aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/contrib/opensolaris/uts/common/fs/zfs/range_tree.c
blob: fc705e37964d3428dc32abb861fa7bd50ccb2e9b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */
/*
 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/dnode.h>
#include <sys/zio.h>
#include <sys/range_tree.h>

/*
 * Range trees are tree-based data structures that can be used to
 * track free space or generally any space allocation information.
 * A range tree keeps track of individual segments and automatically
 * provides facilities such as adjacent extent merging and extent
 * splitting in response to range add/remove requests.
 *
 * A range tree starts out completely empty, with no segments in it.
 * Adding an allocation via range_tree_add to the range tree can either:
 * 1) create a new extent
 * 2) extend an adjacent extent
 * 3) merge two adjacent extents
 * Conversely, removing an allocation via range_tree_remove can:
 * 1) completely remove an extent
 * 2) shorten an extent (if the allocation was near one of its ends)
 * 3) split an extent into two extents, in effect punching a hole
 *
 * A range tree is also capable of 'bridging' gaps when adding
 * allocations. This is useful for cases when close proximity of
 * allocations is an important detail that needs to be represented
 * in the range tree. See range_tree_set_gap(). The default behavior
 * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
 *
 * In order to traverse a range tree, use either the range_tree_walk()
 * or range_tree_vacate() functions.
 *
 * To obtain more accurate information on individual segment
 * operations that the range tree performs "under the hood", you can
 * specify a set of callbacks by passing a range_tree_ops_t structure
 * to the range_tree_create function. Any callbacks that are non-NULL
 * are then called at the appropriate times.
 *
 * The range tree code also supports a special variant of range trees
 * that can bridge small gaps between segments. This kind of tree is used
 * by the dsl scanning code to group I/Os into mostly sequential chunks to
 * optimize disk performance. The code here attempts to do this with as
 * little memory and computational overhead as possible. One limitation of
 * this implementation is that segments of range trees with gaps can only
 * support removing complete segments.
 */

kmem_cache_t *range_seg_cache;

/* Generic ops for managing an AVL tree alongside a range tree */
struct range_tree_ops rt_avl_ops = {
	.rtop_create = rt_avl_create,
	.rtop_destroy = rt_avl_destroy,
	.rtop_add = rt_avl_add,
	.rtop_remove = rt_avl_remove,
	.rtop_vacate = rt_avl_vacate,
};

void
range_tree_init(void)
{
	ASSERT(range_seg_cache == NULL);
	range_seg_cache = kmem_cache_create("range_seg_cache",
	    sizeof (range_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
}

void
range_tree_fini(void)
{
	kmem_cache_destroy(range_seg_cache);
	range_seg_cache = NULL;
}

void
range_tree_stat_verify(range_tree_t *rt)
{
	range_seg_t *rs;
	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
	int i;

	for (rs = avl_first(&rt->rt_root); rs != NULL;
	    rs = AVL_NEXT(&rt->rt_root, rs)) {
		uint64_t size = rs->rs_end - rs->rs_start;
		int idx	= highbit64(size) - 1;

		hist[idx]++;
		ASSERT3U(hist[idx], !=, 0);
	}

	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
		if (hist[i] != rt->rt_histogram[i]) {
			zfs_dbgmsg("i=%d, hist=%p, hist=%llu, rt_hist=%llu",
			    i, hist, hist[i], rt->rt_histogram[i]);
		}
		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
	}
}

static void
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
{
	uint64_t size = rs->rs_end - rs->rs_start;
	int idx = highbit64(size) - 1;

	ASSERT(size != 0);
	ASSERT3U(idx, <,
	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));

	rt->rt_histogram[idx]++;
	ASSERT3U(rt->rt_histogram[idx], !=, 0);
}

static void
range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
{
	uint64_t size = rs->rs_end - rs->rs_start;
	int idx = highbit64(size) - 1;

	ASSERT(size != 0);
	ASSERT3U(idx, <,
	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));

	ASSERT3U(rt->rt_histogram[idx], !=, 0);
	rt->rt_histogram[idx]--;
}

/*
 * NOTE: caller is responsible for all locking.
 */
static int
range_tree_seg_compare(const void *x1, const void *x2)
{
	const range_seg_t *r1 = (const range_seg_t *)x1;
	const range_seg_t *r2 = (const range_seg_t *)x2;

	ASSERT3U(r1->rs_start, <=, r1->rs_end);
	ASSERT3U(r2->rs_start, <=, r2->rs_end);

