aboutsummaryrefslogtreecommitdiff
path: root/sys/arm/allwinner/a10_codec.c
blob: 0780a7328bbe8ddcc5234e9bd7a1a06734ec658a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/*-
 * Copyright (c) 2014-2016 Jared D. McNeill <jmcneill@invisible.ca>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

/*
 * Allwinner A10/A20 and H3 Audio Codec
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/condvar.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/gpio.h>

#include <machine/bus.h>

#include <dev/sound/pcm/sound.h>
#include <dev/sound/chip.h>

#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>

#include <dev/gpio/gpiobusvar.h>

#include <dev/extres/clk/clk.h>
#include <dev/extres/hwreset/hwreset.h>

#include "sunxi_dma_if.h"
#include "mixer_if.h"

struct a10codec_info;

struct a10codec_config {
	/* mixer class */
	struct kobj_class *mixer_class;

	/* toggle DAC/ADC mute */
	void		(*mute)(struct a10codec_info *, int, int);

	/* DRQ types */
	u_int		drqtype_codec;
	u_int		drqtype_sdram;

	/* register map */
	bus_size_t	DPC,
			DAC_FIFOC,
			DAC_FIFOS,
			DAC_TXDATA,
			ADC_FIFOC,
			ADC_FIFOS,
			ADC_RXDATA,
			DAC_CNT,
			ADC_CNT;
};

#define	TX_TRIG_LEVEL	0xf
#define	RX_TRIG_LEVEL	0x7
#define	DRQ_CLR_CNT	0x3

#define	AC_DAC_DPC(_sc)		((_sc)->cfg->DPC)	
#define	 DAC_DPC_EN_DA			0x80000000
#define	AC_DAC_FIFOC(_sc)	((_sc)->cfg->DAC_FIFOC)
#define	 DAC_FIFOC_FS_SHIFT		29
#define	 DAC_FIFOC_FS_MASK		(7U << DAC_FIFOC_FS_SHIFT)
#define	  DAC_FS_48KHZ			0
#define	  DAC_FS_32KHZ			1
#define	  DAC_FS_24KHZ			2
#define	  DAC_FS_16KHZ			3
#define	  DAC_FS_12KHZ			4
#define	  DAC_FS_8KHZ			5
#define	  DAC_FS_192KHZ			6
#define	  DAC_FS_96KHZ			7
#define	 DAC_FIFOC_FIFO_MODE_SHIFT	24
#define	 DAC_FIFOC_FIFO_MODE_MASK	(3U << DAC_FIFOC_FIFO_MODE_SHIFT)
#define	  FIFO_MODE_24_31_8		0
#define	  FIFO_MODE_16_31_16		0
#define	  FIFO_MODE_16_15_0		1
#define	 DAC_FIFOC_DRQ_CLR_CNT_SHIFT	21
#define	 DAC_FIFOC_DRQ_CLR_CNT_MASK	(3U << DAC_FIFOC_DRQ_CLR_CNT_SHIFT)
#define	 DAC_FIFOC_TX_TRIG_LEVEL_SHIFT	8
#define	 DAC_FIFOC_TX_TRIG_LEVEL_MASK	(0x7f << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT)
#define	 DAC_FIFOC_MONO_EN		(1U << 6)
#define	 DAC_FIFOC_TX_BITS		(1U << 5)
#define	 DAC_FIFOC_DRQ_EN		(1U << 4)
#define	 DAC_FIFOC_FIFO_FLUSH		(1U << 0)
#define	AC_DAC_FIFOS(_sc)	((_sc)->cfg->DAC_FIFOS)
#define	AC_DAC_TXDATA(_sc)	((_sc)->cfg->DAC_TXDATA)
#define	AC_ADC_FIFOC(_sc)	((_sc)->cfg->ADC_FIFOC)
#define	 ADC_FIFOC_FS_SHIFT		29
#define	 ADC_FIFOC_FS_MASK		(7U << ADC_FIFOC_FS_SHIFT)
#define	  ADC_FS_48KHZ		0
#define	 ADC_FIFOC_EN_AD		(1U << 28)
#define	 ADC_FIFOC_RX_FIFO_MODE		(1U << 24)
#define	 ADC_FIFOC_RX_TRIG_LEVEL_SHIFT	8
#define	 ADC_FIFOC_RX_TRIG_LEVEL_MASK	(0x1f << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT)
#define	 ADC_FIFOC_MONO_EN		(1U << 7)
#define	 ADC_FIFOC_RX_BITS		(1U << 6)
#define	 ADC_FIFOC_DRQ_EN		(1U << 4)
#define	 ADC_FIFOC_FIFO_FLUSH		(1U << 1)
#define	AC_ADC_FIFOS(_sc)	((_sc)->cfg->ADC_FIFOS)
#define	AC_ADC_RXDATA(_sc)	((_sc)->cfg->ADC_RXDATA)
#define	AC_DAC_CNT(_sc)		((_sc)->cfg->DAC_CNT)
#define	AC_ADC_CNT(_sc)		((_sc)->cfg->ADC_CNT)

static uint32_t a10codec_fmt[] = {
	SND_FORMAT(AFMT_S16_LE, 1, 0),
	SND_FORMAT(AFMT_S16_LE, 2, 0),
	0
};

static struct pcmchan_caps a10codec_pcaps = { 8000, 192000, a10codec_fmt, 0 };
static struct pcmchan_caps a10codec_rcaps = { 8000, 48000, a10codec_fmt, 0 };

struct a10codec_info;

struct a10codec_chinfo {
	struct snd_dbuf		*buffer;
	struct pcm_channel	*channel;	
	struct a10codec_info	*parent;
	bus_dmamap_t		dmamap;
	void			*dmaaddr;
	bus_addr_t		physaddr;
	bus_size_t		fifo;
	device_t		dmac;
	void			*dmachan;

	int			dir;
	int			run;
	uint32_t		pos;
	uint32_t		format;
	uint32_t		blocksize;
	uint32_t		speed;
};

struct a10codec_info {
	device_t		dev;
	struct resource		*res[2];
	struct mtx		*lock;
	bus_dma_tag_t		dmat;
	unsigned		dmasize;
	void			*ih;

	struct a10codec_config	*cfg;

	struct a10codec_chinfo	play;
	struct a10codec_chinfo	rec;
};

static struct resource_spec a10codec_spec[] = {
	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
	{ -1, 0 }
};

