aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/dmu_tx.c
blob: ad02fa5918aa1b7c1ee93348946541b9372da82a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
 * Copyright (c) 2014 Integros [integros.com]
 */

#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dbuf.h>
#include <sys/dmu_tx.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/zap_impl.h>
#include <sys/spa.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/zfs_context.h>
#include <sys/varargs.h>

typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
    uint64_t arg1, uint64_t arg2);


dmu_tx_t *
dmu_tx_create_dd(dsl_dir_t *dd)
{
	dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
	tx->tx_dir = dd;
	if (dd != NULL)
		tx->tx_pool = dd->dd_pool;
	list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
	    offsetof(dmu_tx_hold_t, txh_node));
	list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
	    offsetof(dmu_tx_callback_t, dcb_node));
	tx->tx_start = gethrtime();
	return (tx);
}

dmu_tx_t *
dmu_tx_create(objset_t *os)
{
	dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
	tx->tx_objset = os;
	return (tx);
}

dmu_tx_t *
dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
{
	dmu_tx_t *tx = dmu_tx_create_dd(NULL);

	txg_verify(dp->dp_spa, txg);
	tx->tx_pool = dp;
	tx->tx_txg = txg;
	tx->tx_anyobj = TRUE;

	return (tx);
}

int
dmu_tx_is_syncing(dmu_tx_t *tx)
{
	return (tx->tx_anyobj);
}

int
dmu_tx_private_ok(dmu_tx_t *tx)
{
	return (tx->tx_anyobj);
}

static dmu_tx_hold_t *
dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
    uint64_t arg1, uint64_t arg2)
{
	dmu_tx_hold_t *txh;

	if (dn != NULL) {
		(void) refcount_add(&dn->dn_holds, tx);
		if (tx->tx_txg != 0) {
			mutex_enter(&dn->dn_mtx);
			/*
			 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
			 * problem, but there's no way for it to happen (for
			 * now, at least).
			 */
			ASSERT(dn->dn_assigned_txg == 0);
			dn->dn_assigned_txg = tx->tx_txg;
			(void) refcount_add(&dn->dn_tx_holds, tx);
			mutex_exit(&dn->dn_mtx);
		}
	}

	txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
	txh->txh_tx = tx;
	txh->txh_dnode = dn;
	refcount_create(&txh->txh_space_towrite);
	refcount_create(&txh->txh_memory_tohold);
	txh->txh_type = type;
	txh->txh_arg1 = arg1;
	txh->txh_arg2 = arg2;
	list_insert_tail(&tx->tx_holds, txh);

	return (txh);
}

static dmu_tx_hold_t *
dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
    enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
{
	dnode_t *dn = NULL;
	dmu_tx_hold_t *txh;
	int err;

	if (object != DMU_NEW_OBJECT) {
		err = dnode_hold(os, object, FTAG, &dn);
		if (err != 0) {
			tx->tx_err = err;
			return (NULL);
		}
	}
	txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
	if (dn != NULL)
		dnode_rele(dn, FTAG);
	return (txh);
}

void
dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
{
	/*
	 * If we're syncing, they can manipulate any object anyhow, and
	 * the hold on the dnode_t can cause problems.
	 */
	if (!dmu_tx_is_syncing(tx))
		(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
}

/*
 * This function reads specified data from disk.  The specified data will
 * be needed to perform the transaction -- i.e, it will be read after
 * we do dmu_tx_assign().  There are two reasons that we read the data now
 * (before dmu_tx_assign()):
 *
 * 1. Reading it now has potentially better performance.  The transaction
 * has not yet been assigned, so the TXG is not held open, and also the
 * caller typically has less locks held when calling dmu_tx_hold_*() than
 * after the transaction has been assigned.  This reduces the lock (and txg)
 * hold times, thus reducing lock contention.
 *
 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
 * that are detected before they start making changes to the DMU state
 * (i.e. now).  Once the transaction has been assigned, and some DMU
 * state has been changed, it can be difficult to recover from an i/o
 * error (e.g. to undo the changes already made in memory at the DMU
 * layer).  Typically code to do so does not exist in the caller -- it
 * assumes that the data has already been cached and thus i/o errors are
 * not possible.
 *
 * It has been observed that the i/o initiated here can be a performance
 * problem, and it appears to be optional, because we don't look at the
 * data which is read.  However, removing this read would only serve to
 * move the work elsewhere (after the dmu_tx_assign()), where it may
 * have a greater impact on performance (in addition to the impact on
 * fault tolerance noted above).
 */
static int
dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
{
	int err;
	dmu_buf_impl_t *db;

	rw_enter(&dn->dn_struct_rwlock, RW_READER);
	db = dbuf_hold_level(dn, level, blkid, FTAG);
	rw_exit(&dn->dn_struct_rwlock);
	if (db == NULL)
		return (SET_ERROR(EIO));
	err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
	dbuf_rele(db, FTAG);
	return (err);
}

