aboutsummaryrefslogtreecommitdiff
path: root/sys/arm/arm/busdma_machdep.c
blob: 2540e15f75c580fe852b519242351427efd7a174 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2012-2015 Ian Lepore
 * Copyright (c) 2010 Mark Tinguely
 * Copyright (c) 2004 Olivier Houchard
 * Copyright (c) 2002 Peter Grehan
 * Copyright (c) 1997, 1998 Justin T. Gibbs.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification, immediately at the beginning of the file.
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *  From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/busdma_bufalloc.h>
#include <sys/counter.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/memdesc.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/uio.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>

#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>

//#define ARM_BUSDMA_MAPLOAD_STATS

#define	BUSDMA_DCACHE_ALIGN	cpuinfo.dcache_line_size
#define	BUSDMA_DCACHE_MASK	cpuinfo.dcache_line_mask

#define	MAX_BPAGES		64
#define	MAX_DMA_SEGMENTS	4096
#define	BUS_DMA_EXCL_BOUNCE	BUS_DMA_BUS2
#define	BUS_DMA_ALIGN_BOUNCE	BUS_DMA_BUS3
#define	BUS_DMA_COULD_BOUNCE	(BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE)
#define	BUS_DMA_MIN_ALLOC_COMP	BUS_DMA_BUS4

struct bounce_page;
struct bounce_zone;

struct bus_dma_tag {
	bus_dma_tag_t		parent;
	bus_size_t		alignment;
	bus_addr_t		boundary;
	bus_addr_t		lowaddr;
	bus_addr_t		highaddr;
	bus_dma_filter_t	*filter;
	void			*filterarg;
	bus_size_t		maxsize;
	u_int			nsegments;
	bus_size_t		maxsegsz;
	int			flags;
	int			ref_count;
	int			map_count;
	bus_dma_lock_t		*lockfunc;
	void			*lockfuncarg;
	struct bounce_zone	*bounce_zone;
};

struct sync_list {
	vm_offset_t	vaddr;		/* kva of client data */
	bus_addr_t	paddr;		/* physical address */
	vm_page_t	pages;		/* starting page of client data */
	bus_size_t	datacount;	/* client data count */
};

static uint32_t tags_total;
static uint32_t maps_total;
static uint32_t maps_dmamem;
static uint32_t maps_coherent;
#ifdef ARM_BUSDMA_MAPLOAD_STATS
static counter_u64_t maploads_total;
static counter_u64_t maploads_bounced;
static counter_u64_t maploads_coherent;
static counter_u64_t maploads_dmamem;
static counter_u64_t maploads_mbuf;
static counter_u64_t maploads_physmem;
#endif

SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
    "Busdma parameters");
SYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0,
   "Number of active tags");
SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0,
   "Number of active maps");
SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0,
   "Number of active maps for bus_dmamem_alloc buffers");
SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0,
   "Number of active maps with BUS_DMA_COHERENT flag set");
#ifdef ARM_BUSDMA_MAPLOAD_STATS
SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD,
    &maploads_total, "Number of load operations performed");
SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD,
    &maploads_bounced, "Number of load operations that used bounce buffers");
SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD,
    &maploads_dmamem, "Number of load operations on BUS_DMA_COHERENT memory");
SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD,
    &maploads_dmamem, "Number of load operations on bus_dmamem_alloc buffers");
SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD,
    &maploads_mbuf, "Number of load operations for mbufs");
SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD,
    &maploads_physmem, "Number of load operations on physical buffers");
#endif

struct bus_dmamap {
	STAILQ_HEAD(, bounce_page) bpages;
	int			pagesneeded;
	int			pagesreserved;
	bus_dma_tag_t		dmat;
	struct memdesc		mem;
	bus_dmamap_callback_t	*callback;
	void			*callback_arg;
	int			flags;
#define	DMAMAP_COHERENT		(1 << 0)
#define	DMAMAP_DMAMEM_ALLOC	(1 << 1)
#define	DMAMAP_MBUF		(1 << 2)
	STAILQ_ENTRY(bus_dmamap) links;
	bus_dma_segment_t	*segments;
	int			sync_count;
	struct sync_list	slist[];
};

static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap,
    bus_dmamap_t map, void *buf, bus_size_t buflen, int flags);
static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
    vm_paddr_t buf, bus_size_t buflen, int flags);
static void dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op);

static busdma_bufalloc_t coherent_allocator;	/* Cache of coherent buffers */
static busdma_bufalloc_t standard_allocator;	/* Cache of standard buffers */

MALLOC_DEFINE(M_BUSDMA, "busdma", "busdma metadata");

#define	dmat_alignment(dmat)	((dmat)->alignment)
#define	dmat_flags(dmat)	((dmat)->flags)
#define	dmat_lowaddr(dmat)	((dmat)->lowaddr)
#define	dmat_lockfunc(dmat)	((dmat)->lockfunc)
#define	dmat_lockfuncarg(dmat)	((dmat)->lockfuncarg)

#include "../../kern/subr_busdma_bounce.c"

static void
busdma_init(void *dummy)
{
	int uma_flags;

#ifdef ARM_BUSDMA_MAPLOAD_STATS
	maploads_total    = counter_u64_alloc(M_WAITOK);
	maploads_bounced  = counter_u64_alloc(M_WAITOK);
	maploads_coherent = counter_u64_alloc(M_WAITOK);
	maploads_dmamem   = counter_u64_alloc(M_WAITOK);
	maploads_mbuf     = counter_u64_alloc(M_WAITOK);
	maploads_physmem  = counter_u64_alloc(M_WAITOK);
#endif

	uma_flags = 0;