#define	CODEC_ANALOG_READ(sc, reg)		bus_read_4((sc)->res[1], (reg))
#define	CODEC_ANALOG_WRITE(sc, reg, val)	bus_write_4((sc)->res[1], (reg), (val))

#define	CODEC_READ(sc, reg)		bus_read_4((sc)->res[0], (reg))
#define	CODEC_WRITE(sc, reg, val)	bus_write_4((sc)->res[0], (reg), (val))

/*
 * A10/A20 mixer interface
 */

#define	A10_DAC_ACTL	0x10
#define	 A10_DACAREN			(1U << 31)
#define	 A10_DACALEN			(1U << 30)
#define	 A10_MIXEN			(1U << 29)
#define	 A10_DACPAS			(1U << 8)
#define	 A10_PAMUTE			(1U << 6)
#define	 A10_PAVOL_SHIFT		0
#define	 A10_PAVOL_MASK			(0x3f << A10_PAVOL_SHIFT)
#define	A10_ADC_ACTL	0x28
#define	 A10_ADCREN			(1U << 31)
#define	 A10_ADCLEN			(1U << 30)
#define	 A10_PREG1EN			(1U << 29)
#define	 A10_PREG2EN			(1U << 28)
#define	 A10_VMICEN			(1U << 27)
#define	 A10_ADCG_SHIFT			20
#define	 A10_ADCG_MASK			(7U << A10_ADCG_SHIFT)
#define	 A10_ADCIS_SHIFT		17
#define	 A10_ADCIS_MASK			(7U << A10_ADCIS_SHIFT)
#define	  A10_ADC_IS_LINEIN			0
#define	  A10_ADC_IS_FMIN			1
#define	  A10_ADC_IS_MIC1			2
#define	  A10_ADC_IS_MIC2			3
#define	  A10_ADC_IS_MIC1_L_MIC2_R		4
#define	  A10_ADC_IS_MIC1_LR_MIC2_LR		5
#define	  A10_ADC_IS_OMIX			6
#define	  A10_ADC_IS_LINEIN_L_MIC1_R		7
#define	 A10_LNRDF			(1U << 16)
#define	 A10_LNPREG_SHIFT		13
#define	 A10_LNPREG_MASK		(7U << A10_LNPREG_SHIFT)
#define	 A10_PA_EN			(1U << 4)
#define	 A10_DDE			(1U << 3)

static int
a10_mixer_init(struct snd_mixer *m)
{
	struct a10codec_info *sc = mix_getdevinfo(m);
	uint32_t val;

	mix_setdevs(m, SOUND_MASK_VOLUME | SOUND_MASK_LINE | SOUND_MASK_RECLEV);
	mix_setrecdevs(m, SOUND_MASK_LINE | SOUND_MASK_LINE1 | SOUND_MASK_MIC);

	/* Unmute input source to PA */
	val = CODEC_READ(sc, A10_DAC_ACTL);
	val |= A10_PAMUTE;
	CODEC_WRITE(sc, A10_DAC_ACTL, val);

	/* Enable PA */
	val = CODEC_READ(sc, A10_ADC_ACTL);
	val |= A10_PA_EN;
	CODEC_WRITE(sc, A10_ADC_ACTL, val);

	return (0);
}

static const struct a10_mixer {
	unsigned reg;
	unsigned mask;
	unsigned shift;
} a10_mixers[SOUND_MIXER_NRDEVICES] = {
	[SOUND_MIXER_VOLUME]	= { A10_DAC_ACTL, A10_PAVOL_MASK,
				    A10_PAVOL_SHIFT },
	[SOUND_MIXER_LINE]	= { A10_ADC_ACTL, A10_LNPREG_MASK,
				    A10_LNPREG_SHIFT },
	[SOUND_MIXER_RECLEV]	= { A10_ADC_ACTL, A10_ADCG_MASK,
				    A10_ADCG_SHIFT },
}; 

static int
a10_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left,
    unsigned right)
{
	struct a10codec_info *sc = mix_getdevinfo(m);
	uint32_t val;
	unsigned nvol, max;

	max = a10_mixers[dev].mask >> a10_mixers[dev].shift;
	nvol = (left * max) / 100;

	val = CODEC_READ(sc, a10_mixers[dev].reg);
	val &= ~a10_mixers[dev].mask;
	val |= (nvol << a10_mixers[dev].shift);
	CODEC_WRITE(sc, a10_mixers[dev].reg, val);

	left = right = (left * 100) / max;
	return (left | (right << 8));
}

static uint32_t
a10_mixer_setrecsrc(struct snd_mixer *m, uint32_t src)
{
	struct a10codec_info *sc = mix_getdevinfo(m);
	uint32_t val;

	val = CODEC_READ(sc, A10_ADC_ACTL);

	switch (src) {
	case SOUND_MASK_LINE:	/* line-in */
		val &= ~A10_ADCIS_MASK;
		val |= (A10_ADC_IS_LINEIN << A10_ADCIS_SHIFT);
		break;
	case SOUND_MASK_MIC:	/* MIC1 */
		val &= ~A10_ADCIS_MASK;
		val |= (A10_ADC_IS_MIC1 << A10_ADCIS_SHIFT);
		break;
	case SOUND_MASK_LINE1:	/* MIC2 */
		val &= ~A10_ADCIS_MASK;
		val |= (A10_ADC_IS_MIC2 << A10_ADCIS_SHIFT);
		break;
	default:
		break;
	}