	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
}

range_tree_t *
range_tree_create_impl(range_tree_ops_t *ops, void *arg,
    int (*avl_compare) (const void *, const void *), uint64_t gap)
{
	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);

	avl_create(&rt->rt_root, range_tree_seg_compare,
	    sizeof (range_seg_t), offsetof(range_seg_t, rs_node));

	rt->rt_ops = ops;
	rt->rt_arg = arg;
	rt->rt_gap = gap;
	rt->rt_avl_compare = avl_compare;

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
		rt->rt_ops->rtop_create(rt, rt->rt_arg);

	return (rt);
}

range_tree_t *
range_tree_create(range_tree_ops_t *ops, void *arg)
{
	return (range_tree_create_impl(ops, arg, NULL, 0));
}

void
range_tree_destroy(range_tree_t *rt)
{
	VERIFY0(rt->rt_space);

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);

	avl_destroy(&rt->rt_root);
	kmem_free(rt, sizeof (*rt));
}

void
range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
{
	ASSERT3U(rs->rs_fill + delta, !=, 0);
	ASSERT3U(rs->rs_fill + delta, <=, rs->rs_end - rs->rs_start);

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
	rs->rs_fill += delta;
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
}

static void
range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
{
	range_tree_t *rt = arg;
	avl_index_t where;
	range_seg_t rsearch, *rs_before, *rs_after, *rs;
	uint64_t end = start + size, gap = rt->rt_gap;
	uint64_t bridge_size = 0;
	boolean_t merge_before, merge_after;

	ASSERT3U(size, !=, 0);
	ASSERT3U(fill, <=, size);

	rsearch.rs_start = start;
	rsearch.rs_end = end;
	rs = avl_find(&rt->rt_root, &rsearch, &where);

	if (gap == 0 && rs != NULL &&
	    rs->rs_start <= start && rs->rs_end >= end) {
		zfs_panic_recover("zfs: allocating allocated segment"
		    "(offset=%llu size=%llu) of (offset=%llu size=%llu)\n",
		    (longlong_t)start, (longlong_t)size,
		    (longlong_t)rs->rs_start,
		    (longlong_t)rs->rs_end - rs->rs_start);
		return;
	}

	/*
	 * If this is a gap-supporting range tree, it is possible that we
	 * are inserting into an existing segment. In this case simply
	 * bump the fill count and call the remove / add callbacks. If the
	 * new range will extend an existing segment, we remove the
	 * existing one, apply the new extent to it and re-insert it using
	 * the normal code paths.
	 */
	if (rs != NULL) {
		ASSERT3U(gap, !=, 0);
		if (rs->rs_start <= start && rs->rs_end >= end) {
			range_tree_adjust_fill(rt, rs, fill);
			return;
		}

		avl_remove(&rt->rt_root, rs);
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);

		range_tree_stat_decr(rt, rs);
		rt->rt_space -= rs->rs_end - rs->rs_start;

		fill += rs->rs_fill;
		start = MIN(start, rs->rs_start);
		end = MAX(end, rs->rs_end);
		size = end - start;

		range_tree_add_impl(rt, start, size, fill);

		kmem_cache_free(range_seg_cache, rs);
		return;
	}

	ASSERT3P(rs, ==, NULL);

	/*
	 * Determine whether or not we will have to merge with our neighbors.
	 * If gap != 0, we might need to merge with our neighbors even if we
	 * aren't directly touching.
	 */
	rs_before = avl_nearest(&rt->rt_root, where, AVL_BEFORE);
	rs_after = avl_nearest(&rt->rt_root, where, AVL_AFTER);

	merge_before = (rs_before != NULL && rs_before->rs_end >= start - gap);
	merge_after = (rs_after != NULL && rs_after->rs_start <= end + gap);

	if (merge_before && gap != 0)
		bridge_size += start - rs_before->rs_end;
	if (merge_after && gap != 0)
		bridge_size += rs_after->rs_start - end;

	if (merge_before && merge_after) {
		avl_remove(&rt->rt_root, rs_before);
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
		}

		range_tree_stat_decr(rt, rs_before);
		range_tree_stat_decr(rt, rs_after);

		rs_after->rs_fill += rs_before->rs_fill + fill;
		rs_after->rs_start = rs_before->rs_start;
		kmem_cache_free(range_seg_cache, rs_before);
		rs = rs_after;
	} else if (merge_before) {
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);

