aboutsummaryrefslogtreecommitdiff
path: root/sys/cddl/dev/fbt/fbt.c
blob: f3ddc83e114043df6571a2244527628de88aa7a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 *
 * Portions Copyright 2006-2008 John Birrell jb@freebsd.org
 *
 * $FreeBSD$
 *
 */

/*
 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/cpuvar.h>
#include <sys/fcntl.h>
#include <sys/filio.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/selinfo.h>
#include <sys/smp.h>
#include <sys/syscall.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/uio.h>
#include <sys/unistd.h>
#include <machine/stdarg.h>

#include <sys/dtrace.h>
#include <sys/dtrace_bsd.h>

MALLOC_DEFINE(M_FBT, "fbt", "Function Boundary Tracing");

#define	FBT_PUSHL_EBP		0x55
#define	FBT_MOVL_ESP_EBP0_V0	0x8b
#define	FBT_MOVL_ESP_EBP1_V0	0xec
#define	FBT_MOVL_ESP_EBP0_V1	0x89
#define	FBT_MOVL_ESP_EBP1_V1	0xe5
#define	FBT_REX_RSP_RBP		0x48

#define	FBT_POPL_EBP		0x5d
#define	FBT_RET			0xc3
#define	FBT_RET_IMM16		0xc2
#define	FBT_LEAVE		0xc9

#ifdef __amd64__
#define	FBT_PATCHVAL		0xcc
#else
#define	FBT_PATCHVAL		0xf0
#endif

static d_open_t	fbt_open;
static int	fbt_unload(void);
static void	fbt_getargdesc(void *, dtrace_id_t, void *, dtrace_argdesc_t *);
static void	fbt_provide_module(void *, modctl_t *);
static void	fbt_destroy(void *, dtrace_id_t, void *);
static void	fbt_enable(void *, dtrace_id_t, void *);
static void	fbt_disable(void *, dtrace_id_t, void *);
static void	fbt_load(void *);
static void	fbt_suspend(void *, dtrace_id_t, void *);
static void	fbt_resume(void *, dtrace_id_t, void *);

#define	FBT_ENTRY	"entry"
#define	FBT_RETURN	"return"
#define	FBT_ADDR2NDX(addr)	((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask)
#define	FBT_PROBETAB_SIZE	0x8000		/* 32k entries -- 128K total */

static struct cdevsw fbt_cdevsw = {
	.d_version	= D_VERSION,
	.d_open		= fbt_open,
	.d_name		= "fbt",
};

static dtrace_pattr_t fbt_attr = {
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
};

static dtrace_pops_t fbt_pops = {
	NULL,
	fbt_provide_module,
	fbt_enable,
	fbt_disable,
	fbt_suspend,
	fbt_resume,
	fbt_getargdesc,
	NULL,
	NULL,
	fbt_destroy
};

typedef struct fbt_probe {
	struct fbt_probe *fbtp_hashnext;
	uint8_t		*fbtp_patchpoint;
	int8_t		fbtp_rval;
	uint8_t		fbtp_patchval;
	uint8_t		fbtp_savedval;
	uintptr_t	fbtp_roffset;
	dtrace_id_t	fbtp_id;
	const char	*fbtp_name;
	modctl_t	*fbtp_ctl;
	int		fbtp_loadcnt;
	int		fbtp_primary;
	int		fbtp_invop_cnt;
	int		fbtp_symindx;
	struct fbt_probe *fbtp_next;
} fbt_probe_t;

static struct cdev		*fbt_cdev;
static dtrace_provider_id_t	fbt_id;
static fbt_probe_t		**fbt_probetab;
static int			fbt_probetab_size;
static int			fbt_probetab_mask;
static int			fbt_verbose = 0;

static void
fbt_doubletrap(void)
{
	fbt_probe_t *fbt;
	int i;

	for (i = 0; i < fbt_probetab_size; i++) {
		fbt = fbt_probetab[i];

		for (; fbt != NULL; fbt = fbt->fbtp_next)
			*fbt->fbtp_patchpoint = fbt->fbtp_savedval;
	}
}

static int
fbt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t rval)
{
	solaris_cpu_t *cpu = &solaris_cpu[curcpu];
	uintptr_t stack0, stack1, stack2, stack3, stack4;
	fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)];

	for (; fbt != NULL; fbt = fbt->fbtp_hashnext) {
		if ((uintptr_t)fbt->fbtp_patchpoint == addr) {
			fbt->fbtp_invop_cnt++;
			if (fbt->fbtp_roffset == 0) {
				int i = 0;
				/*
				 * When accessing the arguments on the stack,
				 * we must protect against accessing beyond
				 * the stack.  We can safely set NOFAULT here
				 * -- we know that interrupts are already
				 * disabled.
				 */
				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
				cpu->cpu_dtrace_caller = stack[i++];
				stack0 = stack[i++];
				stack1 = stack[i++];
				stack2 = stack[i++];
				stack3 = stack[i++];
				stack4 = stack[i++];
				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT |
				    CPU_DTRACE_BADADDR);

				dtrace_probe(fbt->fbtp_id, stack0, stack1,
				    stack2, stack3, stack4);

				cpu->cpu_dtrace_caller = 0;
			} else {
#ifdef __amd64__
				/*
				 * On amd64, we instrument the ret, not the
				 * leave.  We therefore need to set the caller
				 * to assure that the top frame of a stack()
				 * action is correct.
				 */
				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
				cpu->cpu_dtrace_caller = stack[0];
				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT |
				    CPU_DTRACE_BADADDR);
#endif

				dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset,
				    rval, 0, 0, 0);
				cpu->cpu_dtrace_caller = 0;
			}

			return (fbt->fbtp_rval);
		}
	}

	return (0);
}

static int
fbt_provide_module_function(linker_file_t lf, int symindx,
    linker_symval_t *symval, void *opaque)
{
	char *modname = opaque;
	const char *name = symval->name;
	fbt_probe_t *fbt, *retfbt;
	int j;
	int size;
	u_int8_t *instr, *limit;

	if (strncmp(name, "dtrace_", 7) == 0 &&
	    strncmp(name, "dtrace_safe_", 12) != 0) {
		/*
		 * Anything beginning with "dtrace_" may be called
		 * from probe context unless it explicitly indicates
		 * that it won't be called from probe context by
		 * using the prefix "dtrace_safe_".
		 */
		return (0);
	}

	if (name[0] == '_' && name[1] == '_')
		return (0);

	size = symval->size;

	instr = (u_int8_t *) symval->value;
	limit = (u_int8_t *) symval->value + symval->size;

#ifdef __amd64__
	while (instr < limit) {
		if (*instr == FBT_PUSHL_EBP)
			break;

		if ((size = dtrace_instr_size(instr)) <= 0)
			break;

		instr += size;
	}

	if (instr >= limit || *instr != FBT_PUSHL_EBP) {
		/*
		 * We either don't save the frame pointer in this
		 * function, or we ran into some disassembly
		 * screw-up.  Either way, we bail.
		 */
		return (0);
	}
#else
	if (instr[0] != FBT_PUSHL_EBP)
		return (0);

	if (!(instr[1] == FBT_MOVL_ESP_EBP0_V0 &&
	    instr[2] == FBT_MOVL_ESP_EBP1_V0) &&
	    !(instr[1] == FBT_MOVL_ESP_EBP0_V1 &&
	    instr[2] == FBT_MOVL_ESP_EBP1_V1))
		return (0);
#endif

	fbt = malloc(sizeof (fbt_probe_t), M_FBT, M_WAITOK | M_ZERO);
	fbt->fbtp_name = name;
	fbt->fbtp_id = dtrace_probe_create(fbt_id, modname,
	    name, FBT_ENTRY, 3, fbt);
	fbt->fbtp_patchpoint = instr;
	fbt->fbtp_ctl = lf;
	fbt->fbtp_loadcnt = lf->loadcnt;
	fbt->fbtp_rval = DTRACE_INVOP_PUSHL_EBP;
	fbt->fbtp_savedval = *instr;
	fbt->fbtp_patchval = FBT_PATCHVAL;
	fbt->fbtp_symindx = symindx;

	fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)];
	fbt_probetab[FBT_ADDR2NDX(instr)] = fbt;

	lf->fbt_nentries++;

	retfbt = NULL;
again:
	if (instr >= limit)
		return (0);

	/*
	 * If this disassembly fails, then we've likely walked off into
	 * a jump table or some other unsuitable area.  Bail out of the
	 * disassembly now.
	 */
	if ((size = dtrace_instr_size(instr)) <= 0)
		return (0);

#ifdef __amd64__
	/*
	 * We only instrument "ret" on amd64 -- we don't yet instrument
	 * ret imm16, largely because the compiler doesn't seem to
	 * (yet) emit them in the kernel...
	 */
	if (*instr != FBT_RET) {
		instr += size;
		goto again;
	}
#else
	if (!(size == 1 &&
	    (*instr == FBT_POPL_EBP || *instr == FBT_LEAVE) &&
	    (*(instr + 1) == FBT_RET ||
	    *(instr + 1) == FBT_RET_IMM16))) {
		instr += size;
		goto again;
	}
#endif

	/*
	 * We (desperately) want to avoid erroneously instrumenting a
	 * jump table, especially given that our markers are pretty
	 * short:  two bytes on x86, and just one byte on amd64.  To
	 * determine if we're looking at a true instruction sequence
	 * or an inline jump table that happens to contain the same
	 * byte sequences, we resort to some heuristic sleeze:  we
	 * treat this instruction as being contained within a pointer,
	 * and see if that pointer points to within the body of the
	 * function.  If it does, we refuse to instrument it.
	 */
	for (j = 0; j < sizeof (uintptr_t); j++) {
		caddr_t check = (caddr_t) instr - j;
		uint8_t *ptr;

		if (check < symval->value)
			break;

		if (check + sizeof (caddr_t) > (caddr_t)limit)
			continue;

		ptr = *(uint8_t **)check;

		if (ptr >= (uint8_t *) symval->value && ptr < limit) {
			instr += size;
			goto again;
		}
	}

	/*
	 * We have a winner!
	 */
	fbt = malloc(sizeof (fbt_probe_t), M_FBT, M_WAITOK | M_ZERO);
	fbt->fbtp_name = name;

	if (retfbt == NULL) {
		fbt->fbtp_id = dtrace_probe_create(fbt_id, modname,
		    name, FBT_RETURN, 3, fbt);
	} else {
		retfbt->fbtp_next = fbt;
		fbt->fbtp_id = retfbt->fbtp_id;
	}

	retfbt = fbt;
	fbt->fbtp_patchpoint = instr;
	fbt->fbtp_ctl = lf;
	fbt->fbtp_loadcnt = lf->loadcnt;
	fbt->fbtp_symindx = symindx;