	/* Create a cache of buffers in standard (cacheable) memory. */
	standard_allocator = busdma_bufalloc_create("buffer",
	    BUSDMA_DCACHE_ALIGN,/* minimum_alignment */
	    NULL,		/* uma_alloc func */
	    NULL,		/* uma_free func */
	    uma_flags);		/* uma_zcreate_flags */

#ifdef INVARIANTS
	/*
	 * Force UMA zone to allocate service structures like
	 * slabs using own allocator. uma_debug code performs
	 * atomic ops on uma_slab_t fields and safety of this
	 * operation is not guaranteed for write-back caches
	 */
	uma_flags = UMA_ZONE_NOTOUCH;
#endif
	/*
	 * Create a cache of buffers in uncacheable memory, to implement the
	 * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag.
	 */
	coherent_allocator = busdma_bufalloc_create("coherent",
	    BUSDMA_DCACHE_ALIGN,/* minimum_alignment */
	    busdma_bufalloc_alloc_uncacheable,
	    busdma_bufalloc_free_uncacheable,
	    uma_flags);	/* uma_zcreate_flags */
}

/*
 * This init historically used SI_SUB_VM, but now the init code requires
 * malloc(9) using M_BUSDMA memory and the pcpu zones for counter(9), which get
 * set up by SI_SUB_KMEM and SI_ORDER_LAST, so we'll go right after that by
 * using SI_SUB_KMEM+1.
 */
SYSINIT(busdma, SI_SUB_KMEM+1, SI_ORDER_FIRST, busdma_init, NULL);

/*
 * This routine checks the exclusion zone constraints from a tag against the
 * physical RAM available on the machine.  If a tag specifies an exclusion zone
 * but there's no RAM in that zone, then we avoid allocating resources to bounce
 * a request, and we can use any memory allocator (as opposed to needing
 * kmem_alloc_contig() just because it can allocate pages in an address range).
 *
 * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the
 * same value on 32-bit architectures) as their lowaddr constraint, and we can't
 * possibly have RAM at an address higher than the highest address we can
 * express, so we take a fast out.
 */
static int
exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr)
{
	int i;

	if (lowaddr >= BUS_SPACE_MAXADDR)
		return (0);

	for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) {
		if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) ||
		    (lowaddr < phys_avail[i] && highaddr >= phys_avail[i]))
			return (1);
	}
	return (0);
}

/*
 * Return true if the tag has an exclusion zone that could lead to bouncing.
 */
static __inline int
exclusion_bounce(bus_dma_tag_t dmat)
{

	return (dmat->flags & BUS_DMA_EXCL_BOUNCE);
}

/*
 * Return true if the given address does not fall on the alignment boundary.
 */
static __inline int
alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr)
{

	return (!vm_addr_align_ok(addr, dmat->alignment));
}

/*
 * Return true if the DMA should bounce because the start or end does not fall
 * on a cacheline boundary (which would require a partial cacheline flush).
 * COHERENT memory doesn't trigger cacheline flushes.  Memory allocated by
 * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a
 * strict rule that such memory cannot be accessed by the CPU while DMA is in
 * progress (or by multiple DMA engines at once), so that it's always safe to do
 * full cacheline flushes even if that affects memory outside the range of a
 * given DMA operation that doesn't involve the full allocated buffer.  If we're
 * mapping an mbuf, that follows the same rules as a buffer we allocated.
 */
static __inline int
cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size)
{

	if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF))
		return (0);
	return ((addr | size) & BUSDMA_DCACHE_MASK);
}

/*
 * Return true if we might need to bounce the DMA described by addr and size.
 *
 * This is used to quick-check whether we need to do the more expensive work of
 * checking the DMA page-by-page looking for alignment and exclusion bounces.
 *
 * Note that the addr argument might be either virtual or physical.  It doesn't
 * matter because we only look at the low-order bits, which are the same in both
 * address spaces and maximum alignment of generic buffer is limited up to page
 * size.
 * Bouncing of buffers allocated by bus_dmamem_alloc()is not necessary, these
 * always comply with the required rules (alignment, boundary, and address
 * range).
 */
static __inline int
might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr,
    bus_size_t size)
{

	KASSERT(map->flags & DMAMAP_DMAMEM_ALLOC ||
	    dmat->alignment <= PAGE_SIZE,
	    ("%s: unsupported alignment (0x%08lx) for buffer not "
	    "allocated by bus_dmamem_alloc()",
	    __func__, dmat->alignment));

	return (!(map->flags & DMAMAP_DMAMEM_ALLOC) &&
	    ((dmat->flags & BUS_DMA_EXCL_BOUNCE) ||
	    alignment_bounce(dmat, addr) ||
	    cacheline_bounce(map, addr, size)));
}

/*
 * Return true if we must bounce the DMA described by paddr and size.
 *
 * Bouncing can be triggered by DMA that doesn't begin and end on cacheline
 * boundaries, or doesn't begin on an alignment boundary, or falls within the
 * exclusion zone of any tag in the ancestry chain.
 *
 * For exclusions, walk the chain of tags comparing paddr to the exclusion zone
 * within each tag.  If the tag has a filter function, use it to decide whether
 * the DMA needs to bounce, otherwise any DMA within the zone bounces.
 */
static int
must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr,
    bus_size_t size)
{

	if (cacheline_bounce(map, paddr, size))
		return (1);