/* ARGSUSED */
static void
dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
{
	dnode_t *dn = txh->txh_dnode;
	int err = 0;

	if (len == 0)
		return;

	(void) refcount_add_many(&txh->txh_space_towrite, len, FTAG);

	if (refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
		err = SET_ERROR(EFBIG);

	if (dn == NULL)
		return;

	/*
	 * For i/o error checking, read the blocks that will be needed
	 * to perform the write: the first and last level-0 blocks (if
	 * they are not aligned, i.e. if they are partial-block writes),
	 * and all the level-1 blocks.
	 */
	if (dn->dn_maxblkid == 0) {
		if (off < dn->dn_datablksz &&
		    (off > 0 || len < dn->dn_datablksz)) {
			err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
			if (err != 0) {
				txh->txh_tx->tx_err = err;
			}
		}
	} else {
		zio_t *zio = zio_root(dn->dn_objset->os_spa,
		    NULL, NULL, ZIO_FLAG_CANFAIL);

		/* first level-0 block */
		uint64_t start = off >> dn->dn_datablkshift;
		if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
			err = dmu_tx_check_ioerr(zio, dn, 0, start);
			if (err != 0) {
				txh->txh_tx->tx_err = err;
			}
		}

		/* last level-0 block */
		uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
		if (end != start && end <= dn->dn_maxblkid &&
		    P2PHASE(off + len, dn->dn_datablksz)) {
			err = dmu_tx_check_ioerr(zio, dn, 0, end);
			if (err != 0) {
				txh->txh_tx->tx_err = err;
			}
		}

		/* level-1 blocks */
		if (dn->dn_nlevels > 1) {
			int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
			for (uint64_t i = (start >> shft) + 1;
			    i < end >> shft; i++) {
				err = dmu_tx_check_ioerr(zio, dn, 1, i);
				if (err != 0) {
					txh->txh_tx->tx_err = err;
				}
			}
		}

		err = zio_wait(zio);
		if (err != 0) {
			txh->txh_tx->tx_err = err;
		}
	}
}

static void
dmu_tx_count_dnode(dmu_tx_hold_t *txh)
{
	(void) refcount_add_many(&txh->txh_space_towrite, DNODE_SIZE, FTAG);
}

void
dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
{
	dmu_tx_hold_t *txh;

	ASSERT0(tx->tx_txg);
	ASSERT3U(len, <=, DMU_MAX_ACCESS);
	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);

	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
	    object, THT_WRITE, off, len);
	if (txh != NULL) {
		dmu_tx_count_write(txh, off, len);
		dmu_tx_count_dnode(txh);
	}
}

void
dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object)
{
	dmu_tx_hold_t *txh;

	ASSERT(tx->tx_txg == 0);
	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
	    object, THT_WRITE, 0, 0);
	if (txh == NULL)
		return;

	dnode_t *dn = txh->txh_dnode;
	(void) refcount_add_many(&txh->txh_space_towrite,
	    1ULL << dn->dn_indblkshift, FTAG);
	dmu_tx_count_dnode(txh);
}

void
dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
{
	dmu_tx_hold_t *txh;

	ASSERT0(tx->tx_txg);
	ASSERT3U(len, <=, DMU_MAX_ACCESS);
	ASSERT(len == 0 || UINT64_MAX - off >= len - 1);

	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
	if (txh != NULL) {
		dmu_tx_count_write(txh, off, len);
		dmu_tx_count_dnode(txh);
	}
}

/*
 * This function marks the transaction as being a "net free".  The end
 * result is that refquotas will be disabled for this transaction, and
 * this transaction will be able to use half of the pool space overhead
 * (see dsl_pool_adjustedsize()).  Therefore this function should only
 * be called for transactions that we expect will not cause a net increase
 * in the amount of space used (but it's OK if that is occasionally not true).
 */
void
dmu_tx_mark_netfree(dmu_tx_t *tx)
{
	tx->tx_netfree = B_TRUE;
}

static void
dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
{
	dmu_tx_t *tx;
	dnode_t *dn;
	int err;

	tx = txh->txh_tx;
	ASSERT(tx->tx_txg == 0);

	dn = txh->txh_dnode;
	dmu_tx_count_dnode(txh);

	if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
		return;
	if (len == DMU_OBJECT_END)
		len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;