		range_tree_stat_decr(rt, rs_before);

		rs_before->rs_fill += fill;
		rs_before->rs_end = end;
		rs = rs_before;
	} else if (merge_after) {
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);

		range_tree_stat_decr(rt, rs_after);

		rs_after->rs_fill += fill;
		rs_after->rs_start = start;
		rs = rs_after;
	} else {
		rs = kmem_cache_alloc(range_seg_cache, KM_SLEEP);

		rs->rs_fill = fill;
		rs->rs_start = start;
		rs->rs_end = end;
		avl_insert(&rt->rt_root, rs, where);
	}

	if (gap != 0)
		ASSERT3U(rs->rs_fill, <=, rs->rs_end - rs->rs_start);
	else
		ASSERT3U(rs->rs_fill, ==, rs->rs_end - rs->rs_start);

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);

	range_tree_stat_incr(rt, rs);
	rt->rt_space += size + bridge_size;
}

void
range_tree_add(void *arg, uint64_t start, uint64_t size)
{
	range_tree_add_impl(arg, start, size, size);
}

static void
range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
    boolean_t do_fill)
{
	avl_index_t where;
	range_seg_t rsearch, *rs, *newseg;
	uint64_t end = start + size;
	boolean_t left_over, right_over;

	VERIFY3U(size, !=, 0);
	VERIFY3U(size, <=, rt->rt_space);

	rsearch.rs_start = start;
	rsearch.rs_end = end;
	rs = avl_find(&rt->rt_root, &rsearch, &where);

	/* Make sure we completely overlap with someone */
	if (rs == NULL) {
		zfs_panic_recover("zfs: freeing free segment "
		    "(offset=%llu size=%llu)",
		    (longlong_t)start, (longlong_t)size);
		return;
	}

	/*
	 * Range trees with gap support must only remove complete segments
	 * from the tree. This allows us to maintain accurate fill accounting
	 * and to ensure that bridged sections are not leaked. If we need to
	 * remove less than the full segment, we can only adjust the fill count.
	 */
	if (rt->rt_gap != 0) {
		if (do_fill) {
			if (rs->rs_fill == size) {
				start = rs->rs_start;
				end = rs->rs_end;
				size = end - start;
			} else {
				range_tree_adjust_fill(rt, rs, -size);
				return;
			}
		} else if (rs->rs_start != start || rs->rs_end != end) {
			zfs_panic_recover("zfs: freeing partial segment of "
			    "gap tree (offset=%llu size=%llu) of "
			    "(offset=%llu size=%llu)",
			    (longlong_t)start, (longlong_t)size,
			    (longlong_t)rs->rs_start,
			    (longlong_t)rs->rs_end - rs->rs_start);
			return;
		}
	}

	VERIFY3U(rs->rs_start, <=, start);
	VERIFY3U(rs->rs_end, >=, end);

	left_over = (rs->rs_start != start);
	right_over = (rs->rs_end != end);

	range_tree_stat_decr(rt, rs);

	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);

	if (left_over && right_over) {
		newseg = kmem_cache_alloc(range_seg_cache, KM_SLEEP);
		newseg->rs_start = end;
		newseg->rs_end = rs->rs_end;
		newseg->rs_fill = newseg->rs_end - newseg->rs_start;
		range_tree_stat_incr(rt, newseg);

		rs->rs_end = start;

		avl_insert_here(&rt->rt_root, newseg, rs, AVL_AFTER);
		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
			rt->rt_ops->rtop_add(rt, newseg, rt->rt_arg);
	} else if (left_over) {
		rs->rs_end = start;
	} else if (right_over) {
		rs->rs_start = end;
	} else {
		avl_remove(&rt->rt_root, rs);
		kmem_cache_free(range_seg_cache, rs);
		rs = NULL;
	}

	if (rs != NULL) {
		/*
		 * The fill of the leftover segment will always be equal to
		 * the size, since we do not support removing partial segments
		 * of range trees with gaps.
		 */
		rs->rs_fill = rs->rs_end - rs->rs_start;
		range_tree_stat_incr(rt, rs);

