aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/os/linux/spl/spl-generic.c
blob: 986db15184562623621007ac10d5aff64ae89224 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*
 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 *  Copyright (C) 2007 The Regents of the University of California.
 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 *  UCRL-CODE-235197
 *
 *  This file is part of the SPL, Solaris Porting Layer.
 *
 *  The SPL is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Solaris Porting Layer (SPL) Generic Implementation.
 */

#include <sys/isa_defs.h>
#include <sys/sysmacros.h>
#include <sys/systeminfo.h>
#include <sys/vmsystm.h>
#include <sys/kmem.h>
#include <sys/kmem_cache.h>
#include <sys/vmem.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/taskq.h>
#include <sys/tsd.h>
#include <sys/zmod.h>
#include <sys/debug.h>
#include <sys/proc.h>
#include <sys/kstat.h>
#include <sys/file.h>
#include <sys/sunddi.h>
#include <linux/ctype.h>
#include <sys/disp.h>
#include <sys/random.h>
#include <sys/string.h>
#include <linux/kmod.h>
#include <linux/mod_compat.h>
#include <sys/cred.h>
#include <sys/vnode.h>
#include <sys/misc.h>
#include <linux/mod_compat.h>

unsigned long spl_hostid = 0;
EXPORT_SYMBOL(spl_hostid);

/* CSTYLED */
module_param(spl_hostid, ulong, 0644);
MODULE_PARM_DESC(spl_hostid, "The system hostid.");

proc_t p0;
EXPORT_SYMBOL(p0);

/*
 * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
 *
 * "Scrambled Linear Pseudorandom Number Generators∗"
 * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
 *
 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
 * is to provide bytes containing random numbers. It is mapped to /dev/urandom
 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
 * we can implement it using a fast PRNG that we seed using Linux' actual
 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
 * with an independent seed so that all calls to random_get_pseudo_bytes() are
 * free of atomic instructions.
 *
 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
 * to generate words larger than 256 bits will paradoxically be limited to
 * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
 * 256-bit words and selecting the first will implicitly select the second. If
 * a caller finds this behavior undesirable, random_get_bytes() should be used
 * instead.
 *
 * XXX: Linux interrupt handlers that trigger within the critical section
 * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
 * see the same numbers. Nothing in the code currently calls this in an
 * interrupt handler, so this is considered to be okay. If that becomes a
 * problem, we could create a set of per-cpu variables for interrupt handlers
 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
 * true.
 */
static void __percpu *spl_pseudo_entropy;

/*
 * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
 * licensed file:
 *
 * https://prng.di.unimi.it/xoshiro256plusplus.c
 */

static inline uint64_t rotl(const uint64_t x, int k)
{
	return ((x << k) | (x >> (64 - k)));
}

static inline uint64_t
spl_rand_next(uint64_t *s)
{
	const uint64_t result = rotl(s[0] + s[3], 23) + s[0];

	const uint64_t t = s[1] << 17;

	s[2] ^= s[0];
	s[3] ^= s[1];
	s[1] ^= s[2];
	s[0] ^= s[3];

	s[2] ^= t;

	s[3] = rotl(s[3], 45);

	return (result);
}

static inline void
spl_rand_jump(uint64_t *s)
{
	static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
	    0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };

	uint64_t s0 = 0;
	uint64_t s1 = 0;
	uint64_t s2 = 0;
	uint64_t s3 = 0;
	int i, b;
	for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
		for (b = 0; b < 64; b++) {
			if (JUMP[i] & 1ULL << b) {
				s0 ^= s[0];
				s1 ^= s[1];
				s2 ^= s[2];
				s3 ^= s[3];
			}
			(void) spl_rand_next(s);
		}

	s[0] = s0;
	s[1] = s1;
	s[2] = s2;
	s[3] = s3;
}

int
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
{
	uint64_t *xp, s[4];