#ifndef __amd64__
	if (*instr == FBT_POPL_EBP) {
		fbt->fbtp_rval = DTRACE_INVOP_POPL_EBP;
	} else {
		ASSERT(*instr == FBT_LEAVE);
		fbt->fbtp_rval = DTRACE_INVOP_LEAVE;
	}
	fbt->fbtp_roffset =
	    (uintptr_t)(instr - (uint8_t *) symval->value) + 1;

#else
	ASSERT(*instr == FBT_RET);
	fbt->fbtp_rval = DTRACE_INVOP_RET;
	fbt->fbtp_roffset =
	    (uintptr_t)(instr - (uint8_t *) symval->value);
#endif

	fbt->fbtp_savedval = *instr;
	fbt->fbtp_patchval = FBT_PATCHVAL;
	fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)];
	fbt_probetab[FBT_ADDR2NDX(instr)] = fbt;

	lf->fbt_nentries++;

	instr += size;
	goto again;
}

static void
fbt_provide_module(void *arg, modctl_t *lf)
{
	char modname[MAXPATHLEN];
	int i;
	size_t len;

	strlcpy(modname, lf->filename, sizeof(modname));
	len = strlen(modname);
	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
		modname[len - 3] = '\0';

	/*
	 * Employees of dtrace and their families are ineligible.  Void
	 * where prohibited.
	 */
	if (strcmp(modname, "dtrace") == 0)
		return;

	/*
	 * The cyclic timer subsystem can be built as a module and DTrace
	 * depends on that, so it is ineligible too.
	 */
	if (strcmp(modname, "cyclic") == 0)
		return;

	/*
	 * To register with DTrace, a module must list 'dtrace' as a
	 * dependency in order for the kernel linker to resolve
	 * symbols like dtrace_register(). All modules with such a
	 * dependency are ineligible for FBT tracing.
	 */
	for (i = 0; i < lf->ndeps; i++)
		if (strncmp(lf->deps[i]->filename, "dtrace", 6) == 0)
			return;

	if (lf->fbt_nentries) {
		/*
		 * This module has some FBT entries allocated; we're afraid
		 * to screw with it.
		 */
		return;
	}

	/*
	 * List the functions in the module and the symbol values.
	 */
	(void) linker_file_function_listall(lf, fbt_provide_module_function, modname);
}

static void
fbt_destroy(void *arg, dtrace_id_t id, void *parg)
{
	fbt_probe_t *fbt = parg, *next, *hash, *last;
	modctl_t *ctl;
	int ndx;

	do {
		ctl = fbt->fbtp_ctl;

		ctl->fbt_nentries--;

		/*
		 * Now we need to remove this probe from the fbt_probetab.
		 */
		ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint);
		last = NULL;
		hash = fbt_probetab[ndx];

		while (hash != fbt) {
			ASSERT(hash != NULL);
			last = hash;
			hash = hash->fbtp_hashnext;
		}

		if (last != NULL) {
			last->fbtp_hashnext = fbt->fbtp_hashnext;
		} else {
			fbt_probetab[ndx] = fbt->fbtp_hashnext;
		}

		next = fbt->fbtp_next;
		free(fbt, M_FBT);

		fbt = next;
	} while (fbt != NULL);
}

static void
fbt_enable(void *arg, dtrace_id_t id, void *parg)
{
	fbt_probe_t *fbt = parg;
	modctl_t *ctl = fbt->fbtp_ctl;

	ctl->nenabled++;

	/*
	 * Now check that our modctl has the expected load count.  If it
	 * doesn't, this module must have been unloaded and reloaded -- and
	 * we're not going to touch it.
	 */
	if (ctl->loadcnt != fbt->fbtp_loadcnt) {
		if (fbt_verbose) {
			printf("fbt is failing for probe %s "
			    "(module %s reloaded)",
			    fbt->fbtp_name, ctl->filename);
		}

		return;
	}

	for (; fbt != NULL; fbt = fbt->fbtp_next) {
		*fbt->fbtp_patchpoint = fbt->fbtp_patchval;
	}
}

static void
fbt_disable(void *arg, dtrace_id_t id, void *parg)
{
	fbt_probe_t *fbt = parg;
	modctl_t *ctl = fbt->fbtp_ctl;

	ASSERT(ctl->nenabled > 0);
	ctl->nenabled--;

	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
		return;

	for (; fbt != NULL; fbt = fbt->fbtp_next)
		*fbt->fbtp_patchpoint = fbt->fbtp_savedval;
}

static void
fbt_suspend(void *arg, dtrace_id_t id, void *parg)
{
	fbt_probe_t *fbt = parg;
	modctl_t *ctl = fbt->fbtp_ctl;

	ASSERT(ctl->nenabled > 0);

	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
		return;

	for (; fbt != NULL; fbt = fbt->fbtp_next)
		*fbt->fbtp_patchpoint = fbt->fbtp_savedval;
}

static void
fbt_resume(void *arg, dtrace_id_t id, void *parg)
{
	fbt_probe_t *fbt = parg;
	modctl_t *ctl = fbt->fbtp_ctl;