	CODEC_WRITE(sc, A10_ADC_ACTL, val);

	switch ((val & A10_ADCIS_MASK) >> A10_ADCIS_SHIFT) {
	case A10_ADC_IS_LINEIN:
		return (SOUND_MASK_LINE);
	case A10_ADC_IS_MIC1:
		return (SOUND_MASK_MIC);
	case A10_ADC_IS_MIC2:
		return (SOUND_MASK_LINE1);
	default:
		return (0);
	}
}

static void
a10_mute(struct a10codec_info *sc, int mute, int dir)
{
	uint32_t val;

	if (dir == PCMDIR_PLAY) {
		val = CODEC_READ(sc, A10_DAC_ACTL);
		if (mute) {
			/* Disable DAC analog l/r channels and output mixer */
			val &= ~A10_DACAREN;
			val &= ~A10_DACALEN;
			val &= ~A10_DACPAS;
		} else {
			/* Enable DAC analog l/r channels and output mixer */
			val |= A10_DACAREN;
			val |= A10_DACALEN;
			val |= A10_DACPAS;
		}
		CODEC_WRITE(sc, A10_DAC_ACTL, val);
	} else {
		val = CODEC_READ(sc, A10_ADC_ACTL);
		if (mute) {
			/* Disable ADC analog l/r channels, MIC1 preamp,
			 * and VMIC pin voltage
			 */
			val &= ~A10_ADCREN;
			val &= ~A10_ADCLEN;
			val &= ~A10_PREG1EN;
			val &= ~A10_VMICEN;
		} else {
			/* Enable ADC analog l/r channels, MIC1 preamp,
			 * and VMIC pin voltage
			 */
			val |= A10_ADCREN;
			val |= A10_ADCLEN;
			val |= A10_PREG1EN;
			val |= A10_VMICEN;
		}
		CODEC_WRITE(sc, A10_ADC_ACTL, val);
	}
}

static kobj_method_t a10_mixer_methods[] = {
	KOBJMETHOD(mixer_init,		a10_mixer_init),
	KOBJMETHOD(mixer_set,		a10_mixer_set),
	KOBJMETHOD(mixer_setrecsrc,	a10_mixer_setrecsrc),
	KOBJMETHOD_END
};
MIXER_DECLARE(a10_mixer);

/*
 * H3 mixer interface
 */

#define	H3_PR_CFG		0x00
#define	 H3_AC_PR_RST		(1 << 28)
#define	 H3_AC_PR_RW		(1 << 24)
#define	 H3_AC_PR_ADDR_SHIFT	16
#define	 H3_AC_PR_ADDR_MASK	(0x1f << H3_AC_PR_ADDR_SHIFT)
#define	 H3_ACDA_PR_WDAT_SHIFT	8
#define	 H3_ACDA_PR_WDAT_MASK	(0xff << H3_ACDA_PR_WDAT_SHIFT)
#define	 H3_ACDA_PR_RDAT_SHIFT	0
#define	 H3_ACDA_PR_RDAT_MASK	(0xff << H3_ACDA_PR_RDAT_SHIFT)

#define	H3_LOMIXSC		0x01
#define	 H3_LOMIXSC_LDAC	(1 << 1)
#define	H3_ROMIXSC		0x02
#define	 H3_ROMIXSC_RDAC	(1 << 1)
#define	H3_DAC_PA_SRC		0x03
#define	 H3_DACAREN		(1 << 7)
#define	 H3_DACALEN		(1 << 6)
#define	 H3_RMIXEN		(1 << 5)
#define	 H3_LMIXEN		(1 << 4)
#define	H3_LINEIN_GCTR		0x05
#define	 H3_LINEING_SHIFT	4
#define	 H3_LINEING_MASK	(0x7 << H3_LINEING_SHIFT)
#define	H3_MIC_GCTR		0x06
#define	 H3_MIC1_GAIN_SHIFT	4
#define	 H3_MIC1_GAIN_MASK	(0x7 << H3_MIC1_GAIN_SHIFT)
#define	 H3_MIC2_GAIN_SHIFT	0
#define	 H3_MIC2_GAIN_MASK	(0x7 << H3_MIC2_GAIN_SHIFT)
#define	H3_PAEN_CTR		0x07
#define	 H3_LINEOUTEN		(1 << 7)
#define	H3_LINEOUT_VOLC		0x09
#define	 H3_LINEOUTVOL_SHIFT	3
#define	 H3_LINEOUTVOL_MASK	(0x1f << H3_LINEOUTVOL_SHIFT)
#define	H3_MIC2G_LINEOUT_CTR	0x0a
#define	 H3_LINEOUT_LSEL	(1 << 3)
#define	 H3_LINEOUT_RSEL	(1 << 2)
#define	H3_LADCMIXSC		0x0c
#define	H3_RADCMIXSC		0x0d
#define	 H3_ADCMIXSC_MIC1	(1 << 6)
#define	 H3_ADCMIXSC_MIC2	(1 << 5)
#define	 H3_ADCMIXSC_LINEIN	(1 << 2)
#define	 H3_ADCMIXSC_OMIXER	(3 << 0)
#define	H3_ADC_AP_EN		0x0f
#define	 H3_ADCREN		(1 << 7)
#define	 H3_ADCLEN		(1 << 6)
#define	 H3_ADCG_SHIFT		0
#define	 H3_ADCG_MASK		(0x7 << H3_ADCG_SHIFT)

static u_int 
h3_pr_read(struct a10codec_info *sc, u_int addr)
{
	uint32_t val;