	ASSERT(ptr);

	xp = get_cpu_ptr(spl_pseudo_entropy);

	s[0] = xp[0];
	s[1] = xp[1];
	s[2] = xp[2];
	s[3] = xp[3];

	while (len) {
		union {
			uint64_t ui64;
			uint8_t byte[sizeof (uint64_t)];
		}entropy;
		int i = MIN(len, sizeof (uint64_t));

		len -= i;
		entropy.ui64 = spl_rand_next(s);

		/*
		 * xoshiro256++ has low entropy lower bytes, so we copy the
		 * higher order bytes first.
		 */
		while (i--)
#ifdef _ZFS_BIG_ENDIAN
			*ptr++ = entropy.byte[i];
#else
			*ptr++ = entropy.byte[7 - i];
#endif
	}

	xp[0] = s[0];
	xp[1] = s[1];
	xp[2] = s[2];
	xp[3] = s[3];

	put_cpu_ptr(spl_pseudo_entropy);

	return (0);
}


EXPORT_SYMBOL(random_get_pseudo_bytes);

#if BITS_PER_LONG == 32

/*
 * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
 * provides a div64_u64() function for this we do not use it because the
 * implementation is flawed.  There are cases which return incorrect
 * results as late as linux-2.6.35.  Until this is fixed upstream the
 * spl must provide its own implementation.
 *
 * This implementation is a slightly modified version of the algorithm
 * proposed by the book 'Hacker's Delight'.  The original source can be
 * found here and is available for use without restriction.
 *
 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
 */

/*
 * Calculate number of leading of zeros for a 64-bit value.
 */
static int
nlz64(uint64_t x)
{
	register int n = 0;

	if (x == 0)
		return (64);

	if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
	if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
	if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
	if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
	if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
	if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }

	return (n);
}

/*
 * Newer kernels have a div_u64() function but we define our own
 * to simplify portability between kernel versions.
 */
static inline uint64_t
__div_u64(uint64_t u, uint32_t v)
{
	(void) do_div(u, v);
	return (u);
}

/*
 * Turn off missing prototypes warning for these functions. They are
 * replacements for libgcc-provided functions and will never be called
 * directly.
 */
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-prototypes"
#endif

/*
 * Implementation of 64-bit unsigned division for 32-bit machines.
 *
 * First the procedure takes care of the case in which the divisor is a
 * 32-bit quantity. There are two subcases: (1) If the left half of the
 * dividend is less than the divisor, one execution of do_div() is all that
 * is required (overflow is not possible). (2) Otherwise it does two
 * divisions, using the grade school method.
 */
uint64_t
__udivdi3(uint64_t u, uint64_t v)
{
	uint64_t u0, u1, v1, q0, q1, k;
	int n;

	if (v >> 32 == 0) {			// If v < 2**32:
		if (u >> 32 < v) {		// If u/v cannot overflow,
			return (__div_u64(u, v)); // just do one division.
		} else {			// If u/v would overflow:
			u1 = u >> 32;		// Break u into two halves.
			u0 = u & 0xFFFFFFFF;
			q1 = __div_u64(u1, v);	// First quotient digit.
			k  = u1 - q1 * v;	// First remainder, < v.
			u0 += (k << 32);
			q0 = __div_u64(u0, v);	// Seconds quotient digit.
			return ((q1 << 32) + q0);
		}
	} else {				// If v >= 2**32:
		n = nlz64(v);			// 0 <= n <= 31.
		v1 = (v << n) >> 32;		// Normalize divisor, MSB is 1.
		u1 = u >> 1;			// To ensure no overflow.
		q1 = __div_u64(u1, v1);		// Get quotient from
		q0 = (q1 << n) >> 31;		// Undo normalization and
						// division of u by 2.
		if (q0 != 0)			// Make q0 correct or
			q0 = q0 - 1;		// too small by 1.
		if ((u - q0 * v) >= v)
			q0 = q0 + 1;		// Now q0 is correct.