	ASSERT(ctl->nenabled > 0);

	if ((ctl->loadcnt != fbt->fbtp_loadcnt))
		return;

	for (; fbt != NULL; fbt = fbt->fbtp_next)
		*fbt->fbtp_patchpoint = fbt->fbtp_patchval;
}

static int
fbt_ctfoff_init(modctl_t *lf, linker_ctf_t *lc)
{
	const Elf_Sym *symp = lc->symtab;;
	const char *name;
	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
	const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t);
	int i;
	uint32_t *ctfoff;
	uint32_t objtoff = hp->cth_objtoff;
	uint32_t funcoff = hp->cth_funcoff;
	ushort_t info;
	ushort_t vlen;

	/* Sanity check. */
	if (hp->cth_magic != CTF_MAGIC) {
		printf("Bad magic value in CTF data of '%s'\n",lf->pathname);
		return (EINVAL);
	}

	if (lc->symtab == NULL) {
		printf("No symbol table in '%s'\n",lf->pathname);
		return (EINVAL);
	}

	if ((ctfoff = malloc(sizeof(uint32_t) * lc->nsym, M_LINKER, M_WAITOK)) == NULL)
		return (ENOMEM);

	*lc->ctfoffp = ctfoff;

	for (i = 0; i < lc->nsym; i++, ctfoff++, symp++) {
		if (symp->st_name == 0 || symp->st_shndx == SHN_UNDEF) {
			*ctfoff = 0xffffffff;
			continue;
		}

		if (symp->st_name < lc->strcnt)
			name = lc->strtab + symp->st_name;
		else
			name = "(?)";

		switch (ELF_ST_TYPE(symp->st_info)) {
		case STT_OBJECT:
			if (objtoff >= hp->cth_funcoff ||
                            (symp->st_shndx == SHN_ABS && symp->st_value == 0)) {
				*ctfoff = 0xffffffff;
                                break;
                        }

                        *ctfoff = objtoff;
                        objtoff += sizeof (ushort_t);
			break;

		case STT_FUNC:
			if (funcoff >= hp->cth_typeoff) {
				*ctfoff = 0xffffffff;
				break;
			}

			*ctfoff = funcoff;

			info = *((const ushort_t *)(ctfdata + funcoff));
			vlen = CTF_INFO_VLEN(info);

			/*
			 * If we encounter a zero pad at the end, just skip it.
			 * Otherwise skip over the function and its return type
			 * (+2) and the argument list (vlen).
			 */
			if (CTF_INFO_KIND(info) == CTF_K_UNKNOWN && vlen == 0)
				funcoff += sizeof (ushort_t); /* skip pad */
			else
				funcoff += sizeof (ushort_t) * (vlen + 2);
			break;

		default:
			*ctfoff = 0xffffffff;
			break;
		}
	}

	return (0);
}

static ssize_t
fbt_get_ctt_size(uint8_t version, const ctf_type_t *tp, ssize_t *sizep,
    ssize_t *incrementp)
{
	ssize_t size, increment;

	if (version > CTF_VERSION_1 &&
	    tp->ctt_size == CTF_LSIZE_SENT) {
		size = CTF_TYPE_LSIZE(tp);
		increment = sizeof (ctf_type_t);
	} else {
		size = tp->ctt_size;
		increment = sizeof (ctf_stype_t);
	}

	if (sizep)
		*sizep = size;
	if (incrementp)
		*incrementp = increment;

	return (size);
}

static int
fbt_typoff_init(linker_ctf_t *lc)
{
	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
	const ctf_type_t *tbuf;
	const ctf_type_t *tend;
	const ctf_type_t *tp;
	const uint8_t *ctfdata = lc->ctftab + sizeof(ctf_header_t);
	int ctf_typemax = 0;
	uint32_t *xp;
	ulong_t pop[CTF_K_MAX + 1] = { 0 };


	/* Sanity check. */
	if (hp->cth_magic != CTF_MAGIC)
		return (EINVAL);

	tbuf = (const ctf_type_t *) (ctfdata + hp->cth_typeoff);
	tend = (const ctf_type_t *) (ctfdata + hp->cth_stroff);

	int child = hp->cth_parname != 0;

	/*
	 * We make two passes through the entire type section.  In this first
	 * pass, we count the number of each type and the total number of types.
	 */
	for (tp = tbuf; tp < tend; ctf_typemax++) {
		ushort_t kind = CTF_INFO_KIND(tp->ctt_info);
		ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info);
		ssize_t size, increment;

		size_t vbytes;
		uint_t n;

		(void) fbt_get_ctt_size(hp->cth_version, tp, &size, &increment);

		switch (kind) {
		case CTF_K_INTEGER:
		case CTF_K_FLOAT:
			vbytes = sizeof (uint_t);
			break;
		case CTF_K_ARRAY:
			vbytes = sizeof (ctf_array_t);
			break;
		case CTF_K_FUNCTION:
			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
			break;
		case CTF_K_STRUCT:
		case CTF_K_UNION:
			if (size < CTF_LSTRUCT_THRESH) {
				ctf_member_t *mp = (ctf_member_t *)
				    ((uintptr_t)tp + increment);

				vbytes = sizeof (ctf_member_t) * vlen;
				for (n = vlen; n != 0; n--, mp++)
					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
			} else {
				ctf_lmember_t *lmp = (ctf_lmember_t *)
				    ((uintptr_t)tp + increment);