	/*
	 * For i/o error checking, we read the first and last level-0
	 * blocks if they are not aligned, and all the level-1 blocks.
	 *
	 * Note:  dbuf_free_range() assumes that we have not instantiated
	 * any level-0 dbufs that will be completely freed.  Therefore we must
	 * exercise care to not read or count the first and last blocks
	 * if they are blocksize-aligned.
	 */
	if (dn->dn_datablkshift == 0) {
		if (off != 0 || len < dn->dn_datablksz)
			dmu_tx_count_write(txh, 0, dn->dn_datablksz);
	} else {
		/* first block will be modified if it is not aligned */
		if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
			dmu_tx_count_write(txh, off, 1);
		/* last block will be modified if it is not aligned */
		if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
			dmu_tx_count_write(txh, off + len, 1);
	}

	/*
	 * Check level-1 blocks.
	 */
	if (dn->dn_nlevels > 1) {
		int shift = dn->dn_datablkshift + dn->dn_indblkshift -
		    SPA_BLKPTRSHIFT;
		uint64_t start = off >> shift;
		uint64_t end = (off + len) >> shift;

		ASSERT(dn->dn_indblkshift != 0);

		/*
		 * dnode_reallocate() can result in an object with indirect
		 * blocks having an odd data block size.  In this case,
		 * just check the single block.
		 */
		if (dn->dn_datablkshift == 0)
			start = end = 0;

		zio_t *zio = zio_root(tx->tx_pool->dp_spa,
		    NULL, NULL, ZIO_FLAG_CANFAIL);
		for (uint64_t i = start; i <= end; i++) {
			uint64_t ibyte = i << shift;
			err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
			i = ibyte >> shift;
			if (err == ESRCH || i > end)
				break;
			if (err != 0) {
				tx->tx_err = err;
				(void) zio_wait(zio);
				return;
			}

			(void) refcount_add_many(&txh->txh_memory_tohold,
			    1 << dn->dn_indblkshift, FTAG);

			err = dmu_tx_check_ioerr(zio, dn, 1, i);
			if (err != 0) {
				tx->tx_err = err;
				(void) zio_wait(zio);
				return;
			}
		}
		err = zio_wait(zio);
		if (err != 0) {
			tx->tx_err = err;
			return;
		}
	}
}

void
dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
{
	dmu_tx_hold_t *txh;

	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
	    object, THT_FREE, off, len);
	if (txh != NULL)
		(void) dmu_tx_hold_free_impl(txh, off, len);
}

void
dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
{
	dmu_tx_hold_t *txh;

	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
	if (txh != NULL)
		(void) dmu_tx_hold_free_impl(txh, off, len);
}

static void
dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
{
	dmu_tx_t *tx = txh->txh_tx;
	dnode_t *dn;
	int err;

	ASSERT(tx->tx_txg == 0);

	dn = txh->txh_dnode;

	dmu_tx_count_dnode(txh);

	/*
	 * Modifying a almost-full microzap is around the worst case (128KB)
	 *
	 * If it is a fat zap, the worst case would be 7*16KB=112KB:
	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
	 * - 4 new blocks written if adding:
	 *    - 2 blocks for possibly split leaves,
	 *    - 2 grown ptrtbl blocks
	 */
	(void) refcount_add_many(&txh->txh_space_towrite,
	    MZAP_MAX_BLKSZ, FTAG);

	if (dn == NULL)
		return;

	ASSERT3P(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);

	if (dn->dn_maxblkid == 0 || name == NULL) {
		/*
		 * This is a microzap (only one block), or we don't know
		 * the name.  Check the first block for i/o errors.
		 */
		err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
		if (err != 0) {
			tx->tx_err = err;
		}
	} else {
		/*
		 * Access the name so that we'll check for i/o errors to
		 * the leaf blocks, etc.  We ignore ENOENT, as this name
		 * may not yet exist.
		 */
		err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
		if (err == EIO || err == ECKSUM || err == ENXIO) {
			tx->tx_err = err;
		}
	}
}

void
dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
{
	dmu_tx_hold_t *txh;

	ASSERT0(tx->tx_txg);

	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
	    object, THT_ZAP, add, (uintptr_t)name);
	if (txh != NULL)
		dmu_tx_hold_zap_impl(txh, name);
}

void
dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
{
	dmu_tx_hold_t *txh;

	ASSERT0(tx->tx_txg);
	ASSERT(dn != NULL);

	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
	if (txh != NULL)
		dmu_tx_hold_zap_impl(txh, name);
}

void
dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
{
	dmu_tx_hold_t *txh;

	ASSERT(tx->tx_txg == 0);