		return (q0);
	}
}
EXPORT_SYMBOL(__udivdi3);

#ifndef abs64
/* CSTYLED */
#define	abs64(x)	({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
#endif

/*
 * Implementation of 64-bit signed division for 32-bit machines.
 */
int64_t
__divdi3(int64_t u, int64_t v)
{
	int64_t q, t;
	q = __udivdi3(abs64(u), abs64(v));
	t = (u ^ v) >> 63;	// If u, v have different
	return ((q ^ t) - t);	// signs, negate q.
}
EXPORT_SYMBOL(__divdi3);

/*
 * Implementation of 64-bit unsigned modulo for 32-bit machines.
 */
uint64_t
__umoddi3(uint64_t dividend, uint64_t divisor)
{
	return (dividend - (divisor * __udivdi3(dividend, divisor)));
}
EXPORT_SYMBOL(__umoddi3);

/* 64-bit signed modulo for 32-bit machines. */
int64_t
__moddi3(int64_t n, int64_t d)
{
	int64_t q;
	boolean_t nn = B_FALSE;

	if (n < 0) {
		nn = B_TRUE;
		n = -n;
	}
	if (d < 0)
		d = -d;

	q = __umoddi3(n, d);

	return (nn ? -q : q);
}
EXPORT_SYMBOL(__moddi3);

/*
 * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
 */
uint64_t
__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
{
	uint64_t q = __udivdi3(n, d);
	if (r)
		*r = n - d * q;
	return (q);
}
EXPORT_SYMBOL(__udivmoddi4);

/*
 * Implementation of 64-bit signed division/modulo for 32-bit machines.
 */
int64_t
__divmoddi4(int64_t n, int64_t d, int64_t *r)
{
	int64_t q, rr;
	boolean_t nn = B_FALSE;
	boolean_t nd = B_FALSE;
	if (n < 0) {
		nn = B_TRUE;
		n = -n;
	}
	if (d < 0) {
		nd = B_TRUE;
		d = -d;
	}

	q = __udivmoddi4(n, d, (uint64_t *)&rr);

	if (nn != nd)
		q = -q;
	if (nn)
		rr = -rr;
	if (r)
		*r = rr;
	return (q);
}
EXPORT_SYMBOL(__divmoddi4);

#if defined(__arm) || defined(__arm__)
/*
 * Implementation of 64-bit (un)signed division for 32-bit arm machines.
 *
 * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
 * and the remainder in {r2, r3}.  The return type is specifically left
 * set to 'void' to ensure the compiler does not overwrite these registers
 * during the return.  All results are in registers as per ABI
 */
void
__aeabi_uldivmod(uint64_t u, uint64_t v)
{
	uint64_t res;
	uint64_t mod;

	res = __udivdi3(u, v);
	mod = __umoddi3(u, v);
	{
		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
		register uint32_t r1 asm("r1") = (res >> 32);
		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
		register uint32_t r3 asm("r3") = (mod >> 32);

		asm volatile(""
		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */

		return; /* r0; */
	}
}
EXPORT_SYMBOL(__aeabi_uldivmod);

void
__aeabi_ldivmod(int64_t u, int64_t v)
{
	int64_t res;
	uint64_t mod;

	res =  __divdi3(u, v);
	mod = __umoddi3(u, v);
	{
		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
		register uint32_t r1 asm("r1") = (res >> 32);
		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
		register uint32_t r3 asm("r3") = (mod >> 32);

		asm volatile(""
		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */

		return; /* r0; */
	}
}
EXPORT_SYMBOL(__aeabi_ldivmod);
#endif /* __arm || __arm__ */

#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif

#endif /* BITS_PER_LONG */

/*
 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
 * ddi_strtol(9F) man page.  I have not verified the behavior of these
 * functions against their Solaris counterparts.  It is possible that I
 * may have misinterpreted the man page or the man page is incorrect.
 */
int ddi_strtol(const char *, char **, int, long *);
int ddi_strtoull(const char *, char **, int, unsigned long long *);
int ddi_strtoll(const char *, char **, int, long long *);

