1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <machine/clock.h>
#include <machine/cpufunc.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#include <machine/vmm.h>
#include "vmx.h"
#include "vmx_msr.h"
#include "x86.h"
static bool
vmx_ctl_allows_one_setting(uint64_t msr_val, int bitpos)
{
return ((msr_val & (1UL << (bitpos + 32))) != 0);
}
static bool
vmx_ctl_allows_zero_setting(uint64_t msr_val, int bitpos)
{
return ((msr_val & (1UL << bitpos)) == 0);
}
uint32_t
vmx_revision(void)
{
return (rdmsr(MSR_VMX_BASIC) & 0xffffffff);
}
/*
* Generate a bitmask to be used for the VMCS execution control fields.
*
* The caller specifies what bits should be set to one in 'ones_mask'
* and what bits should be set to zero in 'zeros_mask'. The don't-care
* bits are set to the default value. The default values are obtained
* based on "Algorithm 3" in Section 27.5.1 "Algorithms for Determining
* VMX Capabilities".
*
* Returns zero on success and non-zero on error.
*/
int
vmx_set_ctlreg(int ctl_reg, int true_ctl_reg, uint32_t ones_mask,
uint32_t zeros_mask, uint32_t *retval)
{
int i;
uint64_t val, trueval;
bool true_ctls_avail, one_allowed, zero_allowed;
/* We cannot ask the same bit to be set to both '1' and '0' */
if ((ones_mask ^ zeros_mask) != (ones_mask | zeros_mask))
return (EINVAL);
true_ctls_avail = (rdmsr(MSR_VMX_BASIC) & (1UL << 55)) != 0;
val = rdmsr(ctl_reg);
if (true_ctls_avail)
trueval = rdmsr(true_ctl_reg); /* step c */
else
trueval = val; /* step a */
for (i = 0; i < 32; i++) {
one_allowed = vmx_ctl_allows_one_setting(trueval, i);
zero_allowed = vmx_ctl_allows_zero_setting(trueval, i);
KASSERT(one_allowed || zero_allowed,
("invalid zero/one setting for bit %d of ctl 0x%0x, "
"truectl 0x%0x\n", i, ctl_reg, true_ctl_reg));
if (zero_allowed && !one_allowed) { /* b(i),c(i) */
if (ones_mask & (1 << i))
return (EINVAL);
*retval &= ~(1 << i);
} else if (one_allowed && !zero_allowed) { /* b(i),c(i) */
if (zeros_mask & (1 << i))
return (EINVAL);
*retval |= 1 << i;
} else {
if (zeros_mask & (1 << i)) /* b(ii),c(ii) */
*retval &= ~(1 << i);
else if (ones_mask & (1 << i)) /* b(ii), c(ii) */
*retval |= 1 << i;
else if (!true_ctls_avail)
*retval &= ~(1 << i); /* b(iii) */
else if (vmx_ctl_allows_zero_setting(val, i))/* c(iii)*/
*retval &= ~(1 << i);
else if (vmx_ctl_allows_one_setting(val, i)) /* c(iv) */
*retval |= 1 << i;
else {
panic("vmx_set_ctlreg: unable to determine "
"correct value of ctl bit %d for msr "
"0x%0x and true msr 0x%0x", i, ctl_reg,
true_ctl_reg);
}
}
}
return (0);
}
void
msr_bitmap_initialize(char *bitmap)
{
memset(bitmap, 0xff, PAGE_SIZE);
}
int
msr_bitmap_change_access(char *bitmap, u_int msr, int access)
{
int byte, bit;
if (msr <= 0x00001FFF)
byte = msr / 8;
else if (msr >= 0xC0000000 && msr <= 0xC0001FFF)
byte = 1024 + (msr - 0xC0000000) / 8;
else
return (EINVAL);
bit = msr & 0x7;
if (access & MSR_BITMAP_ACCESS_READ)
bitmap[byte] &= ~(1 << bit);
else
bitmap[byte] |= 1 << bit;
byte += 2048;
if (access & MSR_BITMAP_ACCESS_WRITE)
bitmap[byte] &= ~(1 << bit);
else
bitmap[byte] |= 1 << bit;
return (0);
}
static uint64_t misc_enable;
static uint64_t platform_info;
static uint64_t turbo_ratio_limit;
static uint64_t host_msrs[GUEST_MSR_NUM];
static bool
nehalem_cpu(void)
{
u_int family, model;
/*
* The family:model numbers belonging to the Nehalem microarchitecture
* are documented in Section 35.5, Intel SDM dated Feb 2014.
*/
family = CPUID_TO_FAMILY(cpu_id);
model = CPUID_TO_MODEL(cpu_id);
if (family == 0x6) {
switch (model) {
case 0x1A:
case 0x1E:
case 0x1F:
case 0x2E:
return (true);
default:
break;
}
}
return (false);
}
static bool
westmere_cpu(void)
{
u_int family, model;
/*
* The family:model numbers belonging to the Westmere microarchitecture
* are documented in Section 35.6, Intel SDM dated Feb 2014.