	/*
	 *  The tag already contains ancestors' alignment restrictions so this
	 *  check doesn't need to be inside the loop.
	 */
	if (alignment_bounce(dmat, paddr))
		return (1);

	/*
	 * Even though each tag has an exclusion zone that is a superset of its
	 * own and all its ancestors' exclusions, the exclusion zone of each tag
	 * up the chain must be checked within the loop, because the busdma
	 * rules say the filter function is called only when the address lies
	 * within the low-highaddr range of the tag that filterfunc belongs to.
	 */
	while (dmat != NULL && exclusion_bounce(dmat)) {
		if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) &&
		    (dmat->filter == NULL ||
		    dmat->filter(dmat->filterarg, paddr) != 0))
			return (1);
		dmat = dmat->parent;
	}

	return (0);
}

/*
 * Allocate a device specific dma_tag.
 */
int
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
    bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
    bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
    int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
    void *lockfuncarg, bus_dma_tag_t *dmat)
{
	bus_dma_tag_t newtag;
	int error = 0;

	/* Basic sanity checking. */
	KASSERT(boundary == 0 || powerof2(boundary),
	    ("dma tag boundary %lu, must be a power of 2", boundary));
	KASSERT(boundary == 0 || boundary >= maxsegsz,
	    ("dma tag boundary %lu is < maxsegsz %lu\n", boundary, maxsegsz));
	KASSERT(alignment != 0 && powerof2(alignment),
	    ("dma tag alignment %lu, must be non-zero power of 2", alignment));
	KASSERT(maxsegsz != 0, ("dma tag maxsegsz must not be zero"));

	/* Return a NULL tag on failure */
	*dmat = NULL;

	newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_BUSDMA,
	    M_ZERO | M_NOWAIT);
	if (newtag == NULL) {
		CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
		    __func__, newtag, 0, error);
		return (ENOMEM);
	}

	newtag->parent = parent;
	newtag->alignment = alignment;
	newtag->boundary = boundary;
	newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1);
	newtag->highaddr = trunc_page((vm_paddr_t)highaddr) +
	    (PAGE_SIZE - 1);
	newtag->filter = filter;
	newtag->filterarg = filterarg;
	newtag->maxsize = maxsize;
	newtag->nsegments = nsegments;
	newtag->maxsegsz = maxsegsz;
	newtag->flags = flags;
	newtag->ref_count = 1; /* Count ourself */
	newtag->map_count = 0;
	if (lockfunc != NULL) {
		newtag->lockfunc = lockfunc;
		newtag->lockfuncarg = lockfuncarg;
	} else {
		newtag->lockfunc = _busdma_dflt_lock;
		newtag->lockfuncarg = NULL;
	}

	/* Take into account any restrictions imposed by our parent tag */
	if (parent != NULL) {
		newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr);
		newtag->highaddr = MAX(parent->highaddr, newtag->highaddr);
		newtag->alignment = MAX(parent->alignment, newtag->alignment);
		newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE;
		newtag->flags |= parent->flags & BUS_DMA_COHERENT;
		if (newtag->boundary == 0)
			newtag->boundary = parent->boundary;
		else if (parent->boundary != 0)
			newtag->boundary = MIN(parent->boundary,
					       newtag->boundary);
		if (newtag->filter == NULL) {
			/*
			 * Short circuit to looking at our parent directly
			 * since we have encapsulated all of its information
			 */
			newtag->filter = parent->filter;
			newtag->filterarg = parent->filterarg;
			newtag->parent = parent->parent;
		}
		if (newtag->parent != NULL)
			atomic_add_int(&parent->ref_count, 1);
	}

	if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr))
		newtag->flags |= BUS_DMA_EXCL_BOUNCE;
	if (alignment_bounce(newtag, 1))
		newtag->flags |= BUS_DMA_ALIGN_BOUNCE;

	/*
	 * Any request can auto-bounce due to cacheline alignment, in addition
	 * to any alignment or boundary specifications in the tag, so if the
	 * ALLOCNOW flag is set, there's always work to do.
	 */
	if ((flags & BUS_DMA_ALLOCNOW) != 0) {
		struct bounce_zone *bz;
		/*
		 * Round size up to a full page, and add one more page because
		 * there can always be one more boundary crossing than the
		 * number of pages in a transfer.
		 */
		maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE;

		if ((error = alloc_bounce_zone(newtag)) != 0) {
			free(newtag, M_BUSDMA);
			return (error);
		}
		bz = newtag->bounce_zone;

		if (ptoa(bz->total_bpages) < maxsize) {
			int pages;

			pages = atop(maxsize) - bz->total_bpages;