#define	define_ddi_strtox(type, valtype)				\
int ddi_strto##type(const char *str, char **endptr,			\
    int base, valtype *result)						\
{									\
	valtype last_value, value = 0;					\
	char *ptr = (char *)str;					\
	int digit, minus = 0;						\
									\
	while (strchr(" \t\n\r\f", *ptr))				\
		++ptr;							\
									\
	if (strlen(ptr) == 0)						\
		return (EINVAL);					\
									\
	switch (*ptr) {							\
	case '-':							\
		minus = 1;						\
		zfs_fallthrough;					\
	case '+':							\
		++ptr;							\
		break;							\
	}								\
									\
	/* Auto-detect base based on prefix */				\
	if (!base) {							\
		if (str[0] == '0') {					\
			if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
				base = 16; /* hex */			\
				ptr += 2;				\
			} else if (str[1] >= '0' && str[1] < '8') {	\
				base = 8; /* octal */			\
				ptr += 1;				\
			} else {					\
				return (EINVAL);			\
			}						\
		} else {						\
			base = 10; /* decimal */			\
		}							\
	}								\
									\
	while (1) {							\
		if (isdigit(*ptr))					\
			digit = *ptr - '0';				\
		else if (isalpha(*ptr))					\
			digit = tolower(*ptr) - 'a' + 10;		\
		else							\
			break;						\
									\
		if (digit >= base)					\
			break;						\
									\
		last_value = value;					\
		value = value * base + digit;				\
		if (last_value > value) /* Overflow */			\
			return (ERANGE);				\
									\
		ptr++;							\
	}								\
									\
	*result = minus ? -value : value;				\
									\
	if (endptr)							\
		*endptr = ptr;						\
									\
	return (0);							\
}									\

define_ddi_strtox(l, long)
define_ddi_strtox(ull, unsigned long long)
define_ddi_strtox(ll, long long)

EXPORT_SYMBOL(ddi_strtol);
EXPORT_SYMBOL(ddi_strtoll);
EXPORT_SYMBOL(ddi_strtoull);

int
ddi_copyin(const void *from, void *to, size_t len, int flags)
{
	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
	if (flags & FKIOCTL) {
		memcpy(to, from, len);
		return (0);
	}

	return (copyin(from, to, len));
}
EXPORT_SYMBOL(ddi_copyin);

#define	define_spl_param(type, fmt)					\
int									\
spl_param_get_##type(char *buf, zfs_kernel_param_t *kp)			\
{									\
	return (scnprintf(buf, PAGE_SIZE, fmt "\n",			\
	    *(type *)kp->arg));						\
}									\
int									\
spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp)		\
{									\
	return (kstrto##type(buf, 0, (type *)kp->arg));			\
}									\
const struct kernel_param_ops spl_param_ops_##type = {			\
	.set = spl_param_set_##type,					\
	.get = spl_param_get_##type,					\
};									\
EXPORT_SYMBOL(spl_param_get_##type);					\
EXPORT_SYMBOL(spl_param_set_##type);					\
EXPORT_SYMBOL(spl_param_ops_##type);

define_spl_param(s64, "%lld")
define_spl_param(u64, "%llu")

