aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/boot/zfs/sha256.c
blob: eee98e612a1e56960eb32c7974dea4d5cf0903e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */
/*
 * Copyright 2013 Saso Kiselkov.  All rights reserved.
 * Copyright 2015 Toomas Soome <tsoome@me.com>
 */

/*
 * SHA-256 and SHA-512/256 hashes, as specified in FIPS 180-4, available at:
 * http://csrc.nist.gov/cryptval
 *
 * This is a very compact implementation of SHA-256 and SHA-512/256.
 * It is designed to be simple and portable, not to be fast.
 */

/*
 * The literal definitions according to FIPS180-4 would be:
 *
 * 	Ch(x, y, z)     (((x) & (y)) ^ ((~(x)) & (z)))
 * 	Maj(x, y, z)    (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
 *
 * We use logical equivalents which require one less op.
 */
#define	Ch(x, y, z)	((z) ^ ((x) & ((y) ^ (z))))
#define	Maj(x, y, z)	(((x) & (y)) ^ ((z) & ((x) ^ (y))))
#define	ROTR(x, n)	(((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))

/* SHA-224/256 operations */
#define	BIGSIGMA0_256(x)	(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define	BIGSIGMA1_256(x)	(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define	SIGMA0_256(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ ((x) >> 3))
#define	SIGMA1_256(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ ((x) >> 10))

/* SHA-384/512 operations */
#define	BIGSIGMA0_512(x)	(ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
#define	BIGSIGMA1_512(x)	(ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
#define	SIGMA0_512(x)		(ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
#define	SIGMA1_512(x)		(ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))

/* SHA-256 round constants */
static const uint32_t SHA256_K[64] = {
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

/* SHA-512 round constants */
static const uint64_t SHA512_K[80] = {
	0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL,
	0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
	0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL,
	0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
	0xD807AA98A3030242ULL, 0x12835B0145706FBEULL,
	0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
	0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL,
	0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
	0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL,
	0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
	0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL,
	0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
	0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL,
	0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
	0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL,
	0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
	0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL,
	0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
	0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL,
	0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
	0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL,
	0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
	0xD192E819D6EF5218ULL, 0xD69906245565A910ULL,
	0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
	0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL,
	0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
	0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL,
	0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
	0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL,
	0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
	0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL,
	0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
	0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL,
	0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
	0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL,
	0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
	0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL,
	0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
	0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL,
	0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL
};

static void
SHA256Transform(uint32_t *H, const uint8_t *cp)
{
	uint32_t a, b, c, d, e, f, g, h, t, T1, T2, W[64];

	/* copy chunk into the first 16 words of the message schedule */
	for (t = 0; t < 16; t++, cp += sizeof (uint32_t))
		W[t] = (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | cp[3];

	/* extend the first 16 words into the remaining 48 words */
	for (t = 16; t < 64; t++)
		W[t] = SIGMA1_256(W[t - 2]) + W[t - 7] +
		    SIGMA0_256(W[t - 15]) + W[t - 16];

	/* init working variables to the current hash value */
	a = H[0]; b = H[1]; c = H[2]; d = H[3];
	e = H[4]; f = H[5]; g = H[6]; h = H[7];

	/* iterate the compression function for all rounds of the hash */
	for (t = 0; t < 64; t++) {
		T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_K[t] + W[t];
		T2 = BIGSIGMA0_256(a) + Maj(a, b, c);
		h = g; g = f; f = e; e = d + T1;
		d = c; c = b; b = a; a = T1 + T2;
	}

	/* add the compressed chunk to the current hash value */
	H[0] += a; H[1] += b; H[2] += c; H[3] += d;
	H[4] += e; H[5] += f; H[6] += g; H[7] += h;
}

static void
SHA512Transform(uint64_t *H, const uint8_t *cp)
{
	uint64_t a, b, c, d, e, f, g, h, t, T1, T2, W[80];

	/* copy chunk into the first 16 words of the message schedule */
	for (t = 0; t < 16; t++, cp += sizeof (uint64_t))
		W[t] = ((uint64_t)cp[0] << 56) | ((uint64_t)cp[1] << 48) |
		    ((uint64_t)cp[2] << 40) | ((uint64_t)cp[3] << 32) |
		    ((uint64_t)cp[4] << 24) | ((uint64_t)cp[5] << 16) |
		    ((uint64_t)cp[6] << 8) | (uint64_t)cp[7];

	/* extend the first 16 words into the remaining 64 words */
	for (t = 16; t < 80; t++)
		W[t] = SIGMA1_512(W[t - 2]) + W[t - 7] +
		    SIGMA0_512(W[t - 15]) + W[t - 16];

	/* init working variables to the current hash value */
	a = H[0]; b = H[1]; c = H[2]; d = H[3];
	e = H[4]; f = H[5]; g = H[6]; h = H[7];

	/* iterate the compression function for all rounds of the hash */
	for (t = 0; t < 80; t++) {
		T1 = h + BIGSIGMA1_512(e) + Ch(e, f, g) + SHA512_K[t] + W[t];
		T2 = BIGSIGMA0_512(a) + Maj(a, b, c);
		h = g; g = f; f = e; e = d + T1;
		d = c; c = b; b = a; a = T1 + T2;
	}