			/* Add pages to our bounce pool */
			if (alloc_bounce_pages(newtag, pages) < pages)
				error = ENOMEM;
		}
		/* Performed initial allocation */
		newtag->flags |= BUS_DMA_MIN_ALLOC_COMP;
	} else
		newtag->bounce_zone = NULL;

	if (error != 0) {
		free(newtag, M_BUSDMA);
	} else {
		atomic_add_32(&tags_total, 1);
		*dmat = newtag;
	}
	CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
	    __func__, newtag, (newtag != NULL ? newtag->flags : 0), error);
	return (error);
}

void
bus_dma_template_clone(bus_dma_template_t *t, bus_dma_tag_t dmat)
{

	if (t == NULL || dmat == NULL)
		return;

	t->parent = dmat->parent;
	t->alignment = dmat->alignment;
	t->boundary = dmat->boundary;
	t->lowaddr = dmat->lowaddr;
	t->highaddr = dmat->highaddr;
	t->maxsize = dmat->maxsize;
	t->nsegments = dmat->nsegments;
	t->maxsegsize = dmat->maxsegsz;
	t->flags = dmat->flags;
	t->lockfunc = dmat->lockfunc;
	t->lockfuncarg = dmat->lockfuncarg;
}

int
bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain)
{

	return (0);
}

int
bus_dma_tag_destroy(bus_dma_tag_t dmat)
{
#ifdef KTR
	bus_dma_tag_t dmat_copy = dmat;
#endif
	int error;

	error = 0;

	if (dmat != NULL) {
		if (dmat->map_count != 0) {
			error = EBUSY;
			goto out;
		}

		while (dmat != NULL) {
			bus_dma_tag_t parent;

			parent = dmat->parent;
			atomic_subtract_int(&dmat->ref_count, 1);
			if (dmat->ref_count == 0) {
				atomic_subtract_32(&tags_total, 1);
				free(dmat, M_BUSDMA);
				/*
				 * Last reference count, so
				 * release our reference
				 * count on our parent.
				 */
				dmat = parent;
			} else
				dmat = NULL;
		}
	}
out:
	CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
	return (error);
}

static int
allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp)
{
	struct bounce_zone *bz;
	int maxpages;
	int error;

	if (dmat->bounce_zone == NULL)
		if ((error = alloc_bounce_zone(dmat)) != 0)
			return (error);
	bz = dmat->bounce_zone;
	/* Initialize the new map */
	STAILQ_INIT(&(mapp->bpages));

	/*
	 * Attempt to add pages to our pool on a per-instance basis up to a sane
	 * limit.  Even if the tag isn't flagged as COULD_BOUNCE due to
	 * alignment and boundary constraints, it could still auto-bounce due to
	 * cacheline alignment, which requires at most two bounce pages.
	 */
	if (dmat->flags & BUS_DMA_COULD_BOUNCE)
		maxpages = MAX_BPAGES;
	else
		maxpages = 2 * bz->map_count;
	if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 ||
	    (bz->map_count > 0 && bz->total_bpages < maxpages)) {
		int pages;

		pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1;
		pages = MIN(maxpages - bz->total_bpages, pages);
		pages = MAX(pages, 2);
		if (alloc_bounce_pages(dmat, pages) < pages)
			return (ENOMEM);

		if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0)
			dmat->flags |= BUS_DMA_MIN_ALLOC_COMP;
	}
	bz->map_count++;
	return (0);
}

static bus_dmamap_t
allocate_map(bus_dma_tag_t dmat, int mflags)
{
	int mapsize, segsize;
	bus_dmamap_t map;

	/*
	 * Allocate the map.  The map structure ends with an embedded
	 * variable-sized array of sync_list structures.  Following that
	 * we allocate enough extra space to hold the array of bus_dma_segments.
	 */
	KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS,
	   ("cannot allocate %u dma segments (max is %u)",
	    dmat->nsegments, MAX_DMA_SEGMENTS));
	segsize = sizeof(struct bus_dma_segment) * dmat->nsegments;
	mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments;
	map = malloc(mapsize + segsize, M_BUSDMA, mflags | M_ZERO);
	if (map == NULL) {
		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
		return (NULL);
	}
	map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize);
	STAILQ_INIT(&map->bpages);
	return (map);
}

/*
 * Allocate a handle for mapping from kva/uva/physical
 * address space into bus device space.
 */
int
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
{
	bus_dmamap_t map;
	int error = 0;

	*mapp = map = allocate_map(dmat, M_NOWAIT);
	if (map == NULL) {
		CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM);
		return (ENOMEM);
	}

	/*
	 * Bouncing might be required if the driver asks for an exclusion
	 * region, a data alignment that is stricter than 1, or DMA that begins
	 * or ends with a partial cacheline.  Whether bouncing will actually
	 * happen can't be known until mapping time, but we need to pre-allocate
	 * resources now because we might not be allowed to at mapping time.
	 */
	error = allocate_bz_and_pages(dmat, map);
	if (error != 0) {
		free(map, M_BUSDMA);
		*mapp = NULL;
		return (error);
	}
	if (map->flags & DMAMAP_COHERENT)
		atomic_add_32(&maps_coherent, 1);
	atomic_add_32(&maps_total, 1);
	dmat->map_count++;

	return (0);
}

/*
 * Destroy a handle for mapping from kva/uva/physical
 * address space into bus device space.
 */
int
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
{

	if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
		CTR3(KTR_BUSDMA, "%s: tag %p error %d",
		    __func__, dmat, EBUSY);
		return (EBUSY);
	}
	if (dmat->bounce_zone)
		dmat->bounce_zone->map_count--;
	if (map->flags & DMAMAP_COHERENT)
		atomic_subtract_32(&maps_coherent, 1);
	atomic_subtract_32(&maps_total, 1);
	free(map, M_BUSDMA);
	dmat->map_count--;
	CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
	return (0);
}

/*
 * Allocate a piece of memory that can be efficiently mapped into bus device
 * space based on the constraints listed in the dma tag.  Returns a pointer to
 * the allocated memory, and a pointer to an associated bus_dmamap.
 */
int
bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags,
    bus_dmamap_t *mapp)
{
	busdma_bufalloc_t ba;
	struct busdma_bufzone *bufzone;
	bus_dmamap_t map;
	vm_memattr_t memattr;
	int mflags;

	if (flags & BUS_DMA_NOWAIT)
		mflags = M_NOWAIT;
	else
		mflags = M_WAITOK;
	if (flags & BUS_DMA_ZERO)
		mflags |= M_ZERO;