	/* Read current value */
	val = CODEC_ANALOG_READ(sc, H3_PR_CFG);

	/* De-assert reset */
	val |= H3_AC_PR_RST;
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);

	/* Read mode */
	val &= ~H3_AC_PR_RW;
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);

	/* Set address */
	val &= ~H3_AC_PR_ADDR_MASK;
	val |= (addr << H3_AC_PR_ADDR_SHIFT);
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);

	/* Read data */
	return (CODEC_ANALOG_READ(sc , H3_PR_CFG) & H3_ACDA_PR_RDAT_MASK);
}

static void
h3_pr_write(struct a10codec_info *sc, u_int addr, u_int data)
{
	uint32_t val;

	/* Read current value */
	val = CODEC_ANALOG_READ(sc, H3_PR_CFG);

	/* De-assert reset */
	val |= H3_AC_PR_RST;
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);

	/* Set address */
	val &= ~H3_AC_PR_ADDR_MASK;
	val |= (addr << H3_AC_PR_ADDR_SHIFT);
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);

	/* Write data */
	val &= ~H3_ACDA_PR_WDAT_MASK;
	val |= (data << H3_ACDA_PR_WDAT_SHIFT);
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);

	/* Write mode */
	val |= H3_AC_PR_RW;
	CODEC_ANALOG_WRITE(sc, H3_PR_CFG, val);
}

static void
h3_pr_set_clear(struct a10codec_info *sc, u_int addr, u_int set, u_int clr)
{
	u_int old, new;

	old = h3_pr_read(sc, addr);
	new = set | (old & ~clr);
	h3_pr_write(sc, addr, new);
}

static int
h3_mixer_init(struct snd_mixer *m)
{
	int rid=1;
	pcell_t reg[2];
	phandle_t analogref;
	struct a10codec_info *sc = mix_getdevinfo(m);

	if (OF_getencprop(ofw_bus_get_node(sc->dev), "allwinner,codec-analog-controls",
	    &analogref, sizeof(analogref)) <= 0) {
		return (ENXIO);
	}

	if (OF_getencprop(OF_node_from_xref(analogref), "reg",
	    reg, sizeof(reg)) <= 0) {
		return (ENXIO);
	}

	sc->res[1] = bus_alloc_resource(sc->dev, SYS_RES_MEMORY, &rid, reg[0],
	    reg[0]+reg[1], reg[1], RF_ACTIVE );

	if (sc->res[1] == NULL) {
		return (ENXIO);
	}

	mix_setdevs(m, SOUND_MASK_PCM | SOUND_MASK_VOLUME | SOUND_MASK_RECLEV |
	    SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1);
	mix_setrecdevs(m, SOUND_MASK_MIC | SOUND_MASK_LINE | SOUND_MASK_LINE1 |
	    SOUND_MASK_IMIX);

	pcm_setflags(sc->dev, pcm_getflags(sc->dev) | SD_F_SOFTPCMVOL);

	/* Right & Left LINEOUT enable */
	h3_pr_set_clear(sc, H3_PAEN_CTR, H3_LINEOUTEN, 0);
	h3_pr_set_clear(sc, H3_MIC2G_LINEOUT_CTR,
	    H3_LINEOUT_LSEL | H3_LINEOUT_RSEL, 0);

	return (0);
}

static const struct h3_mixer {
	unsigned reg;
	unsigned mask;
	unsigned shift;
} h3_mixers[SOUND_MIXER_NRDEVICES] = {
	[SOUND_MIXER_VOLUME]	= { H3_LINEOUT_VOLC, H3_LINEOUTVOL_MASK,
				    H3_LINEOUTVOL_SHIFT },
	[SOUND_MIXER_RECLEV]	= { H3_ADC_AP_EN, H3_ADCG_MASK,
				    H3_ADCG_SHIFT },
	[SOUND_MIXER_LINE]	= { H3_LINEIN_GCTR, H3_LINEING_MASK,
				    H3_LINEING_SHIFT },
	[SOUND_MIXER_MIC]	= { H3_MIC_GCTR, H3_MIC1_GAIN_MASK,
				    H3_MIC1_GAIN_SHIFT },
	[SOUND_MIXER_LINE1]	= { H3_MIC_GCTR, H3_MIC2_GAIN_MASK,
				    H3_MIC2_GAIN_SHIFT },
};

static int
h3_mixer_set(struct snd_mixer *m, unsigned dev, unsigned left,
    unsigned right)
{
	struct a10codec_info *sc = mix_getdevinfo(m);
	unsigned nvol, max;

	max = h3_mixers[dev].mask >> h3_mixers[dev].shift;
	nvol = (left * max) / 100;

	h3_pr_set_clear(sc, h3_mixers[dev].reg,
	    nvol << h3_mixers[dev].shift, h3_mixers[dev].mask);

	left = right = (left * 100) / max;
	return (left | (right << 8));
}

static uint32_t
h3_mixer_setrecsrc(struct snd_mixer *m, uint32_t src)
{
	struct a10codec_info *sc = mix_getdevinfo(m);
	uint32_t val;