/*
 * Post a uevent to userspace whenever a new vdev adds to the pool. It is
 * necessary to sync blkid information with udev, which zed daemon uses
 * during device hotplug to identify the vdev.
 */
void
spl_signal_kobj_evt(struct block_device *bdev)
{
#if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
#ifdef HAVE_BDEV_KOBJ
	struct kobject *disk_kobj = bdev_kobj(bdev);
#else
	struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
#endif
	if (disk_kobj) {
		int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
		if (ret) {
			pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
			    " (%p): failed(ret:%d)\n", KOBJ_CHANGE,
			    kobject_name(disk_kobj), disk_kobj, ret);
		}
	}
#else
/*
 * This is encountered if neither bdev_kobj() nor part_to_dev() is available
 * in the kernel - likely due to an API change that needs to be chased down.
 */
#error "Unsupported kernel: unable to get struct kobj from bdev"
#endif
}
EXPORT_SYMBOL(spl_signal_kobj_evt);

int
ddi_copyout(const void *from, void *to, size_t len, int flags)
{
	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
	if (flags & FKIOCTL) {
		memcpy(to, from, len);
		return (0);
	}

	return (copyout(from, to, len));
}
EXPORT_SYMBOL(ddi_copyout);

static ssize_t
spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
{
#if defined(HAVE_KERNEL_READ_PPOS)
	return (kernel_read(file, buf, count, pos));
#else
	mm_segment_t saved_fs;
	ssize_t ret;

	saved_fs = get_fs();
	set_fs(KERNEL_DS);

	ret = vfs_read(file, (void __user *)buf, count, pos);

	set_fs(saved_fs);

	return (ret);
#endif
}

static int
spl_getattr(struct file *filp, struct kstat *stat)
{
	int rc;

	ASSERT(filp);
	ASSERT(stat);

#if defined(HAVE_4ARGS_VFS_GETATTR)
	rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
	    AT_STATX_SYNC_AS_STAT);
#elif defined(HAVE_2ARGS_VFS_GETATTR)
	rc = vfs_getattr(&filp->f_path, stat);
#elif defined(HAVE_3ARGS_VFS_GETATTR)
	rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
#else
#error "No available vfs_getattr()"
#endif
	if (rc)
		return (-rc);

	return (0);
}

/*
 * Read the unique system identifier from the /etc/hostid file.
 *
 * The behavior of /usr/bin/hostid on Linux systems with the
 * regular eglibc and coreutils is:
 *
 *   1. Generate the value if the /etc/hostid file does not exist
 *      or if the /etc/hostid file is less than four bytes in size.
 *
 *   2. If the /etc/hostid file is at least 4 bytes, then return
 *      the first four bytes [0..3] in native endian order.
 *
 *   3. Always ignore bytes [4..] if they exist in the file.
 *
 * Only the first four bytes are significant, even on systems that
 * have a 64-bit word size.
 *
 * See:
 *
 *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
 *   coreutils: src/hostid.c
 *
 * Notes:
 *
 * The /etc/hostid file on Solaris is a text file that often reads:
 *
 *   # DO NOT EDIT
 *   "0123456789"
 *
 * Directly copying this file to Linux results in a constant
 * hostid of 4f442023 because the default comment constitutes
 * the first four bytes of the file.
 *
 */

static char *spl_hostid_path = HW_HOSTID_PATH;
module_param(spl_hostid_path, charp, 0444);
MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");

static int
hostid_read(uint32_t *hostid)
{
	uint64_t size;
	uint32_t value = 0;
	int error;
	loff_t off;
	struct file *filp;
	struct kstat stat;

	filp = filp_open(spl_hostid_path, 0, 0);

	if (IS_ERR(filp))
		return (ENOENT);

	error = spl_getattr(filp, &stat);
	if (error) {
		filp_close(filp, 0);
		return (error);
	}
	size = stat.size;
	// cppcheck-suppress sizeofwithnumericparameter
	if (size < sizeof (HW_HOSTID_MASK)) {
		filp_close(filp, 0);
		return (EINVAL);
	}

	off = 0;
	/*
	 * Read directly into the variable like eglibc does.
	 * Short reads are okay; native behavior is preserved.
	 */
	error = spl_kernel_read(filp, &value, sizeof (value), &off);
	if (error < 0) {
		filp_close(filp, 0);
		return (EIO);
	}