	*mapp = map = allocate_map(dmat, mflags);
	if (map == NULL) {
		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
		    __func__, dmat, dmat->flags, ENOMEM);
		return (ENOMEM);
	}
	map->flags = DMAMAP_DMAMEM_ALLOC;

	/* For coherent memory, set the map flag that disables sync ops. */
	if (flags & BUS_DMA_COHERENT)
		map->flags |= DMAMAP_COHERENT;

	/*
	 * Choose a busdma buffer allocator based on memory type flags.
	 * If the tag's COHERENT flag is set, that means normal memory
	 * is already coherent, use the normal allocator.
	 */
	if ((flags & BUS_DMA_COHERENT) &&
	    ((dmat->flags & BUS_DMA_COHERENT) == 0)) {
		memattr = VM_MEMATTR_UNCACHEABLE;
		ba = coherent_allocator;
	} else {
		memattr = VM_MEMATTR_DEFAULT;
		ba = standard_allocator;
	}

	/*
	 * Try to find a bufzone in the allocator that holds a cache of buffers
	 * of the right size for this request.  If the buffer is too big to be
	 * held in the allocator cache, this returns NULL.
	 */
	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);

	/*
	 * Allocate the buffer from the uma(9) allocator if...
	 *  - It's small enough to be in the allocator (bufzone not NULL).
	 *  - The alignment constraint isn't larger than the allocation size
	 *    (the allocator aligns buffers to their size boundaries).
	 *  - There's no need to handle lowaddr/highaddr exclusion zones.
	 * else allocate non-contiguous pages if...
	 *  - The page count that could get allocated doesn't exceed
	 *    nsegments also when the maximum segment size is less
	 *    than PAGE_SIZE.
	 *  - The alignment constraint isn't larger than a page boundary.
	 *  - There are no boundary-crossing constraints.
	 * else allocate a block of contiguous pages because one or more of the
	 * constraints is something that only the contig allocator can fulfill.
	 */
	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
	    !exclusion_bounce(dmat)) {
		*vaddr = uma_zalloc(bufzone->umazone, mflags);
	} else if (dmat->nsegments >=
	    howmany(dmat->maxsize, MIN(dmat->maxsegsz, PAGE_SIZE)) &&
	    dmat->alignment <= PAGE_SIZE &&
	    (dmat->boundary % PAGE_SIZE) == 0) {
		*vaddr = (void *)kmem_alloc_attr(dmat->maxsize, mflags, 0,
		    dmat->lowaddr, memattr);
	} else {
		*vaddr = (void *)kmem_alloc_contig(dmat->maxsize, mflags, 0,
		    dmat->lowaddr, dmat->alignment, dmat->boundary, memattr);
	}
	if (*vaddr == NULL) {
		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
		    __func__, dmat, dmat->flags, ENOMEM);
		free(map, M_BUSDMA);
		*mapp = NULL;
		return (ENOMEM);
	}
	if (map->flags & DMAMAP_COHERENT)
		atomic_add_32(&maps_coherent, 1);
	atomic_add_32(&maps_dmamem, 1);
	atomic_add_32(&maps_total, 1);
	dmat->map_count++;

	CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
	    __func__, dmat, dmat->flags, 0);
	return (0);
}

/*
 * Free a piece of memory that was allocated via bus_dmamem_alloc, along with
 * its associated map.
 */
void
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
{
	struct busdma_bufzone *bufzone;
	busdma_bufalloc_t ba;

	if ((map->flags & DMAMAP_COHERENT) &&
	    ((dmat->flags & BUS_DMA_COHERENT) == 0))
		ba = coherent_allocator;
	else
		ba = standard_allocator;

	bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize);

	if (bufzone != NULL && dmat->alignment <= bufzone->size &&
	    !exclusion_bounce(dmat))
		uma_zfree(bufzone->umazone, vaddr);
	else
		kmem_free((vm_offset_t)vaddr, dmat->maxsize);

	dmat->map_count--;
	if (map->flags & DMAMAP_COHERENT)
		atomic_subtract_32(&maps_coherent, 1);
	atomic_subtract_32(&maps_total, 1);
	atomic_subtract_32(&maps_dmamem, 1);
	free(map, M_BUSDMA);
	CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags);
}

static void
_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
    bus_size_t buflen, int flags)
{
	bus_addr_t curaddr;
	bus_size_t sgsize;

	if (map->pagesneeded == 0) {
		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
		    " map= %p, pagesneeded= %d",
		    dmat->lowaddr, dmat->boundary, dmat->alignment,
		    map, map->pagesneeded);
		/*
		 * Count the number of bounce pages
		 * needed in order to complete this transfer
		 */
		curaddr = buf;
		while (buflen != 0) {
			sgsize = MIN(buflen, dmat->maxsegsz);
			if (must_bounce(dmat, map, curaddr, sgsize) != 0) {
				sgsize = MIN(sgsize,
				    PAGE_SIZE - (curaddr & PAGE_MASK));
				map->pagesneeded++;
			}
			curaddr += sgsize;
			buflen -= sgsize;
		}
		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
	}
}