	val = 0;
	src &= (SOUND_MASK_LINE | SOUND_MASK_MIC |
	    SOUND_MASK_LINE1 | SOUND_MASK_IMIX);

	if ((src & SOUND_MASK_LINE) != 0)	/* line-in */
		val |= H3_ADCMIXSC_LINEIN;
	if ((src & SOUND_MASK_MIC) != 0)	/* MIC1 */
		val |= H3_ADCMIXSC_MIC1;
	if ((src & SOUND_MASK_LINE1) != 0)	/* MIC2 */
		val |= H3_ADCMIXSC_MIC2;
	if ((src & SOUND_MASK_IMIX) != 0)	/* l/r output mixer */
		val |= H3_ADCMIXSC_OMIXER;

	h3_pr_write(sc, H3_LADCMIXSC, val);
	h3_pr_write(sc, H3_RADCMIXSC, val);

	return (src);
}

static void
h3_mute(struct a10codec_info *sc, int mute, int dir)
{
	if (dir == PCMDIR_PLAY) {
		if (mute) {
			/* Mute DAC l/r channels to output mixer */
			h3_pr_set_clear(sc, H3_LOMIXSC, 0, H3_LOMIXSC_LDAC);
			h3_pr_set_clear(sc, H3_ROMIXSC, 0, H3_ROMIXSC_RDAC);
			/* Disable DAC analog l/r channels and output mixer */
			h3_pr_set_clear(sc, H3_DAC_PA_SRC,
			    0, H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN);
		} else {
			/* Enable DAC analog l/r channels and output mixer */
			h3_pr_set_clear(sc, H3_DAC_PA_SRC,
			    H3_DACAREN | H3_DACALEN | H3_RMIXEN | H3_LMIXEN, 0);
			/* Unmute DAC l/r channels to output mixer */
			h3_pr_set_clear(sc, H3_LOMIXSC, H3_LOMIXSC_LDAC, 0);
			h3_pr_set_clear(sc, H3_ROMIXSC, H3_ROMIXSC_RDAC, 0);
		}
	} else {
		if (mute) {
			/* Disable ADC analog l/r channels */
			h3_pr_set_clear(sc, H3_ADC_AP_EN,
			    0, H3_ADCREN | H3_ADCLEN);
		} else {
			/* Enable ADC analog l/r channels */
			h3_pr_set_clear(sc, H3_ADC_AP_EN,
			    H3_ADCREN | H3_ADCLEN, 0);
		}
	}
}

static kobj_method_t h3_mixer_methods[] = {
	KOBJMETHOD(mixer_init,		h3_mixer_init),
	KOBJMETHOD(mixer_set,		h3_mixer_set),
	KOBJMETHOD(mixer_setrecsrc,	h3_mixer_setrecsrc),
	KOBJMETHOD_END
};
MIXER_DECLARE(h3_mixer);

/*
 * Channel interface
 */

static void
a10codec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
	struct a10codec_chinfo *ch = arg;

	if (error != 0)
		return;

	ch->physaddr = segs[0].ds_addr;
}

static void
a10codec_transfer(struct a10codec_chinfo *ch)
{
	bus_addr_t src, dst;
	int error;

	if (ch->dir == PCMDIR_PLAY) {
		src = ch->physaddr + ch->pos;
		dst = ch->fifo;
	} else {
		src = ch->fifo;
		dst = ch->physaddr + ch->pos;
	}

	error = SUNXI_DMA_TRANSFER(ch->dmac, ch->dmachan, src, dst,
	    ch->blocksize);
	if (error) {
		ch->run = 0;
		device_printf(ch->parent->dev, "DMA transfer failed: %d\n",
		    error);
	}
}

static void
a10codec_dmaconfig(struct a10codec_chinfo *ch)
{
	struct a10codec_info *sc = ch->parent;
	struct sunxi_dma_config conf;

	memset(&conf, 0, sizeof(conf));
	conf.src_width = conf.dst_width = 16;
	conf.src_burst_len = conf.dst_burst_len = 4;

	if (ch->dir == PCMDIR_PLAY) {
		conf.dst_noincr = true;
		conf.src_drqtype = sc->cfg->drqtype_sdram;
		conf.dst_drqtype = sc->cfg->drqtype_codec;
	} else {
		conf.src_noincr = true;
		conf.src_drqtype = sc->cfg->drqtype_codec;
		conf.dst_drqtype = sc->cfg->drqtype_sdram;
	}

	SUNXI_DMA_SET_CONFIG(ch->dmac, ch->dmachan, &conf);
}

static void
a10codec_dmaintr(void *priv)
{
	struct a10codec_chinfo *ch = priv;
	unsigned bufsize;

	bufsize = sndbuf_getsize(ch->buffer);

	ch->pos += ch->blocksize;
	if (ch->pos >= bufsize)
		ch->pos -= bufsize;

	if (ch->run) {
		chn_intr(ch->channel);
		a10codec_transfer(ch);
	}
}

static unsigned
a10codec_fs(struct a10codec_chinfo *ch)
{
	switch (ch->speed) {
	case 48000:
		return (DAC_FS_48KHZ);
	case 24000:
		return (DAC_FS_24KHZ);
	case 12000:
		return (DAC_FS_12KHZ);
	case 192000:
		return (DAC_FS_192KHZ);
	case 32000:
		return (DAC_FS_32KHZ);
	case 16000:
		return (DAC_FS_16KHZ);
	case 8000:
		return (DAC_FS_8KHZ);
	case 96000:
		return (DAC_FS_96KHZ);
	default:
		return (DAC_FS_48KHZ);
	}
}

static void
a10codec_start(struct a10codec_chinfo *ch)
{
	struct a10codec_info *sc = ch->parent;
	uint32_t val;

	ch->pos = 0;

	if (ch->dir == PCMDIR_PLAY) {
		/* Flush DAC FIFO */
		CODEC_WRITE(sc, AC_DAC_FIFOC(sc), DAC_FIFOC_FIFO_FLUSH);