		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
			rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
	}

	rt->rt_space -= size;
}

void
range_tree_remove(void *arg, uint64_t start, uint64_t size)
{
	range_tree_remove_impl(arg, start, size, B_FALSE);
}

void
range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_tree_remove_impl(rt, start, size, B_TRUE);
}

void
range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
    uint64_t newstart, uint64_t newsize)
{
	int64_t delta = newsize - (rs->rs_end - rs->rs_start);

	range_tree_stat_decr(rt, rs);
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);

	rs->rs_start = newstart;
	rs->rs_end = newstart + newsize;

	range_tree_stat_incr(rt, rs);
	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);

	rt->rt_space += delta;
}

static range_seg_t *
range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_seg_t rsearch;
	uint64_t end = start + size;

	VERIFY(size != 0);

	rsearch.rs_start = start;
	rsearch.rs_end = end;
	return (avl_find(&rt->rt_root, &rsearch, NULL));
}

range_seg_t *
range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_seg_t *rs = range_tree_find_impl(rt, start, size);
	if (rs != NULL && rs->rs_start <= start && rs->rs_end >= start + size)
		return (rs);
	return (NULL);
}

void
range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
{
	range_seg_t *rs = range_tree_find(rt, off, size);
	if (rs != NULL)
		panic("segment already in tree; rs=%p", (void *)rs);
}

boolean_t
range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
{
	return (range_tree_find(rt, start, size) != NULL);
}

/*
 * Ensure that this range is not in the tree, regardless of whether
 * it is currently in the tree.
 */
void
range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
{
	range_seg_t *rs;

	if (size == 0)
		return;

	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
		uint64_t free_start = MAX(rs->rs_start, start);
		uint64_t free_end = MIN(rs->rs_end, start + size);
		range_tree_remove(rt, free_start, free_end - free_start);
	}
}

void
range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
{
	range_tree_t *rt;

	ASSERT0(range_tree_space(*rtdst));
	ASSERT0(avl_numnodes(&(*rtdst)->rt_root));

	rt = *rtsrc;
	*rtsrc = *rtdst;
	*rtdst = rt;
}

void
range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
	range_seg_t *rs;
	void *cookie = NULL;


	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);

	while ((rs = avl_destroy_nodes(&rt->rt_root, &cookie)) != NULL) {
		if (func != NULL)
			func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
		kmem_cache_free(range_seg_cache, rs);
	}

	bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
	rt->rt_space = 0;
}

void
range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
	range_seg_t *rs;

	for (rs = avl_first(&rt->rt_root); rs; rs = AVL_NEXT(&rt->rt_root, rs))
		func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
}

range_seg_t *
range_tree_first(range_tree_t *rt)
{
	return (avl_first(&rt->rt_root));
}

uint64_t
range_tree_space(range_tree_t *rt)
{
	return (rt->rt_space);
}

/* Generic range tree functions for maintaining segments in an AVL tree. */
void
rt_avl_create(range_tree_t *rt, void *arg)
{
	avl_tree_t *tree = arg;

	avl_create(tree, rt->rt_avl_compare, sizeof (range_seg_t),
	    offsetof(range_seg_t, rs_pp_node));
}

void
rt_avl_destroy(range_tree_t *rt, void *arg)
{
	avl_tree_t *tree = arg;

	ASSERT0(avl_numnodes(tree));
	avl_destroy(tree);
}

void
rt_avl_add(range_tree_t *rt, range_seg_t *rs, void *arg)
{
	avl_tree_t *tree = arg;
	avl_add(tree, rs);
}

void
rt_avl_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
{
	avl_tree_t *tree = arg;
	avl_remove(tree, rs);
}

void
rt_avl_vacate(range_tree_t *rt, void *arg)
{
	/*
	 * Normally one would walk the tree freeing nodes along the way.
	 * Since the nodes are shared with the range trees we can avoid
	 * walking all nodes and just reinitialize the avl tree. The nodes
	 * will be freed by the range tree, so we don't want to free them here.
	 */
	rt_avl_create(rt, arg);
}

boolean_t
range_tree_is_empty(range_tree_t *rt)
{
	ASSERT(rt != NULL);
	return (range_tree_space(rt) == 0);
}

uint64_t
range_tree_min(range_tree_t *rt)
{
	range_seg_t *rs = avl_first(&rt->rt_root);
	return (rs != NULL ? rs->rs_start : 0);
}

uint64_t
range_tree_max(range_tree_t *rt)
{
	range_seg_t *rs = avl_last(&rt->rt_root);
	return (rs != NULL ? rs->rs_end : 0);
}

uint64_t
range_tree_span(range_tree_t *rt)
{
	return (range_tree_max(rt) - range_tree_min(rt));
}