*/
family = CPUID_TO_FAMILY(cpu_id);
model = CPUID_TO_MODEL(cpu_id);
if (family == 0x6) {
switch (model) {
case 0x25:
case 0x2C:
return (true);
default:
break;
}
}
return (false);
}
static bool
pat_valid(uint64_t val)
{
int i, pa;
/*
* From Intel SDM: Table "Memory Types That Can Be Encoded With PAT"
*
* Extract PA0 through PA7 and validate that each one encodes a
* valid memory type.
*/
for (i = 0; i < 8; i++) {
pa = (val >> (i * 8)) & 0xff;
if (pa == 2 || pa == 3 || pa >= 8)
return (false);
}
return (true);
}
void
vmx_msr_init(void)
{
uint64_t bus_freq, ratio;
int i;
/*
* It is safe to cache the values of the following MSRs because
* they don't change based on curcpu, curproc or curthread.
*/
host_msrs[IDX_MSR_LSTAR] = rdmsr(MSR_LSTAR);
host_msrs[IDX_MSR_CSTAR] = rdmsr(MSR_CSTAR);
host_msrs[IDX_MSR_STAR] = rdmsr(MSR_STAR);
host_msrs[IDX_MSR_SF_MASK] = rdmsr(MSR_SF_MASK);
/*
* Initialize emulated MSRs
*/
misc_enable = rdmsr(MSR_IA32_MISC_ENABLE);
/*
* Set mandatory bits
* 11: branch trace disabled
* 12: PEBS unavailable
* Clear unsupported features
* 16: SpeedStep enable
* 18: enable MONITOR FSM
*/
misc_enable |= (1 << 12) | (1 << 11);
misc_enable &= ~((1 << 18) | (1 << 16));
if (nehalem_cpu() || westmere_cpu())
bus_freq = 133330000; /* 133Mhz */
else
bus_freq = 100000000; /* 100Mhz */
/*
* XXXtime
* The ratio should really be based on the virtual TSC frequency as
* opposed to the host TSC.
*/
ratio = (tsc_freq / bus_freq) & 0xff;
/*
* The register definition is based on the micro-architecture
* but the following bits are always the same:
* [15:8] Maximum Non-Turbo Ratio
* [28] Programmable Ratio Limit for Turbo Mode
* [29] Programmable TDC-TDP Limit for Turbo Mode
* [47:40] Maximum Efficiency Ratio
*
* The other bits can be safely set to 0 on all
* micro-architectures up to Haswell.
*/
platform_info = (ratio << 8) | (ratio << 40);
/*
* The number of valid bits in the MSR_TURBO_RATIO_LIMITx register is
* dependent on the maximum cores per package supported by the micro-
* architecture. For e.g., Westmere supports 6 cores per package and
* uses the low 48 bits. Sandybridge support 8 cores per package and
* uses up all 64 bits.
*
* However, the unused bits are reserved so we pretend that all bits
* in this MSR are valid.
*/
for (i = 0; i < 8; i++)
turbo_ratio_limit = (turbo_ratio_limit << 8) | ratio;
}
void
vmx_msr_guest_init(struct vmx *vmx, struct vmx_vcpu *vcpu)
{
/*
* The permissions bitmap is shared between all vcpus so initialize it
* once when initializing the vBSP.
*/
if (vcpu->vcpuid == 0) {
guest_msr_rw(vmx, MSR_LSTAR);
guest_msr_rw(vmx, MSR_CSTAR);
guest_msr_rw(vmx, MSR_STAR);
guest_msr_rw(vmx, MSR_SF_MASK);
guest_msr_rw(vmx, MSR_KGSBASE);
}
/*
* Initialize guest IA32_PAT MSR with default value after reset.