		/* Clear DAC FIFO status */
		CODEC_WRITE(sc, AC_DAC_FIFOS(sc),
		    CODEC_READ(sc, AC_DAC_FIFOS(sc)));

		/* Unmute output */
		sc->cfg->mute(sc, 0, ch->dir);

		/* Configure DAC DMA channel */
		a10codec_dmaconfig(ch);

		/* Configure DAC FIFO */
		CODEC_WRITE(sc, AC_DAC_FIFOC(sc),
		    (AFMT_CHANNEL(ch->format) == 1 ? DAC_FIFOC_MONO_EN : 0) |
		    (a10codec_fs(ch) << DAC_FIFOC_FS_SHIFT) |
		    (FIFO_MODE_16_15_0 << DAC_FIFOC_FIFO_MODE_SHIFT) |
		    (DRQ_CLR_CNT << DAC_FIFOC_DRQ_CLR_CNT_SHIFT) |
		    (TX_TRIG_LEVEL << DAC_FIFOC_TX_TRIG_LEVEL_SHIFT));

		/* Enable DAC DRQ */
		val = CODEC_READ(sc, AC_DAC_FIFOC(sc));
		val |= DAC_FIFOC_DRQ_EN;
		CODEC_WRITE(sc, AC_DAC_FIFOC(sc), val);
	} else {
		/* Flush ADC FIFO */
		CODEC_WRITE(sc, AC_ADC_FIFOC(sc), ADC_FIFOC_FIFO_FLUSH);

		/* Clear ADC FIFO status */
		CODEC_WRITE(sc, AC_ADC_FIFOS(sc),
		    CODEC_READ(sc, AC_ADC_FIFOS(sc)));

		/* Unmute input */
		sc->cfg->mute(sc, 0, ch->dir);

		/* Configure ADC DMA channel */
		a10codec_dmaconfig(ch);

		/* Configure ADC FIFO */
		CODEC_WRITE(sc, AC_ADC_FIFOC(sc),
		    ADC_FIFOC_EN_AD |
		    ADC_FIFOC_RX_FIFO_MODE |
		    (AFMT_CHANNEL(ch->format) == 1 ? ADC_FIFOC_MONO_EN : 0) |
		    (a10codec_fs(ch) << ADC_FIFOC_FS_SHIFT) |
		    (RX_TRIG_LEVEL << ADC_FIFOC_RX_TRIG_LEVEL_SHIFT));

		/* Enable ADC DRQ */
		val = CODEC_READ(sc, AC_ADC_FIFOC(sc));
		val |= ADC_FIFOC_DRQ_EN;
		CODEC_WRITE(sc, AC_ADC_FIFOC(sc), val);
	}

	/* Start DMA transfer */
	a10codec_transfer(ch);
}

static void
a10codec_stop(struct a10codec_chinfo *ch)
{
	struct a10codec_info *sc = ch->parent;

	/* Disable DMA channel */
	SUNXI_DMA_HALT(ch->dmac, ch->dmachan);

	sc->cfg->mute(sc, 1, ch->dir);

	if (ch->dir == PCMDIR_PLAY) {
		/* Disable DAC DRQ */
		CODEC_WRITE(sc, AC_DAC_FIFOC(sc), 0);
	} else {
		/* Disable ADC DRQ */
		CODEC_WRITE(sc, AC_ADC_FIFOC(sc), 0);
	}
}

static void *
a10codec_chan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
    struct pcm_channel *c, int dir)
{
	struct a10codec_info *sc = devinfo;
	struct a10codec_chinfo *ch = dir == PCMDIR_PLAY ? &sc->play : &sc->rec;
	phandle_t xref;
	pcell_t *cells;
	int ncells, error;

	error = ofw_bus_parse_xref_list_alloc(ofw_bus_get_node(sc->dev),
	    "dmas", "#dma-cells", dir == PCMDIR_PLAY ? 1 : 0,
	    &xref, &ncells, &cells);
	if (error != 0) {
		device_printf(sc->dev, "cannot parse 'dmas' property\n");
		return (NULL);
	}
	OF_prop_free(cells);

	ch->parent = sc;
	ch->channel = c;
	ch->buffer = b;
	ch->dir = dir;
	ch->fifo = rman_get_start(sc->res[0]) +
	    (dir == PCMDIR_REC ? AC_ADC_RXDATA(sc) : AC_DAC_TXDATA(sc));

	ch->dmac = OF_device_from_xref(xref);
	if (ch->dmac == NULL) {
		device_printf(sc->dev, "cannot find DMA controller\n");
		device_printf(sc->dev, "xref = 0x%x\n", (u_int)xref);
		return (NULL);
	}
	ch->dmachan = SUNXI_DMA_ALLOC(ch->dmac, false, a10codec_dmaintr, ch);
	if (ch->dmachan == NULL) {
		device_printf(sc->dev, "cannot allocate DMA channel\n");
		return (NULL);
	}

	error = bus_dmamem_alloc(sc->dmat, &ch->dmaaddr,
	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &ch->dmamap);
	if (error != 0) {
		device_printf(sc->dev, "cannot allocate channel buffer\n");
		return (NULL);
	}
	error = bus_dmamap_load(sc->dmat, ch->dmamap, ch->dmaaddr,
	    sc->dmasize, a10codec_dmamap_cb, ch, BUS_DMA_NOWAIT);
	if (error != 0) {
		device_printf(sc->dev, "cannot load DMA map\n");
		return (NULL);
	}
	memset(ch->dmaaddr, 0, sc->dmasize);

	if (sndbuf_setup(ch->buffer, ch->dmaaddr, sc->dmasize) != 0) {
		device_printf(sc->dev, "cannot setup sndbuf\n");
		return (NULL);
	}

	return (ch);
}

static int
a10codec_chan_free(kobj_t obj, void *data)
{
	struct a10codec_chinfo *ch = data;
	struct a10codec_info *sc = ch->parent;