	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
	    object, THT_BONUS, 0, 0);
	if (txh)
		dmu_tx_count_dnode(txh);
}

void
dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
{
	dmu_tx_hold_t *txh;

	ASSERT0(tx->tx_txg);

	txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
	if (txh)
		dmu_tx_count_dnode(txh);
}

void
dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
{
	dmu_tx_hold_t *txh;
	ASSERT(tx->tx_txg == 0);

	txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
	    DMU_NEW_OBJECT, THT_SPACE, space, 0);

	(void) refcount_add_many(&txh->txh_space_towrite, space, FTAG);
}

#ifdef ZFS_DEBUG
void
dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
{
	boolean_t match_object = B_FALSE;
	boolean_t match_offset = B_FALSE;

	DB_DNODE_ENTER(db);
	dnode_t *dn = DB_DNODE(db);
	ASSERT(tx->tx_txg != 0);
	ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
	ASSERT3U(dn->dn_object, ==, db->db.db_object);

	if (tx->tx_anyobj) {
		DB_DNODE_EXIT(db);
		return;
	}

	/* XXX No checking on the meta dnode for now */
	if (db->db.db_object == DMU_META_DNODE_OBJECT) {
		DB_DNODE_EXIT(db);
		return;
	}

	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
	    txh = list_next(&tx->tx_holds, txh)) {
		ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg);
		if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
			match_object = TRUE;
		if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
			int datablkshift = dn->dn_datablkshift ?
			    dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
			int shift = datablkshift + epbs * db->db_level;
			uint64_t beginblk = shift >= 64 ? 0 :
			    (txh->txh_arg1 >> shift);
			uint64_t endblk = shift >= 64 ? 0 :
			    ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
			uint64_t blkid = db->db_blkid;

			/* XXX txh_arg2 better not be zero... */

			dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
			    txh->txh_type, beginblk, endblk);

			switch (txh->txh_type) {
			case THT_WRITE:
				if (blkid >= beginblk && blkid <= endblk)
					match_offset = TRUE;
				/*
				 * We will let this hold work for the bonus
				 * or spill buffer so that we don't need to
				 * hold it when creating a new object.
				 */
				if (blkid == DMU_BONUS_BLKID ||
				    blkid == DMU_SPILL_BLKID)
					match_offset = TRUE;
				/*
				 * They might have to increase nlevels,
				 * thus dirtying the new TLIBs.  Or the
				 * might have to change the block size,
				 * thus dirying the new lvl=0 blk=0.
				 */
				if (blkid == 0)
					match_offset = TRUE;
				break;
			case THT_FREE:
				/*
				 * We will dirty all the level 1 blocks in
				 * the free range and perhaps the first and
				 * last level 0 block.
				 */
				if (blkid >= beginblk && (blkid <= endblk ||
				    txh->txh_arg2 == DMU_OBJECT_END))
					match_offset = TRUE;
				break;
			case THT_SPILL:
				if (blkid == DMU_SPILL_BLKID)
					match_offset = TRUE;
				break;
			case THT_BONUS:
				if (blkid == DMU_BONUS_BLKID)
					match_offset = TRUE;
				break;
			case THT_ZAP:
				match_offset = TRUE;
				break;
			case THT_NEWOBJECT:
				match_object = TRUE;
				break;
			default:
				ASSERT(!"bad txh_type");
			}
		}
		if (match_object && match_offset) {
			DB_DNODE_EXIT(db);
			return;
		}
	}
	DB_DNODE_EXIT(db);
	panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
	    (u_longlong_t)db->db.db_object, db->db_level,
	    (u_longlong_t)db->db_blkid);
}
#endif

/*
 * If we can't do 10 iops, something is wrong.  Let us go ahead
 * and hit zfs_dirty_data_max.
 */
hrtime_t zfs_delay_max_ns = MSEC2NSEC(100);
int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */

/*
 * We delay transactions when we've determined that the backend storage
 * isn't able to accommodate the rate of incoming writes.
 *
 * If there is already a transaction waiting, we delay relative to when
 * that transaction finishes waiting.  This way the calculated min_time
 * is independent of the number of threads concurrently executing
 * transactions.
 *
 * If we are the only waiter, wait relative to when the transaction
 * started, rather than the current time.  This credits the transaction for
 * "time already served", e.g. reading indirect blocks.
 *
 * The minimum time for a transaction to take is calculated as:
 *     min_time = scale * (dirty - min) / (max - dirty)
 *     min_time is then capped at zfs_delay_max_ns.
 *
 * The delay has two degrees of freedom that can be adjusted via tunables.
 * The percentage of dirty data at which we start to delay is defined by
 * zfs_delay_min_dirty_percent. This should typically be at or above
 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
 * delay after writing at full speed has failed to keep up with the incoming
 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
 * speaking, this variable determines the amount of delay at the midpoint of
 * the curve.
 *
 * delay
 *  10ms +-------------------------------------------------------------*+
 *       |                                                             *|
 *   9ms +                                                             *+
 *       |                                                             *|
 *   8ms +                                                             *+
 *       |                                                            * |
 *   7ms +                                                            * +
 *       |                                                            * |
 *   6ms +                                                            * +
 *       |                                                            * |
 *   5ms +                                                           *  +
 *       |                                                           *  |
 *   4ms +                                                           *  +
 *       |                                                           *  |
 *   3ms +                                                          *   +
 *       |                                                          *   |
 *   2ms +                                              (midpoint) *    +
 *       |                                                  |    **     |
 *   1ms +                                                  v ***       +
 *       |             zfs_delay_scale ---------->     ********         |
 *     0 +-------------------------------------*********----------------+
 *       0%                    <- zfs_dirty_data_max ->               100%
 *
 * Note that since the delay is added to the outstanding time remaining on the
 * most recent transaction, the delay is effectively the inverse of IOPS.
 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
 * was chosen such that small changes in the amount of accumulated dirty data
 * in the first 3/4 of the curve yield relatively small differences in the
 * amount of delay.
 *
 * The effects can be easier to understand when the amount of delay is
 * represented on a log scale:
 *
 * delay
 * 100ms +-------------------------------------------------------------++
 *       +                                                              +
 *       |                                                              |
 *       +                                                             *+
 *  10ms +                                                             *+
 *       +                                                           ** +
 *       |                                              (midpoint)  **  |
 *       +                                                  |     **    +
 *   1ms +                                                  v ****      +
 *       +             zfs_delay_scale ---------->        *****         +
 *       |                                             ****             |
 *       +                                          ****                +
 * 100us +                                        **                    +
 *       +                                       *                      +
 *       |                                      *                       |
 *       +                                     *                        +
 *  10us +                                     *                        +
 *       +                                                              +
 *       |                                                              |
 *       +                                                              +
 *       +--------------------------------------------------------------+
 *       0%                    <- zfs_dirty_data_max ->               100%
 *
 * Note here that only as the amount of dirty data approaches its limit does
 * the delay start to increase rapidly. The goal of a properly tuned system
 * should be to keep the amount of dirty data out of that range by first
 * ensuring that the appropriate limits are set for the I/O scheduler to reach
 * optimal throughput on the backend storage, and then by changing the value
 * of zfs_delay_scale to increase the steepness of the curve.
 */
static void
dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
{
	dsl_pool_t *dp = tx->tx_pool;
	uint64_t delay_min_bytes =
	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
	hrtime_t wakeup, min_tx_time, now;

	if (dirty <= delay_min_bytes)
		return;

	/*
	 * The caller has already waited until we are under the max.
	 * We make them pass us the amount of dirty data so we don't
	 * have to handle the case of it being >= the max, which could
	 * cause a divide-by-zero if it's == the max.
	 */
	ASSERT3U(dirty, <, zfs_dirty_data_max);

	now = gethrtime();
	min_tx_time = zfs_delay_scale *
	    (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
	if (now > tx->tx_start + min_tx_time)
		return;

	min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);

	DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
	    uint64_t, min_tx_time);

	mutex_enter(&dp->dp_lock);
	wakeup = MAX(tx->tx_start + min_tx_time,
	    dp->dp_last_wakeup + min_tx_time);
	dp->dp_last_wakeup = wakeup;
	mutex_exit(&dp->dp_lock);

#ifdef _KERNEL
#ifdef illumos
	mutex_enter(&curthread->t_delay_lock);
	while (cv_timedwait_hires(&curthread->t_delay_cv,
	    &curthread->t_delay_lock, wakeup, zfs_delay_resolution_ns,
	    CALLOUT_FLAG_ABSOLUTE | CALLOUT_FLAG_ROUNDUP) > 0)
		continue;
	mutex_exit(&curthread->t_delay_lock);
#else
	pause_sbt("dmu_tx_delay", nstosbt(wakeup),
	    nstosbt(zfs_delay_resolution_ns), C_ABSOLUTE);
#endif
#else
	hrtime_t delta = wakeup - gethrtime();
	struct timespec ts;
	ts.tv_sec = delta / NANOSEC;
	ts.tv_nsec = delta % NANOSEC;
	(void) nanosleep(&ts, NULL);
#endif
}