static void
_bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap, bus_dmamap_t map,
    void *buf, bus_size_t buflen, int flags)
{
	vm_offset_t vaddr;
	vm_offset_t vendaddr;
	bus_addr_t paddr;

	if (map->pagesneeded == 0) {
		CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d"
		    " map= %p, pagesneeded= %d",
		    dmat->lowaddr, dmat->boundary, dmat->alignment,
		    map, map->pagesneeded);
		/*
		 * Count the number of bounce pages
		 * needed in order to complete this transfer
		 */
		vaddr = (vm_offset_t)buf;
		vendaddr = (vm_offset_t)buf + buflen;

		while (vaddr < vendaddr) {
			if (__predict_true(pmap == kernel_pmap))
				paddr = pmap_kextract(vaddr);
			else
				paddr = pmap_extract(pmap, vaddr);
			if (must_bounce(dmat, map, paddr,
			    min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr &
			    PAGE_MASK)))) != 0) {
				map->pagesneeded++;
			}
			vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK));
		}
		CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded);
	}
}

/*
 * Add a single contiguous physical range to the segment list.
 */
static int
_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
    bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
{
	int seg;

	/*
	 * Make sure we don't cross any boundaries.
	 */
	if (!vm_addr_bound_ok(curaddr, sgsize, dmat->boundary))
		sgsize = roundup2(curaddr, dmat->boundary) - curaddr;

	/*
	 * Insert chunk into a segment, coalescing with
	 * previous segment if possible.
	 */
	seg = *segp;
	if (seg == -1) {
		seg = 0;
		segs[seg].ds_addr = curaddr;
		segs[seg].ds_len = sgsize;
	} else {
		if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
		    (segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
		    vm_addr_bound_ok(segs[seg].ds_addr,
		    segs[seg].ds_len + sgsize, dmat->boundary))
			segs[seg].ds_len += sgsize;
		else {
			if (++seg >= dmat->nsegments)
				return (0);
			segs[seg].ds_addr = curaddr;
			segs[seg].ds_len = sgsize;
		}
	}
	*segp = seg;
	return (sgsize);
}

/*
 * Utility function to load a physical buffer.  segp contains
 * the starting segment on entrace, and the ending segment on exit.
 */
int
_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
    bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp)
{
	bus_addr_t curaddr;
	bus_addr_t sl_end = 0;
	bus_size_t sgsize;
	struct sync_list *sl;
	int error;

	if (segs == NULL)
		segs = map->segments;

#ifdef ARM_BUSDMA_MAPLOAD_STATS
	counter_u64_add(maploads_total, 1);
	counter_u64_add(maploads_physmem, 1);
#endif

	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
		_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
		if (map->pagesneeded != 0) {
#ifdef ARM_BUSDMA_MAPLOAD_STATS
			counter_u64_add(maploads_bounced, 1);
#endif
			error = _bus_dmamap_reserve_pages(dmat, map, flags);
			if (error)
				return (error);
		}
	}

	sl = map->slist + map->sync_count - 1;

	while (buflen > 0) {
		curaddr = buf;
		sgsize = MIN(buflen, dmat->maxsegsz);
		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
		    sgsize)) {
			sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
			curaddr = add_bounce_page(dmat, map, 0, curaddr,
			    sgsize);
		} else if ((dmat->flags & BUS_DMA_COHERENT) == 0) {
			if (map->sync_count > 0)
				sl_end = sl->paddr + sl->datacount;

			if (map->sync_count == 0 || curaddr != sl_end) {
				if (++map->sync_count > dmat->nsegments)
					break;
				sl++;
				sl->vaddr = 0;
				sl->paddr = curaddr;
				sl->datacount = sgsize;
				sl->pages = PHYS_TO_VM_PAGE(curaddr);
				KASSERT(sl->pages != NULL,
				    ("%s: page at PA:0x%08lx is not in "
				    "vm_page_array", __func__, curaddr));
			} else
				sl->datacount += sgsize;
		}
		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
		    segp);
		if (sgsize == 0)
			break;
		buf += sgsize;
		buflen -= sgsize;
	}

	/*
	 * Did we fit?
	 */
	if (buflen != 0) {
		bus_dmamap_unload(dmat, map);
		return (EFBIG); /* XXX better return value here? */
	}
	return (0);
}

int
_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map,
    struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags,
    bus_dma_segment_t *segs, int *segp)
{

	return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags,
	    segs, segp));
}

/*
 * Utility function to load a linear buffer.  segp contains
 * the starting segment on entrance, and the ending segment on exit.
 */
int
_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
    bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
    int *segp)
{
	bus_size_t sgsize;
	bus_addr_t curaddr;
	bus_addr_t sl_pend = 0;
	vm_offset_t kvaddr, vaddr, sl_vend = 0;
	struct sync_list *sl;
	int error;