	SUNXI_DMA_FREE(ch->dmac, ch->dmachan);
	bus_dmamap_unload(sc->dmat, ch->dmamap);
	bus_dmamem_free(sc->dmat, ch->dmaaddr, ch->dmamap);

	return (0);
}

static int
a10codec_chan_setformat(kobj_t obj, void *data, uint32_t format)
{
	struct a10codec_chinfo *ch = data;

	ch->format = format;

	return (0);
}

static uint32_t
a10codec_chan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
	struct a10codec_chinfo *ch = data;

	/*
	 * The codec supports full duplex operation but both DAC and ADC
	 * use the same source clock (PLL2). Limit the available speeds to
	 * those supported by a 24576000 Hz input.
	 */
	switch (speed) {
	case 8000:
	case 12000:
	case 16000:
	case 24000:
	case 32000:
	case 48000:
		ch->speed = speed;
		break;
	case 96000:
	case 192000:
		/* 96 KHz / 192 KHz mode only supported for playback */
		if (ch->dir == PCMDIR_PLAY) {
			ch->speed = speed;
		} else {
			ch->speed = 48000;
		}
		break;
	case 44100:
		ch->speed = 48000;
		break;
	case 22050:
		ch->speed = 24000;
		break;
	case 11025:
		ch->speed = 12000;
		break;
	default:
		ch->speed = 48000;
		break;
	}

	return (ch->speed);
}

static uint32_t
a10codec_chan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
	struct a10codec_chinfo *ch = data;

	ch->blocksize = blocksize & ~3;

	return (ch->blocksize);
}

static int
a10codec_chan_trigger(kobj_t obj, void *data, int go)
{
	struct a10codec_chinfo *ch = data;
	struct a10codec_info *sc = ch->parent;

	if (!PCMTRIG_COMMON(go))
		return (0);

	snd_mtxlock(sc->lock);
	switch (go) {
	case PCMTRIG_START:
		ch->run = 1;
		a10codec_stop(ch);
		a10codec_start(ch);
		break;
	case PCMTRIG_STOP:
	case PCMTRIG_ABORT:
		ch->run = 0;
		a10codec_stop(ch);
		break;
	default:
		break;
	}
	snd_mtxunlock(sc->lock);

	return (0);
}

static uint32_t
a10codec_chan_getptr(kobj_t obj, void *data)
{
	struct a10codec_chinfo *ch = data;

	return (ch->pos);
}

static struct pcmchan_caps *
a10codec_chan_getcaps(kobj_t obj, void *data)
{
	struct a10codec_chinfo *ch = data;

	if (ch->dir == PCMDIR_PLAY) {
		return (&a10codec_pcaps);
	} else {
		return (&a10codec_rcaps);
	}
}

static kobj_method_t a10codec_chan_methods[] = {
	KOBJMETHOD(channel_init,		a10codec_chan_init),
	KOBJMETHOD(channel_free,		a10codec_chan_free),
	KOBJMETHOD(channel_setformat,		a10codec_chan_setformat),
	KOBJMETHOD(channel_setspeed,		a10codec_chan_setspeed),
	KOBJMETHOD(channel_setblocksize,	a10codec_chan_setblocksize),
	KOBJMETHOD(channel_trigger,		a10codec_chan_trigger),
	KOBJMETHOD(channel_getptr,		a10codec_chan_getptr),
	KOBJMETHOD(channel_getcaps,		a10codec_chan_getcaps),
	KOBJMETHOD_END
};
CHANNEL_DECLARE(a10codec_chan);

/*
 * Device interface
 */

static const struct a10codec_config a10_config = {
	.mixer_class	= &a10_mixer_class,
	.mute		= a10_mute,
	.drqtype_codec	= 19,
	.drqtype_sdram	= 22,
	.DPC		= 0x00,
	.DAC_FIFOC	= 0x04,
	.DAC_FIFOS	= 0x08,
	.DAC_TXDATA	= 0x0c,
	.ADC_FIFOC	= 0x1c,
	.ADC_FIFOS	= 0x20,
	.ADC_RXDATA	= 0x24,
	.DAC_CNT	= 0x30,
	.ADC_CNT	= 0x34,
};

static const struct a10codec_config h3_config = {
	.mixer_class	= &h3_mixer_class,
	.mute		= h3_mute,
	.drqtype_codec	= 15,
	.drqtype_sdram	= 1,
	.DPC		= 0x00,
	.DAC_FIFOC	= 0x04,
	.DAC_FIFOS	= 0x08,
	.DAC_TXDATA	= 0x20,
	.ADC_FIFOC	= 0x10,
	.ADC_FIFOS	= 0x14,
	.ADC_RXDATA	= 0x18,
	.DAC_CNT	= 0x40,
	.ADC_CNT	= 0x44,
};

static struct ofw_compat_data compat_data[] = {
	{ "allwinner,sun4i-a10-codec",	(uintptr_t)&a10_config },
	{ "allwinner,sun7i-a20-codec",	(uintptr_t)&a10_config },
	{ "allwinner,sun8i-h3-codec",	(uintptr_t)&h3_config },
	{ NULL, 0 }
};

static int
a10codec_probe(device_t dev)
{
	if (!ofw_bus_status_okay(dev))
		return (ENXIO);