/*
 * This routine attempts to assign the transaction to a transaction group.
 * To do so, we must determine if there is sufficient free space on disk.
 *
 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
 * on it), then it is assumed that there is sufficient free space,
 * unless there's insufficient slop space in the pool (see the comment
 * above spa_slop_shift in spa_misc.c).
 *
 * If it is not a "netfree" transaction, then if the data already on disk
 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
 * ENOSPC.  Otherwise, if the current rough estimate of pending changes,
 * plus the rough estimate of this transaction's changes, may exceed the
 * allowed usage, then this will fail with ERESTART, which will cause the
 * caller to wait for the pending changes to be written to disk (by waiting
 * for the next TXG to open), and then check the space usage again.
 *
 * The rough estimate of pending changes is comprised of the sum of:
 *
 *  - this transaction's holds' txh_space_towrite
 *
 *  - dd_tempreserved[], which is the sum of in-flight transactions'
 *    holds' txh_space_towrite (i.e. those transactions that have called
 *    dmu_tx_assign() but not yet called dmu_tx_commit()).
 *
 *  - dd_space_towrite[], which is the amount of dirtied dbufs.
 *
 * Note that all of these values are inflated by spa_get_worst_case_asize(),
 * which means that we may get ERESTART well before we are actually in danger
 * of running out of space, but this also mitigates any small inaccuracies
 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
 * to the MOS).
 *
 * Note that due to this algorithm, it is possible to exceed the allowed
 * usage by one transaction.  Also, as we approach the allowed usage,
 * we will allow a very limited amount of changes into each TXG, thus
 * decreasing performance.
 */
static int
dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
{
	spa_t *spa = tx->tx_pool->dp_spa;

	ASSERT0(tx->tx_txg);

	if (tx->tx_err)
		return (tx->tx_err);

	if (spa_suspended(spa)) {
		/*
		 * If the user has indicated a blocking failure mode
		 * then return ERESTART which will block in dmu_tx_wait().
		 * Otherwise, return EIO so that an error can get
		 * propagated back to the VOP calls.
		 *
		 * Note that we always honor the txg_how flag regardless
		 * of the failuremode setting.
		 */
		if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
		    !(txg_how & TXG_WAIT))
			return (SET_ERROR(EIO));

		return (SET_ERROR(ERESTART));
	}

	if (!tx->tx_dirty_delayed &&
	    dsl_pool_need_dirty_delay(tx->tx_pool)) {
		tx->tx_wait_dirty = B_TRUE;
		return (SET_ERROR(ERESTART));
	}

	tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
	tx->tx_needassign_txh = NULL;

	/*
	 * NB: No error returns are allowed after txg_hold_open, but
	 * before processing the dnode holds, due to the
	 * dmu_tx_unassign() logic.
	 */

	uint64_t towrite = 0;
	uint64_t tohold = 0;
	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
	    txh = list_next(&tx->tx_holds, txh)) {
		dnode_t *dn = txh->txh_dnode;
		if (dn != NULL) {
			mutex_enter(&dn->dn_mtx);
			if (dn->dn_assigned_txg == tx->tx_txg - 1) {
				mutex_exit(&dn->dn_mtx);
				tx->tx_needassign_txh = txh;
				return (SET_ERROR(ERESTART));
			}
			if (dn->dn_assigned_txg == 0)
				dn->dn_assigned_txg = tx->tx_txg;
			ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
			(void) refcount_add(&dn->dn_tx_holds, tx);
			mutex_exit(&dn->dn_mtx);
		}
		towrite += refcount_count(&txh->txh_space_towrite);
		tohold += refcount_count(&txh->txh_memory_tohold);
	}

	/* needed allocation: worst-case estimate of write space */
	uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
	/* calculate memory footprint estimate */
	uint64_t memory = towrite + tohold;

	if (tx->tx_dir != NULL && asize != 0) {
		int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
		    asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
		if (err != 0)
			return (err);
	}

	return (0);
}

static void
dmu_tx_unassign(dmu_tx_t *tx)
{
	if (tx->tx_txg == 0)
		return;

	txg_rele_to_quiesce(&tx->tx_txgh);

	/*
	 * Walk the transaction's hold list, removing the hold on the
	 * associated dnode, and notifying waiters if the refcount drops to 0.
	 */
	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
	    txh != tx->tx_needassign_txh;
	    txh = list_next(&tx->tx_holds, txh)) {
		dnode_t *dn = txh->txh_dnode;

		if (dn == NULL)
			continue;
		mutex_enter(&dn->dn_mtx);
		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);