#ifdef ARM_BUSDMA_MAPLOAD_STATS
	counter_u64_add(maploads_total, 1);
	if (map->flags & DMAMAP_COHERENT)
		counter_u64_add(maploads_coherent, 1);
	if (map->flags & DMAMAP_DMAMEM_ALLOC)
		counter_u64_add(maploads_dmamem, 1);
#endif

	if (segs == NULL)
		segs = map->segments;

	if (flags & BUS_DMA_LOAD_MBUF) {
#ifdef ARM_BUSDMA_MAPLOAD_STATS
		counter_u64_add(maploads_mbuf, 1);
#endif
		map->flags |= DMAMAP_MBUF;
	}

	if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) {
		_bus_dmamap_count_pages(dmat, pmap, map, buf, buflen, flags);
		if (map->pagesneeded != 0) {
#ifdef ARM_BUSDMA_MAPLOAD_STATS
			counter_u64_add(maploads_bounced, 1);
#endif
			error = _bus_dmamap_reserve_pages(dmat, map, flags);
			if (error)
				return (error);
		}
	}

	sl = map->slist + map->sync_count - 1;
	vaddr = (vm_offset_t)buf;

	while (buflen > 0) {
		/*
		 * Get the physical address for this segment.
		 */
		if (__predict_true(pmap == kernel_pmap)) {
			curaddr = pmap_kextract(vaddr);
			kvaddr = vaddr;
		} else {
			curaddr = pmap_extract(pmap, vaddr);
			kvaddr = 0;
		}

		/*
		 * Compute the segment size, and adjust counts.
		 */
		sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
		if (sgsize > dmat->maxsegsz)
			sgsize = dmat->maxsegsz;
		if (buflen < sgsize)
			sgsize = buflen;

		if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr,
		    sgsize)) {
			curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
			    sgsize);
		} else if ((dmat->flags & BUS_DMA_COHERENT) == 0) {
			if (map->sync_count > 0) {
				sl_pend = sl->paddr + sl->datacount;
				sl_vend = sl->vaddr + sl->datacount;
			}

			if (map->sync_count == 0 ||
			    (kvaddr != 0 && kvaddr != sl_vend) ||
			    (curaddr != sl_pend)) {
				if (++map->sync_count > dmat->nsegments)
					goto cleanup;
				sl++;
				sl->vaddr = kvaddr;
				sl->paddr = curaddr;
				if (kvaddr != 0) {
					sl->pages = NULL;
				} else {
					sl->pages = PHYS_TO_VM_PAGE(curaddr);
					KASSERT(sl->pages != NULL,
					    ("%s: page at PA:0x%08lx is not "
					    "in vm_page_array", __func__,
					    curaddr));
				}
				sl->datacount = sgsize;
			} else
				sl->datacount += sgsize;
		}
		sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
		    segp);
		if (sgsize == 0)
			break;
		vaddr += sgsize;
		buflen -= sgsize;
	}

cleanup:
	/*
	 * Did we fit?
	 */
	if (buflen != 0) {
		bus_dmamap_unload(dmat, map);
		return (EFBIG); /* XXX better return value here? */
	}
	return (0);
}

void
_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem,
    bus_dmamap_callback_t *callback, void *callback_arg)
{

	map->mem = *mem;
	map->dmat = dmat;
	map->callback = callback;
	map->callback_arg = callback_arg;
}

bus_dma_segment_t *
_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
    bus_dma_segment_t *segs, int nsegs, int error)
{

	if (segs == NULL)
		segs = map->segments;
	return (segs);
}

/*
 * Release the mapping held by map.
 */
void
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
{
	struct bounce_zone *bz;

	if ((bz = dmat->bounce_zone) != NULL) {
		free_bounce_pages(dmat, map);

		if (map->pagesreserved != 0) {
			mtx_lock(&bounce_lock);
			bz->free_bpages += map->pagesreserved;
			bz->reserved_bpages -= map->pagesreserved;
			mtx_unlock(&bounce_lock);
			map->pagesreserved = 0;
		}
		map->pagesneeded = 0;
	}
	map->sync_count = 0;
	map->flags &= ~DMAMAP_MBUF;
}

static void
dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
{
	/*
	 * Write back any partial cachelines immediately before and
	 * after the DMA region.  We don't need to round the address
	 * down to the nearest cacheline or specify the exact size,
	 * as dcache_wb_poc() will do the rounding for us and works
	 * at cacheline granularity.
	 */
	if (va & BUSDMA_DCACHE_MASK)
		dcache_wb_poc(va, pa, 1);
	if ((va + size) & BUSDMA_DCACHE_MASK)
		dcache_wb_poc(va + size, pa + size, 1);

	dcache_inv_poc_dma(va, pa, size);
}

static void
dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op)
{
	uint32_t len, offset;
	vm_page_t m;
	vm_paddr_t pa;
	vm_offset_t va, tempva;
	bus_size_t size;

	offset = sl->paddr & PAGE_MASK;
	m = sl->pages;
	size = sl->datacount;
	pa = sl->paddr;

	for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) {
		tempva = 0;
		if (sl->vaddr == 0) {
			len = min(PAGE_SIZE - offset, size);
			tempva = pmap_quick_enter_page(m);
			va = tempva | offset;
			KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset),
			    ("unexpected vm_page_t phys: 0x%08x != 0x%08x",
			    VM_PAGE_TO_PHYS(m) | offset, pa));
		} else {
			len = sl->datacount;
			va = sl->vaddr;
		}

		switch (op) {
		case BUS_DMASYNC_PREWRITE:
		case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
			dcache_wb_poc(va, pa, len);
			break;
		case BUS_DMASYNC_PREREAD:
			/*
			 * An mbuf may start in the middle of a cacheline. There
			 * will be no cpu writes to the beginning of that line
			 * (which contains the mbuf header) while dma is in
			 * progress.  Handle that case by doing a writeback of
			 * just the first cacheline before invalidating the
			 * overall buffer.  Any mbuf in a chain may have this
			 * misalignment.  Buffers which are not mbufs bounce if
			 * they are not aligned to a cacheline.
			 */
			dma_preread_safe(va, pa, len);
			break;
		case BUS_DMASYNC_POSTREAD:
		case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
			dcache_inv_poc(va, pa, len);
			break;
		default:
			panic("unsupported combination of sync operations: "
                              "0x%08x\n", op);
		}

		if (tempva != 0)
			pmap_quick_remove_page(tempva);
	}
}

void
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
{
	struct bounce_page *bpage;
	struct sync_list *sl, *end;
	vm_offset_t datavaddr, tempvaddr;

	if (op == BUS_DMASYNC_POSTWRITE)
		return;