	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
		return (ENXIO);

	device_set_desc(dev, "Allwinner Audio Codec");
	return (BUS_PROBE_DEFAULT);
}

static int
a10codec_attach(device_t dev)
{
	struct a10codec_info *sc;
	char status[SND_STATUSLEN];
	struct gpiobus_pin *pa_pin;
	phandle_t node;
	clk_t clk_bus, clk_codec;
	hwreset_t rst;
	uint32_t val;
	int error;

	node = ofw_bus_get_node(dev);

	sc = malloc(sizeof(*sc), M_DEVBUF, M_WAITOK | M_ZERO);
	sc->cfg = (void *)ofw_bus_search_compatible(dev, compat_data)->ocd_data;
	sc->dev = dev;
	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "a10codec softc");

	if (bus_alloc_resources(dev, a10codec_spec, sc->res)) {
		device_printf(dev, "cannot allocate resources for device\n");
		error = ENXIO;
		goto fail;
	}

	sc->dmasize = 131072;
	error = bus_dma_tag_create(
	    bus_get_dma_tag(dev),
	    4, sc->dmasize,		/* alignment, boundary */
	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
	    BUS_SPACE_MAXADDR,		/* highaddr */
	    NULL, NULL,			/* filter, filterarg */
	    sc->dmasize, 1,		/* maxsize, nsegs */
	    sc->dmasize, 0,		/* maxsegsize, flags */
	    NULL, NULL,			/* lockfunc, lockarg */
	    &sc->dmat);
	if (error != 0) {
		device_printf(dev, "cannot create DMA tag\n");
		goto fail;
	}

	/* Get clocks */
	if (clk_get_by_ofw_name(dev, 0, "apb", &clk_bus) != 0 &&
	    clk_get_by_ofw_name(dev, 0, "ahb", &clk_bus) != 0) {
		device_printf(dev, "cannot find bus clock\n");
		goto fail;
	}
	if (clk_get_by_ofw_name(dev, 0, "codec", &clk_codec) != 0) {
		device_printf(dev, "cannot find codec clock\n");
		goto fail;
	}

	/* Gating bus clock for codec */
	if (clk_enable(clk_bus) != 0) {
		device_printf(dev, "cannot enable bus clock\n");
		goto fail;
	}
	/* Activate audio codec clock. According to the A10 and A20 user
	 * manuals, Audio_pll can be either 24.576MHz or 22.5792MHz. Most
	 * audio sampling rates require an 24.576MHz input clock with the
	 * exception of 44.1kHz, 22.05kHz, and 11.025kHz. Unfortunately,
	 * both capture and playback use the same clock source so to
	 * safely support independent full duplex operation, we use a fixed
	 * 24.576MHz clock source and don't advertise native support for
	 * the three sampling rates that require a 22.5792MHz input.
	 */
	error = clk_set_freq(clk_codec, 24576000, CLK_SET_ROUND_DOWN);
	if (error != 0) {
		device_printf(dev, "cannot set codec clock frequency\n");
		goto fail;
	}
	/* Enable audio codec clock */
	error = clk_enable(clk_codec);
	if (error != 0) {
		device_printf(dev, "cannot enable codec clock\n");
		goto fail;
	}

	/* De-assert hwreset */
	if (hwreset_get_by_ofw_idx(dev, 0, 0, &rst) == 0) {
		error = hwreset_deassert(rst);
		if (error != 0) {
			device_printf(dev, "cannot de-assert reset\n");
			goto fail;
		}
	}

	/* Enable DAC */
	val = CODEC_READ(sc, AC_DAC_DPC(sc));
	val |= DAC_DPC_EN_DA;
	CODEC_WRITE(sc, AC_DAC_DPC(sc), val);

	if (mixer_init(dev, sc->cfg->mixer_class, sc)) {
		device_printf(dev, "mixer_init failed\n");
		goto fail;
	}

	/* Unmute PA */
	if (gpio_pin_get_by_ofw_property(dev, node, "allwinner,pa-gpios",
	    &pa_pin) == 0) {
		error = gpio_pin_set_active(pa_pin, 1);
		if (error != 0)
			device_printf(dev, "failed to unmute PA\n");
	}

	pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);

	if (pcm_register(dev, sc, 1, 1)) {
		device_printf(dev, "pcm_register failed\n");
		goto fail;
	}

	pcm_addchan(dev, PCMDIR_PLAY, &a10codec_chan_class, sc);
	pcm_addchan(dev, PCMDIR_REC, &a10codec_chan_class, sc);

	snprintf(status, SND_STATUSLEN, "at %s", ofw_bus_get_name(dev));
	pcm_setstatus(dev, status);

	return (0);

fail:
	bus_release_resources(dev, a10codec_spec, sc->res);
	snd_mtxfree(sc->lock);
	free(sc, M_DEVBUF);

	return (ENXIO);
}

static device_method_t a10codec_pcm_methods[] = {
	/* Device interface */
	DEVMETHOD(device_probe,		a10codec_probe),
	DEVMETHOD(device_attach,	a10codec_attach),

	DEVMETHOD_END
};

static driver_t a10codec_pcm_driver = {
	"pcm",
	a10codec_pcm_methods,
	PCM_SOFTC_SIZE,
};

DRIVER_MODULE(a10codec, simplebus, a10codec_pcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(a10codec, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(a10codec, 1);