		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
			dn->dn_assigned_txg = 0;
			cv_broadcast(&dn->dn_notxholds);
		}
		mutex_exit(&dn->dn_mtx);
	}

	txg_rele_to_sync(&tx->tx_txgh);

	tx->tx_lasttried_txg = tx->tx_txg;
	tx->tx_txg = 0;
}

/*
 * Assign tx to a transaction group; txg_how is a bitmask:
 *
 * If TXG_WAIT is set and the currently open txg is full, this function
 * will wait until there's a new txg. This should be used when no locks
 * are being held. With this bit set, this function will only fail if
 * we're truly out of space (or over quota).
 *
 * If TXG_WAIT is *not* set and we can't assign into the currently open
 * txg without blocking, this function will return immediately with
 * ERESTART. This should be used whenever locks are being held.  On an
 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
 * and try again.
 *
 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
 * details on the throttle). This is used by the VFS operations, after
 * they have already called dmu_tx_wait() (though most likely on a
 * different tx).
 */
int
dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
{
	int err;

	ASSERT(tx->tx_txg == 0);
	ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
	ASSERT(!dsl_pool_sync_context(tx->tx_pool));

	/* If we might wait, we must not hold the config lock. */
	IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));

	if ((txg_how & TXG_NOTHROTTLE))
		tx->tx_dirty_delayed = B_TRUE;

	while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
		dmu_tx_unassign(tx);

		if (err != ERESTART || !(txg_how & TXG_WAIT))
			return (err);

		dmu_tx_wait(tx);
	}

	txg_rele_to_quiesce(&tx->tx_txgh);

	return (0);
}

void
dmu_tx_wait(dmu_tx_t *tx)
{
	spa_t *spa = tx->tx_pool->dp_spa;
	dsl_pool_t *dp = tx->tx_pool;

	ASSERT(tx->tx_txg == 0);
	ASSERT(!dsl_pool_config_held(tx->tx_pool));

	if (tx->tx_wait_dirty) {
		/*
		 * dmu_tx_try_assign() has determined that we need to wait
		 * because we've consumed much or all of the dirty buffer
		 * space.
		 */
		mutex_enter(&dp->dp_lock);
		while (dp->dp_dirty_total >= zfs_dirty_data_max)
			cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
		uint64_t dirty = dp->dp_dirty_total;
		mutex_exit(&dp->dp_lock);

		dmu_tx_delay(tx, dirty);

		tx->tx_wait_dirty = B_FALSE;

		/*
		 * Note: setting tx_dirty_delayed only has effect if the
		 * caller used TX_WAIT.  Otherwise they are going to
		 * destroy this tx and try again.  The common case,
		 * zfs_write(), uses TX_WAIT.
		 */
		tx->tx_dirty_delayed = B_TRUE;
	} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
		/*
		 * If the pool is suspended we need to wait until it
		 * is resumed.  Note that it's possible that the pool
		 * has become active after this thread has tried to
		 * obtain a tx.  If that's the case then tx_lasttried_txg
		 * would not have been set.
		 */
		txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
	} else if (tx->tx_needassign_txh) {
		/*
		 * A dnode is assigned to the quiescing txg.  Wait for its
		 * transaction to complete.
		 */
		dnode_t *dn = tx->tx_needassign_txh->txh_dnode;

		mutex_enter(&dn->dn_mtx);
		while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
			cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
		mutex_exit(&dn->dn_mtx);
		tx->tx_needassign_txh = NULL;
	} else {
		txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
	}
}

static void
dmu_tx_destroy(dmu_tx_t *tx)
{
	dmu_tx_hold_t *txh;

	while ((txh = list_head(&tx->tx_holds)) != NULL) {
		dnode_t *dn = txh->txh_dnode;

		list_remove(&tx->tx_holds, txh);
		refcount_destroy_many(&txh->txh_space_towrite,
		    refcount_count(&txh->txh_space_towrite));
		refcount_destroy_many(&txh->txh_memory_tohold,
		    refcount_count(&txh->txh_memory_tohold));
		kmem_free(txh, sizeof (dmu_tx_hold_t));
		if (dn != NULL)
			dnode_rele(dn, tx);
	}

	list_destroy(&tx->tx_callbacks);
	list_destroy(&tx->tx_holds);
	kmem_free(tx, sizeof (dmu_tx_t));
}

void
dmu_tx_commit(dmu_tx_t *tx)
{
	ASSERT(tx->tx_txg != 0);