				vbytes = sizeof (ctf_lmember_t) * vlen;
				for (n = vlen; n != 0; n--, lmp++)
					child |=
					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
			}
			break;
		case CTF_K_ENUM:
			vbytes = sizeof (ctf_enum_t) * vlen;
			break;
		case CTF_K_FORWARD:
			/*
			 * For forward declarations, ctt_type is the CTF_K_*
			 * kind for the tag, so bump that population count too.
			 * If ctt_type is unknown, treat the tag as a struct.
			 */
			if (tp->ctt_type == CTF_K_UNKNOWN ||
			    tp->ctt_type >= CTF_K_MAX)
				pop[CTF_K_STRUCT]++;
			else
				pop[tp->ctt_type]++;
			/*FALLTHRU*/
		case CTF_K_UNKNOWN:
			vbytes = 0;
			break;
		case CTF_K_POINTER:
		case CTF_K_TYPEDEF:
		case CTF_K_VOLATILE:
		case CTF_K_CONST:
		case CTF_K_RESTRICT:
			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
			vbytes = 0;
			break;
		default:
			printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind);
			return (EIO);
		}
		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
		pop[kind]++;
	}

	*lc->typlenp = ctf_typemax;

	if ((xp = malloc(sizeof(uint32_t) * ctf_typemax, M_LINKER, M_ZERO | M_WAITOK)) == NULL)
		return (ENOMEM);

	*lc->typoffp = xp;

	/* type id 0 is used as a sentinel value */
	*xp++ = 0;

	/*
	 * In the second pass, fill in the type offset.
	 */
	for (tp = tbuf; tp < tend; xp++) {
		ushort_t kind = CTF_INFO_KIND(tp->ctt_info);
		ulong_t vlen = CTF_INFO_VLEN(tp->ctt_info);
		ssize_t size, increment;

		size_t vbytes;
		uint_t n;

		(void) fbt_get_ctt_size(hp->cth_version, tp, &size, &increment);

		switch (kind) {
		case CTF_K_INTEGER:
		case CTF_K_FLOAT:
			vbytes = sizeof (uint_t);
			break;
		case CTF_K_ARRAY:
			vbytes = sizeof (ctf_array_t);
			break;
		case CTF_K_FUNCTION:
			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
			break;
		case CTF_K_STRUCT:
		case CTF_K_UNION:
			if (size < CTF_LSTRUCT_THRESH) {
				ctf_member_t *mp = (ctf_member_t *)
				    ((uintptr_t)tp + increment);

				vbytes = sizeof (ctf_member_t) * vlen;
				for (n = vlen; n != 0; n--, mp++)
					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
			} else {
				ctf_lmember_t *lmp = (ctf_lmember_t *)
				    ((uintptr_t)tp + increment);

				vbytes = sizeof (ctf_lmember_t) * vlen;
				for (n = vlen; n != 0; n--, lmp++)
					child |=
					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
			}
			break;
		case CTF_K_ENUM:
			vbytes = sizeof (ctf_enum_t) * vlen;
			break;
		case CTF_K_FORWARD:
		case CTF_K_UNKNOWN:
			vbytes = 0;
			break;
		case CTF_K_POINTER:
		case CTF_K_TYPEDEF:
		case CTF_K_VOLATILE:
		case CTF_K_CONST:
		case CTF_K_RESTRICT:
			vbytes = 0;
			break;
		default:
			printf("%s(%d): detected invalid CTF kind -- %u\n", __func__, __LINE__, kind);
			return (EIO);
		}
		*xp = (uint32_t)((uintptr_t) tp - (uintptr_t) ctfdata);
		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
	}

	return (0);
}

/*
 * CTF Declaration Stack
 *
 * In order to implement ctf_type_name(), we must convert a type graph back
 * into a C type declaration.  Unfortunately, a type graph represents a storage
 * class ordering of the type whereas a type declaration must obey the C rules
 * for operator precedence, and the two orderings are frequently in conflict.
 * For example, consider these CTF type graphs and their C declarations:
 *
 * CTF_K_POINTER -> CTF_K_FUNCTION -> CTF_K_INTEGER  : int (*)()
 * CTF_K_POINTER -> CTF_K_ARRAY -> CTF_K_INTEGER     : int (*)[]
 *
 * In each case, parentheses are used to raise operator * to higher lexical
 * precedence, so the string form of the C declaration cannot be constructed by
 * walking the type graph links and forming the string from left to right.
 *
 * The functions in this file build a set of stacks from the type graph nodes
 * corresponding to the C operator precedence levels in the appropriate order.
 * The code in ctf_type_name() can then iterate over the levels and nodes in
 * lexical precedence order and construct the final C declaration string.
 */
typedef struct ctf_list {
	struct ctf_list *l_prev; /* previous pointer or tail pointer */
	struct ctf_list *l_next; /* next pointer or head pointer */
} ctf_list_t;