*/
vcpu->guest_msrs[IDX_MSR_PAT] = PAT_VALUE(0, PAT_WRITE_BACK) |
PAT_VALUE(1, PAT_WRITE_THROUGH) |
PAT_VALUE(2, PAT_UNCACHED) |
PAT_VALUE(3, PAT_UNCACHEABLE) |
PAT_VALUE(4, PAT_WRITE_BACK) |
PAT_VALUE(5, PAT_WRITE_THROUGH) |
PAT_VALUE(6, PAT_UNCACHED) |
PAT_VALUE(7, PAT_UNCACHEABLE);
return;
}
void
vmx_msr_guest_enter(struct vmx_vcpu *vcpu)
{
/* Save host MSRs (in particular, KGSBASE) and restore guest MSRs */
update_pcb_bases(curpcb);
wrmsr(MSR_LSTAR, vcpu->guest_msrs[IDX_MSR_LSTAR]);
wrmsr(MSR_CSTAR, vcpu->guest_msrs[IDX_MSR_CSTAR]);
wrmsr(MSR_STAR, vcpu->guest_msrs[IDX_MSR_STAR]);
wrmsr(MSR_SF_MASK, vcpu->guest_msrs[IDX_MSR_SF_MASK]);
wrmsr(MSR_KGSBASE, vcpu->guest_msrs[IDX_MSR_KGSBASE]);
}
void
vmx_msr_guest_enter_tsc_aux(struct vmx *vmx, struct vmx_vcpu *vcpu)
{
uint64_t guest_tsc_aux = vcpu->guest_msrs[IDX_MSR_TSC_AUX];
uint32_t host_aux = cpu_auxmsr();
if (vmx_have_msr_tsc_aux && guest_tsc_aux != host_aux)
wrmsr(MSR_TSC_AUX, guest_tsc_aux);
}
void
vmx_msr_guest_exit(struct vmx_vcpu *vcpu)
{
/* Save guest MSRs */
vcpu->guest_msrs[IDX_MSR_LSTAR] = rdmsr(MSR_LSTAR);
vcpu->guest_msrs[IDX_MSR_CSTAR] = rdmsr(MSR_CSTAR);
vcpu->guest_msrs[IDX_MSR_STAR] = rdmsr(MSR_STAR);
vcpu->guest_msrs[IDX_MSR_SF_MASK] = rdmsr(MSR_SF_MASK);
vcpu->guest_msrs[IDX_MSR_KGSBASE] = rdmsr(MSR_KGSBASE);
/* Restore host MSRs */
wrmsr(MSR_LSTAR, host_msrs[IDX_MSR_LSTAR]);
wrmsr(MSR_CSTAR, host_msrs[IDX_MSR_CSTAR]);
wrmsr(MSR_STAR, host_msrs[IDX_MSR_STAR]);
wrmsr(MSR_SF_MASK, host_msrs[IDX_MSR_SF_MASK]);
/* MSR_KGSBASE will be restored on the way back to userspace */
}
void
vmx_msr_guest_exit_tsc_aux(struct vmx *vmx, struct vmx_vcpu *vcpu)
{
uint64_t guest_tsc_aux = vcpu->guest_msrs[IDX_MSR_TSC_AUX];
uint32_t host_aux = cpu_auxmsr();
if (vmx_have_msr_tsc_aux && guest_tsc_aux != host_aux)
/*
* Note that it is not necessary to save the guest value
* here; vcpu->guest_msrs[IDX_MSR_TSC_AUX] always
* contains the current value since it is updated whenever
* the guest writes to it (which is expected to be very
* rare).
*/
wrmsr(MSR_TSC_AUX, host_aux);
}
int
vmx_rdmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t *val, bool *retu)
{
int error;
error = 0;
switch (num) {
case MSR_MCG_CAP:
case MSR_MCG_STATUS:
*val = 0;
break;
case MSR_MTRRcap:
case MSR_MTRRdefType:
case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
case MSR_MTRR64kBase:
case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
if (vm_rdmtrr(&vcpu->mtrr, num, val) != 0) {
vm_inject_gp(vcpu->vcpu);
}
break;
case MSR_IA32_MISC_ENABLE:
*val = misc_enable;
break;
case MSR_PLATFORM_INFO:
*val = platform_info;
break;
case MSR_TURBO_RATIO_LIMIT:
case MSR_TURBO_RATIO_LIMIT1:
*val = turbo_ratio_limit;
break;
case MSR_PAT:
*val = vcpu->guest_msrs[IDX_MSR_PAT];
break;
default:
error = EINVAL;
break;
}
return (error);
}
int
vmx_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
{
uint64_t changed;
int error;
error = 0;
switch (num) {
case MSR_MCG_CAP:
case MSR_MCG_STATUS:
break; /* ignore writes */
case MSR_MTRRcap:
case MSR_MTRRdefType:
case MSR_MTRR4kBase ... MSR_MTRR4kBase + 7:
case MSR_MTRR16kBase ... MSR_MTRR16kBase + 1:
case MSR_MTRR64kBase:
case MSR_MTRRVarBase ... MSR_MTRRVarBase + (VMM_MTRR_VAR_MAX * 2) - 1:
if (vm_wrmtrr(&vcpu->mtrr, num, val) != 0) {
vm_inject_gp(vcpu->vcpu);
}
break;
case MSR_IA32_MISC_ENABLE:
changed = val ^ misc_enable;
/*
* If the host has disabled the NX feature then the guest
* also cannot use it. However, a Linux guest will try to
* enable the NX feature by writing to the MISC_ENABLE MSR.
*
* This can be safely ignored because the memory management
* code looks at CPUID.80000001H:EDX.NX to check if the
* functionality is actually enabled.
*/
changed &= ~(1UL << 34);
/*
* Punt to userspace if any other bits are being modified.
*/
if (changed)
error = EINVAL;
break;
case MSR_PAT:
if (pat_valid(val))
vcpu->guest_msrs[IDX_MSR_PAT] = val;
else
vm_inject_gp(vcpu->vcpu);
break;
case MSR_TSC:
error = vmx_set_tsc_offset(vcpu, val - rdtsc());
break;
case MSR_TSC_AUX:
if (vmx_have_msr_tsc_aux)
/*
* vmx_msr_guest_enter_tsc_aux() will apply this
* value when it is called immediately before guest
* entry.
*/
vcpu->guest_msrs[IDX_MSR_TSC_AUX] = val;
else
vm_inject_gp(vcpu->vcpu);
break;
default:
error = EINVAL;
break;
}
return (error);
}
|