

  // If the team is serialized (team_size == 1), ignore the forced reduction
  // method and stay with the unsynchronized method (empty_reduce_block)
  if (__kmp_force_reduction_method != reduction_method_not_defined &&
      team_size != 1) {

    PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block;

    int atomic_available, tree_available;

    switch ((forced_retval = __kmp_force_reduction_method)) {
    case critical_reduce_block:
      KMP_ASSERT(lck); // lck should be != 0
      break;

    case atomic_reduce_block:
      atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
      if (!atomic_available) {
        KMP_WARNING(RedMethodNotSupported, "atomic");
        forced_retval = critical_reduce_block;
      }
      break;

    case tree_reduce_block:
      tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
      if (!tree_available) {
        KMP_WARNING(RedMethodNotSupported, "tree");
        forced_retval = critical_reduce_block;
      } else {
#if KMP_FAST_REDUCTION_BARRIER
        forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
#endif
      }
      break;

    default:
      KMP_ASSERT(0); // "unsupported method specified"
    }

    retval = forced_retval;
  }

  KA_TRACE(10, ("reduction method selected=%08x\n", retval));

#undef FAST_REDUCTION_TREE_METHOD_GENERATED
#undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED

  return (retval);
}
// this function is for testing set/get/determine reduce method
kmp_int32 __kmp_get_reduce_method(void) {
  return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8);
}

// Soft pause sets up threads to ignore blocktime and just go to sleep.
// Spin-wait code checks __kmp_pause_status and reacts accordingly.
void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; }

// Hard pause shuts down the runtime completely.  Resume happens naturally when
// OpenMP is used subsequently.
void __kmp_hard_pause() {
  __kmp_pause_status = kmp_hard_paused;
  __kmp_internal_end_thread(-1);
}

// Soft resume sets __kmp_pause_status, and wakes up all threads.
void __kmp_resume_if_soft_paused() {
  if (__kmp_pause_status == kmp_soft_paused) {
    __kmp_pause_status = kmp_not_paused;

    for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) {
      kmp_info_t *thread = __kmp_threads[gtid];
      if (thread) { // Wake it if sleeping
        kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
                         thread);
        if (fl.is_sleeping())
          fl.resume(gtid);
        else if (__kmp_try_suspend_mx(thread)) { // got suspend lock
          __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep
        } else { // thread holds the lock and may sleep soon
          do { // until either the thread sleeps, or we can get the lock
            if (fl.is_sleeping()) {
              fl.resume(gtid);
              break;
            } else if (__kmp_try_suspend_mx(thread)) {
              __kmp_unlock_suspend_mx(thread);
              break;
            }
          } while (1);
        }
      }
    }
  }
}

// This function is called via __kmpc_pause_resource. Returns 0 if successful.
// TODO: add warning messages
int __kmp_pause_resource(kmp_pause_status_t level) {
  if (level == kmp_not_paused) { // requesting resume
    if (__kmp_pause_status == kmp_not_paused) {
      // error message about runtime not being paused, so can't resume
      return 1;
    } else {
      KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused ||
                       __kmp_pause_status == kmp_hard_paused);
      __kmp_pause_status = kmp_not_paused;
      return 0;
    }
  } else if (level == kmp_soft_paused) { // requesting soft pause
    if (__kmp_pause_status != kmp_not_paused) {
      // error message about already being paused
      return 1;
    } else {
      __kmp_soft_pause();
      return 0;
    }
  } else if (level == kmp_hard_paused) { // requesting hard pause
    if (__kmp_pause_status != kmp_not_paused) {
      // error message about already being paused
      return 1;
    } else {
      __kmp_hard_pause();
      return 0;
    }
  } else {
    // error message about invalid level
    return 1;
  }
}

void __kmp_omp_display_env(int verbose) {
  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
  if (__kmp_init_serial == 0)
    __kmp_do_serial_initialize();
  __kmp_display_env_impl(!verbose, verbose);
  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
}

// Globals and functions for hidden helper task
kmp_info_t **__kmp_hidden_helper_threads;
kmp_info_t *__kmp_hidden_helper_main_thread;
kmp_int32 __kmp_hidden_helper_threads_num = 8;
std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
#if KMP_OS_LINUX
kmp_int32 __kmp_enable_hidden_helper = TRUE;
#else
kmp_int32 __kmp_enable_hidden_helper = FALSE;
#endif

namespace {
std::atomic<kmp_int32> __kmp_hit_hidden_helper_threads_num;

void __kmp_hidden_helper_wrapper_fn(int *gtid, int *, ...) {
  // This is an explicit synchronization on all hidden helper threads in case
  // that when a regular thread pushes a hidden helper task to one hidden
  // helper thread, the thread has not been awaken once since they're released
  // by the main thread after creating the team.
  KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num);
  while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num) !=
         __kmp_hidden_helper_threads_num)
    ;

  // If main thread, then wait for signal
  if (__kmpc_master(nullptr, *gtid)) {
    // First, unset the initial state and release the initial thread
    TCW_4(__kmp_init_hidden_helper_threads, FALSE);
    __kmp_hidden_helper_initz_release();
    __kmp_hidden_helper_main_thread_wait();
    // Now wake up all worker threads
    for (int i = 1; i < __kmp_hit_hidden_helper_threads_num; ++i) {
      __kmp_hidden_helper_worker_thread_signal();
    }
  }
}
} // namespace

void __kmp_hidden_helper_threads_initz_routine() {
  // Create a new root for hidden helper team/threads
  const int gtid = __kmp_register_root(TRUE);
  __kmp_hidden_helper_main_thread = __kmp_threads[gtid];
  __kmp_hidden_helper_threads = &__kmp_threads[gtid];
  __kmp_hidden_helper_main_thread->th.th_set_nproc =
      __kmp_hidden_helper_threads_num;

  KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num, 0);

  __kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn);

  // Set the initialization flag to FALSE
  TCW_SYNC_4(__kmp_init_hidden_helper, FALSE);

  __kmp_hidden_helper_threads_deinitz_release();
}