#define	ctf_list_prev(elem)	((void *)(((ctf_list_t *)(elem))->l_prev))
#define	ctf_list_next(elem)	((void *)(((ctf_list_t *)(elem))->l_next))

typedef enum {
	CTF_PREC_BASE,
	CTF_PREC_POINTER,
	CTF_PREC_ARRAY,
	CTF_PREC_FUNCTION,
	CTF_PREC_MAX
} ctf_decl_prec_t;

typedef struct ctf_decl_node {
	ctf_list_t cd_list;			/* linked list pointers */
	ctf_id_t cd_type;			/* type identifier */
	uint_t cd_kind;				/* type kind */
	uint_t cd_n;				/* type dimension if array */
} ctf_decl_node_t;

typedef struct ctf_decl {
	ctf_list_t cd_nodes[CTF_PREC_MAX];	/* declaration node stacks */
	int cd_order[CTF_PREC_MAX];		/* storage order of decls */
	ctf_decl_prec_t cd_qualp;		/* qualifier precision */
	ctf_decl_prec_t cd_ordp;		/* ordered precision */
	char *cd_buf;				/* buffer for output */
	char *cd_ptr;				/* buffer location */
	char *cd_end;				/* buffer limit */
	size_t cd_len;				/* buffer space required */
	int cd_err;				/* saved error value */
} ctf_decl_t;

/*
 * Simple doubly-linked list append routine.  This implementation assumes that
 * each list element contains an embedded ctf_list_t as the first member.
 * An additional ctf_list_t is used to store the head (l_next) and tail
 * (l_prev) pointers.  The current head and tail list elements have their
 * previous and next pointers set to NULL, respectively.
 */
static void
ctf_list_append(ctf_list_t *lp, void *new)
{
	ctf_list_t *p = lp->l_prev;	/* p = tail list element */
	ctf_list_t *q = new;		/* q = new list element */

	lp->l_prev = q;
	q->l_prev = p;
	q->l_next = NULL;

	if (p != NULL)
		p->l_next = q;
	else
		lp->l_next = q;
}

/*
 * Prepend the specified existing element to the given ctf_list_t.  The
 * existing pointer should be pointing at a struct with embedded ctf_list_t.
 */
static void
ctf_list_prepend(ctf_list_t *lp, void *new)
{
	ctf_list_t *p = new;		/* p = new list element */
	ctf_list_t *q = lp->l_next;	/* q = head list element */

	lp->l_next = p;
	p->l_prev = NULL;
	p->l_next = q;

	if (q != NULL)
		q->l_prev = p;
	else
		lp->l_prev = p;
}

static void
ctf_decl_init(ctf_decl_t *cd, char *buf, size_t len)
{
	int i;

	bzero(cd, sizeof (ctf_decl_t));

	for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++)
		cd->cd_order[i] = CTF_PREC_BASE - 1;

	cd->cd_qualp = CTF_PREC_BASE;
	cd->cd_ordp = CTF_PREC_BASE;

	cd->cd_buf = buf;
	cd->cd_ptr = buf;
	cd->cd_end = buf + len;
}

static void
ctf_decl_fini(ctf_decl_t *cd)
{
	ctf_decl_node_t *cdp, *ndp;
	int i;

	for (i = CTF_PREC_BASE; i < CTF_PREC_MAX; i++) {
		for (cdp = ctf_list_next(&cd->cd_nodes[i]);
		    cdp != NULL; cdp = ndp) {
			ndp = ctf_list_next(cdp);
			free(cdp, M_FBT);
		}
	}
}

static const ctf_type_t *
ctf_lookup_by_id(linker_ctf_t *lc, ctf_id_t type)
{
	const ctf_type_t *tp;
	uint32_t offset;
	uint32_t *typoff = *lc->typoffp;

	if (type >= *lc->typlenp) {
		printf("%s(%d): type %d exceeds max %ld\n",__func__,__LINE__,(int) type,*lc->typlenp);
		return(NULL);
	}

	/* Check if the type isn't cross-referenced. */
	if ((offset = typoff[type]) == 0) {
		printf("%s(%d): type %d isn't cross referenced\n",__func__,__LINE__, (int) type);
		return(NULL);
	}

	tp = (const ctf_type_t *)(lc->ctftab + offset + sizeof(ctf_header_t));

	return (tp);
}

static void
fbt_array_info(linker_ctf_t *lc, ctf_id_t type, ctf_arinfo_t *arp)
{
	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;
	const ctf_type_t *tp;
	const ctf_array_t *ap;
	ssize_t increment;

	bzero(arp, sizeof(*arp));

	if ((tp = ctf_lookup_by_id(lc, type)) == NULL)
		return;

	if (CTF_INFO_KIND(tp->ctt_info) != CTF_K_ARRAY)
		return;

	(void) fbt_get_ctt_size(hp->cth_version, tp, NULL, &increment);

	ap = (const ctf_array_t *)((uintptr_t)tp + increment);
	arp->ctr_contents = ap->cta_contents;
	arp->ctr_index = ap->cta_index;
	arp->ctr_nelems = ap->cta_nelems;
}

static const char *
ctf_strptr(linker_ctf_t *lc, int name)
{
	const ctf_header_t *hp = (const ctf_header_t *) lc->ctftab;;
	const char *strp = "";

	if (name < 0 || name >= hp->cth_strlen)
		return(strp);

	strp = (const char *)(lc->ctftab + hp->cth_stroff + name + sizeof(ctf_header_t));

	return (strp);
}

static void
ctf_decl_push(ctf_decl_t *cd, linker_ctf_t *lc, ctf_id_t type)
{
	ctf_decl_node_t *cdp;
	ctf_decl_prec_t prec;
	uint_t kind, n = 1;
	int is_qual = 0;

	const ctf_type_t *tp;
	ctf_arinfo_t ar;