	/* add the compressed chunk to the current hash value */
	H[0] += a; H[1] += b; H[2] += c; H[3] += d;
	H[4] += e; H[5] += f; H[6] += g; H[7] += h;
}

/*
 * Implements the SHA-224 and SHA-256 hash algos - to select between them
 * pass the appropriate initial values of 'H' and truncate the last 32 bits
 * in case of SHA-224.
 */
static void
SHA256(uint32_t *H, const void *buf, uint64_t size, zio_cksum_t *zcp)
{
	uint8_t pad[128];
	unsigned padsize = size & 63;
	unsigned i, k;

	/* process all blocks up to the last one */
	for (i = 0; i < size - padsize; i += 64)
		SHA256Transform(H, (uint8_t *)buf + i);

	/* process the last block and padding */
	for (k = 0; k < padsize; k++)
		pad[k] = ((uint8_t *)buf)[k+i];

	for (pad[padsize++] = 0x80; (padsize & 63) != 56; padsize++)
		pad[padsize] = 0;

	for (i = 0; i < 8; i++)
		pad[padsize++] = (size << 3) >> (56 - 8 * i);

	for (i = 0; i < padsize; i += 64)
		SHA256Transform(H, pad + i);

	ZIO_SET_CHECKSUM(zcp,
	    (uint64_t)H[0] << 32 | H[1],
	    (uint64_t)H[2] << 32 | H[3],
	    (uint64_t)H[4] << 32 | H[5],
	    (uint64_t)H[6] << 32 | H[7]);
}

/*
 * encode 64bit data in big-endian format.
 */
static void
Encode64(uint8_t *output, uint64_t *input, size_t len)
{
	size_t i, j;
	for (i = 0, j = 0; j < len; i++, j += 8) {
		output[j]	= (input[i] >> 56) & 0xff;
		output[j + 1]	= (input[i] >> 48) & 0xff;
		output[j + 2]	= (input[i] >> 40) & 0xff;
		output[j + 3]	= (input[i] >> 32) & 0xff;
		output[j + 4]	= (input[i] >> 24) & 0xff;
		output[j + 5]	= (input[i] >> 16) & 0xff;
		output[j + 6]	= (input[i] >>  8) & 0xff;
		output[j + 7]	= input[i] & 0xff;
	}
}

/*
 * Implements the SHA-384, SHA-512 and SHA-512/t hash algos - to select
 * between them pass the appropriate initial values for 'H'. The output
 * of this function is truncated to the first 256 bits that fit into 'zcp'.
 */
static void
SHA512(uint64_t *H, const void *buf, uint64_t size, zio_cksum_t *zcp)
{
	uint64_t	c64[2];
	uint8_t		pad[256];
	unsigned	padsize = size & 127;
	unsigned	i, k;

	/* process all blocks up to the last one */
	for (i = 0; i < size - padsize; i += 128)
		SHA512Transform(H, (uint8_t *)buf + i);

	/* process the last block and padding */
	for (k = 0; k < padsize; k++)
		pad[k] = ((uint8_t *)buf)[k+i];

	if (padsize < 112) {
		for (pad[padsize++] = 0x80; padsize < 112; padsize++)
			pad[padsize] = 0;
	} else {
		for (pad[padsize++] = 0x80; padsize < 240; padsize++)
			pad[padsize] = 0;
	}

	c64[0] = 0;
	c64[1] = size << 3;
	Encode64(pad+padsize, c64, sizeof (c64));
	padsize += sizeof (c64);

	for (i = 0; i < padsize; i += 128)
		SHA512Transform(H, pad + i);

	/* truncate the output to the first 256 bits which fit into 'zcp' */
	Encode64((uint8_t *)zcp, H, sizeof (uint64_t) * 4);
}

static void
zio_checksum_SHA256(const void *buf, uint64_t size,
    const void *ctx_template __unused, zio_cksum_t *zcp)
{
	/* SHA-256 as per FIPS 180-4. */
	uint32_t	H[] = {
		0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
		0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
	};
	SHA256(H, buf, size, zcp);
}

static void
zio_checksum_SHA512_native(const void *buf, uint64_t size,
    const void *ctx_template __unused, zio_cksum_t *zcp)
{
	/* SHA-512/256 as per FIPS 180-4. */
	uint64_t	H[] = {
		0x22312194FC2BF72CULL, 0x9F555FA3C84C64C2ULL,
		0x2393B86B6F53B151ULL, 0x963877195940EABDULL,
		0x96283EE2A88EFFE3ULL, 0xBE5E1E2553863992ULL,
		0x2B0199FC2C85B8AAULL, 0x0EB72DDC81C52CA2ULL
	};
	SHA512(H, buf, size, zcp);
}

static void
zio_checksum_SHA512_byteswap(const void *buf, uint64_t size,
    const void *ctx_template, zio_cksum_t *zcp)
{
	zio_cksum_t	tmp;

	zio_checksum_SHA512_native(buf, size, ctx_template, &tmp);
	zcp->zc_word[0] = BSWAP_64(tmp.zc_word[0]);
	zcp->zc_word[1] = BSWAP_64(tmp.zc_word[1]);
	zcp->zc_word[2] = BSWAP_64(tmp.zc_word[2]);
	zcp->zc_word[3] = BSWAP_64(tmp.zc_word[3]);
}