	/*
	 * If the buffer was from user space, it is possible that this is not
	 * the same vm map, especially on a POST operation.  It's not clear that
	 * dma on userland buffers can work at all right now.  To be safe, until
	 * we're able to test direct userland dma, panic on a map mismatch.
	 */
	if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
		    "performing bounce", __func__, dmat, dmat->flags, op);

		/*
		 * For PREWRITE do a writeback.  Clean the caches from the
		 * innermost to the outermost levels.
		 */
		if (op & BUS_DMASYNC_PREWRITE) {
			while (bpage != NULL) {
				tempvaddr = 0;
				datavaddr = bpage->datavaddr;
				if (datavaddr == 0) {
					tempvaddr = pmap_quick_enter_page(
					    bpage->datapage);
					datavaddr = tempvaddr | bpage->dataoffs;
				}
				bcopy((void *)datavaddr, (void *)bpage->vaddr,
				    bpage->datacount);
				if (tempvaddr != 0)
					pmap_quick_remove_page(tempvaddr);
				if ((dmat->flags & BUS_DMA_COHERENT) == 0)
					dcache_wb_poc(bpage->vaddr,
					    bpage->busaddr, bpage->datacount);
				bpage = STAILQ_NEXT(bpage, links);
			}
			dmat->bounce_zone->total_bounced++;
		}

		/*
		 * Do an invalidate for PREREAD unless a writeback was already
		 * done above due to PREWRITE also being set.  The reason for a
		 * PREREAD invalidate is to prevent dirty lines currently in the
		 * cache from being evicted during the DMA.  If a writeback was
		 * done due to PREWRITE also being set there will be no dirty
		 * lines and the POSTREAD invalidate handles the rest. The
		 * invalidate is done from the innermost to outermost level. If
		 * L2 were done first, a dirty cacheline could be automatically
		 * evicted from L1 before we invalidated it, re-dirtying the L2.
		 */
		if ((op & BUS_DMASYNC_PREREAD) && !(op & BUS_DMASYNC_PREWRITE)) {
			bpage = STAILQ_FIRST(&map->bpages);
			while (bpage != NULL) {
				if ((dmat->flags & BUS_DMA_COHERENT) == 0)
					dcache_inv_poc_dma(bpage->vaddr,
					    bpage->busaddr, bpage->datacount);
				bpage = STAILQ_NEXT(bpage, links);
			}
		}

		/*
		 * Re-invalidate the caches on a POSTREAD, even though they were
		 * already invalidated at PREREAD time.  Aggressive prefetching
		 * due to accesses to other data near the dma buffer could have
		 * brought buffer data into the caches which is now stale.  The
		 * caches are invalidated from the outermost to innermost; the
		 * prefetches could be happening right now, and if L1 were
		 * invalidated first, stale L2 data could be prefetched into L1.
		 */
		if (op & BUS_DMASYNC_POSTREAD) {
			while (bpage != NULL) {
				if ((dmat->flags & BUS_DMA_COHERENT) == 0)
					dcache_inv_poc(bpage->vaddr,
					    bpage->busaddr, bpage->datacount);
				tempvaddr = 0;
				datavaddr = bpage->datavaddr;
				if (datavaddr == 0) {
					tempvaddr = pmap_quick_enter_page(
					    bpage->datapage);
					datavaddr = tempvaddr | bpage->dataoffs;
				}
				bcopy((void *)bpage->vaddr, (void *)datavaddr,
				    bpage->datacount);
				if (tempvaddr != 0)
					pmap_quick_remove_page(tempvaddr);
				bpage = STAILQ_NEXT(bpage, links);
			}
			dmat->bounce_zone->total_bounced++;
		}
	}

	/*
	 * For COHERENT memory no cache maintenance is necessary, but ensure all
	 * writes have reached memory for the PREWRITE case.  No action is
	 * needed for a PREREAD without PREWRITE also set, because that would
	 * imply that the cpu had written to the COHERENT buffer and expected
	 * the dma device to see that change, and by definition a PREWRITE sync
	 * is required to make that happen.
	 */
	if (map->flags & DMAMAP_COHERENT) {
		if (op & BUS_DMASYNC_PREWRITE) {
			dsb();
			if ((dmat->flags & BUS_DMA_COHERENT) == 0)
				cpu_l2cache_drain_writebuf();
		}
		return;
	}

	/*
	 * Cache maintenance for normal (non-COHERENT non-bounce) buffers.  All
	 * the comments about the sequences for flushing cache levels in the
	 * bounce buffer code above apply here as well.  In particular, the fact
	 * that the sequence is inner-to-outer for PREREAD invalidation and
	 * outer-to-inner for POSTREAD invalidation is not a mistake.
	 */
	if (map->sync_count != 0) {
		sl = &map->slist[0];
		end = &map->slist[map->sync_count];
		CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
		    "performing sync", __func__, dmat, dmat->flags, op);

		for ( ; sl != end; ++sl)
			dma_dcache_sync(sl, op);
	}
}