	if ((tp = ctf_lookup_by_id(lc, type)) == NULL) {
		cd->cd_err = ENOENT;
		return;
	}

	switch (kind = CTF_INFO_KIND(tp->ctt_info)) {
	case CTF_K_ARRAY:
		fbt_array_info(lc, type, &ar);
		ctf_decl_push(cd, lc, ar.ctr_contents);
		n = ar.ctr_nelems;
		prec = CTF_PREC_ARRAY;
		break;

	case CTF_K_TYPEDEF:
		if (ctf_strptr(lc, tp->ctt_name)[0] == '\0') {
			ctf_decl_push(cd, lc, tp->ctt_type);
			return;
		}
		prec = CTF_PREC_BASE;
		break;

	case CTF_K_FUNCTION:
		ctf_decl_push(cd, lc, tp->ctt_type);
		prec = CTF_PREC_FUNCTION;
		break;

	case CTF_K_POINTER:
		ctf_decl_push(cd, lc, tp->ctt_type);
		prec = CTF_PREC_POINTER;
		break;

	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
		ctf_decl_push(cd, lc, tp->ctt_type);
		prec = cd->cd_qualp;
		is_qual++;
		break;

	default:
		prec = CTF_PREC_BASE;
	}

	if ((cdp = malloc(sizeof (ctf_decl_node_t), M_FBT, M_WAITOK)) == NULL) {
		cd->cd_err = EAGAIN;
		return;
	}

	cdp->cd_type = type;
	cdp->cd_kind = kind;
	cdp->cd_n = n;

	if (ctf_list_next(&cd->cd_nodes[prec]) == NULL)
		cd->cd_order[prec] = cd->cd_ordp++;

	/*
	 * Reset cd_qualp to the highest precedence level that we've seen so
	 * far that can be qualified (CTF_PREC_BASE or CTF_PREC_POINTER).
	 */
	if (prec > cd->cd_qualp && prec < CTF_PREC_ARRAY)
		cd->cd_qualp = prec;

	/*
	 * C array declarators are ordered inside out so prepend them.  Also by
	 * convention qualifiers of base types precede the type specifier (e.g.
	 * const int vs. int const) even though the two forms are equivalent.
	 */
	if (kind == CTF_K_ARRAY || (is_qual && prec == CTF_PREC_BASE))
		ctf_list_prepend(&cd->cd_nodes[prec], cdp);
	else
		ctf_list_append(&cd->cd_nodes[prec], cdp);
}

static void
ctf_decl_sprintf(ctf_decl_t *cd, const char *format, ...)
{
	size_t len = (size_t)(cd->cd_end - cd->cd_ptr);
	va_list ap;
	size_t n;

	va_start(ap, format);
	n = vsnprintf(cd->cd_ptr, len, format, ap);
	va_end(ap);

	cd->cd_ptr += MIN(n, len);
	cd->cd_len += n;
}

static ssize_t
fbt_type_name(linker_ctf_t *lc, ctf_id_t type, char *buf, size_t len)
{
	ctf_decl_t cd;
	ctf_decl_node_t *cdp;
	ctf_decl_prec_t prec, lp, rp;
	int ptr, arr;
	uint_t k;

	if (lc == NULL && type == CTF_ERR)
		return (-1); /* simplify caller code by permitting CTF_ERR */

	ctf_decl_init(&cd, buf, len);
	ctf_decl_push(&cd, lc, type);

	if (cd.cd_err != 0) {
		ctf_decl_fini(&cd);
		return (-1);
	}

	/*
	 * If the type graph's order conflicts with lexical precedence order
	 * for pointers or arrays, then we need to surround the declarations at
	 * the corresponding lexical precedence with parentheses.  This can
	 * result in either a parenthesized pointer (*) as in int (*)() or
	 * int (*)[], or in a parenthesized pointer and array as in int (*[])().
	 */
	ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
	arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;

	rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
	lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;

	k = CTF_K_POINTER; /* avoid leading whitespace (see below) */

	for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++) {
		for (cdp = ctf_list_next(&cd.cd_nodes[prec]);
		    cdp != NULL; cdp = ctf_list_next(cdp)) {

			const ctf_type_t *tp =
			    ctf_lookup_by_id(lc, cdp->cd_type);
			const char *name = ctf_strptr(lc, tp->ctt_name);

			if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
				ctf_decl_sprintf(&cd, " ");

			if (lp == prec) {
				ctf_decl_sprintf(&cd, "(");
				lp = -1;
			}

			switch (cdp->cd_kind) {
			case CTF_K_INTEGER:
			case CTF_K_FLOAT:
			case CTF_K_TYPEDEF:
				ctf_decl_sprintf(&cd, "%s", name);
				break;
			case CTF_K_POINTER:
				ctf_decl_sprintf(&cd, "*");
				break;
			case CTF_K_ARRAY:
				ctf_decl_sprintf(&cd, "[%u]", cdp->cd_n);
				break;
			case CTF_K_FUNCTION:
				ctf_decl_sprintf(&cd, "()");
				break;
			case CTF_K_STRUCT:
			case CTF_K_FORWARD:
				ctf_decl_sprintf(&cd, "struct %s", name);
				break;
			case CTF_K_UNION:
				ctf_decl_sprintf(&cd, "union %s", name);
				break;
			case CTF_K_ENUM:
				ctf_decl_sprintf(&cd, "enum %s", name);
				break;
			case CTF_K_VOLATILE:
				ctf_decl_sprintf(&cd, "volatile");
				break;
			case CTF_K_CONST:
				ctf_decl_sprintf(&cd, "const");
				break;
			case CTF_K_RESTRICT:
				ctf_decl_sprintf(&cd, "restrict");
				break;
			}