	/*
	 * Go through the transaction's hold list and remove holds on
	 * associated dnodes, notifying waiters if no holds remain.
	 */
	for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
	    txh = list_next(&tx->tx_holds, txh)) {
		dnode_t *dn = txh->txh_dnode;

		if (dn == NULL)
			continue;

		mutex_enter(&dn->dn_mtx);
		ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);

		if (refcount_remove(&dn->dn_tx_holds, tx) == 0) {
			dn->dn_assigned_txg = 0;
			cv_broadcast(&dn->dn_notxholds);
		}
		mutex_exit(&dn->dn_mtx);
	}

	if (tx->tx_tempreserve_cookie)
		dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);

	if (!list_is_empty(&tx->tx_callbacks))
		txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);

	if (tx->tx_anyobj == FALSE)
		txg_rele_to_sync(&tx->tx_txgh);

	dmu_tx_destroy(tx);
}

void
dmu_tx_abort(dmu_tx_t *tx)
{
	ASSERT(tx->tx_txg == 0);

	/*
	 * Call any registered callbacks with an error code.
	 */
	if (!list_is_empty(&tx->tx_callbacks))
		dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);

	dmu_tx_destroy(tx);
}

uint64_t
dmu_tx_get_txg(dmu_tx_t *tx)
{
	ASSERT(tx->tx_txg != 0);
	return (tx->tx_txg);
}

dsl_pool_t *
dmu_tx_pool(dmu_tx_t *tx)
{
	ASSERT(tx->tx_pool != NULL);
	return (tx->tx_pool);
}

void
dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
{
	dmu_tx_callback_t *dcb;

	dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);

	dcb->dcb_func = func;
	dcb->dcb_data = data;

	list_insert_tail(&tx->tx_callbacks, dcb);
}

/*
 * Call all the commit callbacks on a list, with a given error code.
 */
void
dmu_tx_do_callbacks(list_t *cb_list, int error)
{
	dmu_tx_callback_t *dcb;

	while ((dcb = list_head(cb_list)) != NULL) {
		list_remove(cb_list, dcb);
		dcb->dcb_func(dcb->dcb_data, error);
		kmem_free(dcb, sizeof (dmu_tx_callback_t));
	}
}

/*
 * Interface to hold a bunch of attributes.
 * used for creating new files.
 * attrsize is the total size of all attributes
 * to be added during object creation
 *
 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
 */

/*
 * hold necessary attribute name for attribute registration.
 * should be a very rare case where this is needed.  If it does
 * happen it would only happen on the first write to the file system.
 */
static void
dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
{
	if (!sa->sa_need_attr_registration)
		return;

	for (int i = 0; i != sa->sa_num_attrs; i++) {
		if (!sa->sa_attr_table[i].sa_registered) {
			if (sa->sa_reg_attr_obj)
				dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
				    B_TRUE, sa->sa_attr_table[i].sa_name);
			else
				dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
				    B_TRUE, sa->sa_attr_table[i].sa_name);
		}
	}
}

void
dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
{
	dmu_tx_hold_t *txh = dmu_tx_hold_object_impl(tx,
	    tx->tx_objset, object, THT_SPILL, 0, 0);

	(void) refcount_add_many(&txh->txh_space_towrite,
	    SPA_OLD_MAXBLOCKSIZE, FTAG);
}

void
dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
{
	sa_os_t *sa = tx->tx_objset->os_sa;

	dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);

	if (tx->tx_objset->os_sa->sa_master_obj == 0)
		return;

	if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
	} else {
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
	}

	dmu_tx_sa_registration_hold(sa, tx);

	if (attrsize <= DN_MAX_BONUSLEN && !sa->sa_force_spill)
		return;

	(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
	    THT_SPILL, 0, 0);
}

/*
 * Hold SA attribute
 *
 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
 *
 * variable_size is the total size of all variable sized attributes
 * passed to this function.  It is not the total size of all
 * variable size attributes that *may* exist on this object.
 */
void
dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
{
	uint64_t object;
	sa_os_t *sa = tx->tx_objset->os_sa;

	ASSERT(hdl != NULL);

	object = sa_handle_object(hdl);

	dmu_tx_hold_bonus(tx, object);

	if (tx->tx_objset->os_sa->sa_master_obj == 0)
		return;

	if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
	    tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
		dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
	}

	dmu_tx_sa_registration_hold(sa, tx);

	if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
		dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);

	if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
		ASSERT(tx->tx_txg == 0);
		dmu_tx_hold_spill(tx, object);
	} else {
		dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
		dnode_t *dn;

		DB_DNODE_ENTER(db);
		dn = DB_DNODE(db);
		if (dn->dn_have_spill) {
			ASSERT(tx->tx_txg == 0);
			dmu_tx_hold_spill(tx, object);
		}
		DB_DNODE_EXIT(db);
	}
}