	/* Mask down to 32 bits like coreutils does. */
	*hostid = (value & HW_HOSTID_MASK);
	filp_close(filp, 0);

	return (0);
}

/*
 * Return the system hostid.  Preferentially use the spl_hostid module option
 * when set, otherwise use the value in the /etc/hostid file.
 */
uint32_t
zone_get_hostid(void *zone)
{
	uint32_t hostid;

	ASSERT3P(zone, ==, NULL);

	if (spl_hostid != 0)
		return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));

	if (hostid_read(&hostid) == 0)
		return (hostid);

	return (0);
}
EXPORT_SYMBOL(zone_get_hostid);

static int
spl_kvmem_init(void)
{
	int rc = 0;

	rc = spl_kmem_init();
	if (rc)
		return (rc);

	rc = spl_vmem_init();
	if (rc) {
		spl_kmem_fini();
		return (rc);
	}

	return (rc);
}

/*
 * We initialize the random number generator with 128 bits of entropy from the
 * system random number generator. In the improbable case that we have a zero
 * seed, we fallback to the system jiffies, unless it is also zero, in which
 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
 * initialize each of the per-cpu seeds so that the sequences generated on each
 * CPU are guaranteed to never overlap in practice.
 */
static int __init
spl_random_init(void)
{
	uint64_t s[4];
	int i = 0;

	spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
	    sizeof (uint64_t));

	if (!spl_pseudo_entropy)
		return (-ENOMEM);

	get_random_bytes(s, sizeof (s));

	if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
		if (jiffies != 0) {
			s[0] = jiffies;
			s[1] = ~0 - jiffies;
			s[2] = ~jiffies;
			s[3] = jiffies - ~0;
		} else {
			(void) memcpy(s, "improbable seed", 16);
		}
		printk("SPL: get_random_bytes() returned 0 "
		    "when generating random seed. Setting initial seed to "
		    "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
		    cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
	}

	for_each_possible_cpu(i) {
		uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);

		spl_rand_jump(s);

		wordp[0] = s[0];
		wordp[1] = s[1];
		wordp[2] = s[2];
		wordp[3] = s[3];
	}

	return (0);
}

static void
spl_random_fini(void)
{
	free_percpu(spl_pseudo_entropy);
}

static void
spl_kvmem_fini(void)
{
	spl_vmem_fini();
	spl_kmem_fini();
}

static int __init
spl_init(void)
{
	int rc = 0;

	if ((rc = spl_random_init()))
		goto out0;

	if ((rc = spl_kvmem_init()))
		goto out1;

	if ((rc = spl_tsd_init()))
		goto out2;

	if ((rc = spl_taskq_init()))
		goto out3;

	if ((rc = spl_kmem_cache_init()))
		goto out4;

	if ((rc = spl_proc_init()))
		goto out5;

	if ((rc = spl_kstat_init()))
		goto out6;

	if ((rc = spl_zlib_init()))
		goto out7;

	if ((rc = spl_zone_init()))
		goto out8;

	return (rc);

out8:
	spl_zlib_fini();
out7:
	spl_kstat_fini();
out6:
	spl_proc_fini();
out5:
	spl_kmem_cache_fini();
out4:
	spl_taskq_fini();
out3:
	spl_tsd_fini();
out2:
	spl_kvmem_fini();
out1:
	spl_random_fini();
out0:
	return (rc);
}

static void __exit
spl_fini(void)
{
	spl_zone_fini();
	spl_zlib_fini();
	spl_kstat_fini();
	spl_proc_fini();
	spl_kmem_cache_fini();
	spl_taskq_fini();
	spl_tsd_fini();
	spl_kvmem_fini();
	spl_random_fini();
}

module_init(spl_init);
module_exit(spl_fini);

MODULE_DESCRIPTION("Solaris Porting Layer");
MODULE_AUTHOR(ZFS_META_AUTHOR);
MODULE_LICENSE("GPL");
MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);