			k = cdp->cd_kind;
		}

		if (rp == prec)
			ctf_decl_sprintf(&cd, ")");
	}

	ctf_decl_fini(&cd);
	return (cd.cd_len);
}

static void
fbt_getargdesc(void *arg __unused, dtrace_id_t id __unused, void *parg, dtrace_argdesc_t *desc)
{
	const ushort_t *dp;
	fbt_probe_t *fbt = parg;
	linker_ctf_t lc;
	modctl_t *ctl = fbt->fbtp_ctl;
	int ndx = desc->dtargd_ndx;
	int symindx = fbt->fbtp_symindx;
	uint32_t *ctfoff;
	uint32_t offset;
	ushort_t info, kind, n;

	desc->dtargd_ndx = DTRACE_ARGNONE;

	/* Get a pointer to the CTF data and it's length. */
	if (linker_ctf_get(ctl, &lc) != 0)
		/* No CTF data? Something wrong? *shrug* */
		return;

	/* Check if this module hasn't been initialised yet. */
	if (*lc.ctfoffp == NULL) {
		/*
		 * Initialise the CTF object and function symindx to
		 * byte offset array.
		 */
		if (fbt_ctfoff_init(ctl, &lc) != 0)
			return;

		/* Initialise the CTF type to byte offset array. */
		if (fbt_typoff_init(&lc) != 0)
			return;
	}

	ctfoff = *lc.ctfoffp;

	if (ctfoff == NULL || *lc.typoffp == NULL)
		return;

	/* Check if the symbol index is out of range. */
	if (symindx >= lc.nsym)
		return;

	/* Check if the symbol isn't cross-referenced. */
	if ((offset = ctfoff[symindx]) == 0xffffffff)
		return;

	dp = (const ushort_t *)(lc.ctftab + offset + sizeof(ctf_header_t));

	info = *dp++;
	kind = CTF_INFO_KIND(info);
	n = CTF_INFO_VLEN(info);

	if (kind == CTF_K_UNKNOWN && n == 0) {
		printf("%s(%d): Unknown function!\n",__func__,__LINE__);
		return;
	}

	if (kind != CTF_K_FUNCTION) {
		printf("%s(%d): Expected a function!\n",__func__,__LINE__);
		return;
	}

	/* Check if the requested argument doesn't exist. */
	if (ndx >= n)
		return;

	/* Skip the return type and arguments up to the one requested. */
	dp += ndx + 1;

	if (fbt_type_name(&lc, *dp, desc->dtargd_native, sizeof(desc->dtargd_native)) > 0)
		desc->dtargd_ndx = ndx;

	return;
}

static void
fbt_load(void *dummy)
{
	/* Create the /dev/dtrace/fbt entry. */
	fbt_cdev = make_dev(&fbt_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
	    "dtrace/fbt");

	/* Default the probe table size if not specified. */
	if (fbt_probetab_size == 0)
		fbt_probetab_size = FBT_PROBETAB_SIZE;

	/* Choose the hash mask for the probe table. */
	fbt_probetab_mask = fbt_probetab_size - 1;

	/* Allocate memory for the probe table. */
	fbt_probetab =
	    malloc(fbt_probetab_size * sizeof (fbt_probe_t *), M_FBT, M_WAITOK | M_ZERO);

	dtrace_doubletrap_func = fbt_doubletrap;
	dtrace_invop_add(fbt_invop);

	if (dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_USER,
	    NULL, &fbt_pops, NULL, &fbt_id) != 0)
		return;
}


static int
fbt_unload()
{
	int error = 0;

	/* De-register the invalid opcode handler. */
	dtrace_invop_remove(fbt_invop);

	dtrace_doubletrap_func = NULL;

	/* De-register this DTrace provider. */
	if ((error = dtrace_unregister(fbt_id)) != 0)
		return (error);

	/* Free the probe table. */
	free(fbt_probetab, M_FBT);
	fbt_probetab = NULL;
	fbt_probetab_mask = 0;

	destroy_dev(fbt_cdev);

	return (error);
}

static int
fbt_modevent(module_t mod __unused, int type, void *data __unused)
{
	int error = 0;

	switch (type) {
	case MOD_LOAD:
		break;

	case MOD_UNLOAD:
		break;

	case MOD_SHUTDOWN:
		break;

	default:
		error = EOPNOTSUPP;
		break;

	}

	return (error);
}

static int
fbt_open(struct cdev *dev __unused, int oflags __unused, int devtype __unused, struct thread *td __unused)
{
	return (0);
}

SYSINIT(fbt_load, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_load, NULL);
SYSUNINIT(fbt_unload, SI_SUB_DTRACE_PROVIDER, SI_ORDER_ANY, fbt_unload, NULL);

DEV_MODULE(fbt, fbt_modevent, NULL);
MODULE_VERSION(fbt, 1);
MODULE_DEPEND(fbt, dtrace, 1, 1, 1);
MODULE_DEPEND(fbt, opensolaris, 1, 1, 1);