aboutsummaryrefslogtreecommitdiff
path: root/sys/dev/cxgbe/crypto/t4_keyctx.c
blob: b85e50fd6cb15f33e3469cbb4716acf8e34d4958 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*-
 * Copyright (c) 2017-2019 Chelsio Communications, Inc.
 * All rights reserved.
 * Written by: John Baldwin <jhb@FreeBSD.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "opt_kern_tls.h"

#include <sys/types.h>
#include <sys/ktls.h>
#include <sys/malloc.h>

#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>

#include "common/common.h"
#include "crypto/t4_crypto.h"

/*
 * Crypto operations use a key context to store cipher keys and
 * partial hash digests.  They can either be passed inline as part of
 * a work request using crypto or they can be stored in card RAM.  For
 * the latter case, work requests must replace the inline key context
 * with a request to read the context from card RAM.
 *
 * The format of a key context:
 *
 * +-------------------------------+
 * | key context header            |
 * +-------------------------------+
 * | AES key                       |  ----- For requests with AES
 * +-------------------------------+
 * | Hash state                    |  ----- For hash-only requests
 * +-------------------------------+ -
 * | IPAD (16-byte aligned)        |  \
 * +-------------------------------+  +---- For requests with HMAC
 * | OPAD (16-byte aligned)        |  /
 * +-------------------------------+ -
 * | GMAC H                        |  ----- For AES-GCM
 * +-------------------------------+ -
 */

/* Fields in the key context header. */
#define S_TLS_KEYCTX_TX_WR_DUALCK    12
#define M_TLS_KEYCTX_TX_WR_DUALCK    0x1
#define V_TLS_KEYCTX_TX_WR_DUALCK(x) ((x) << S_TLS_KEYCTX_TX_WR_DUALCK)
#define G_TLS_KEYCTX_TX_WR_DUALCK(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_DUALCK) & M_TLS_KEYCTX_TX_WR_DUALCK)
#define F_TLS_KEYCTX_TX_WR_DUALCK    V_TLS_KEYCTX_TX_WR_DUALCK(1U)

#define S_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT 11
#define M_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT 0x1
#define V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT)
#define G_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT) & \
     M_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT)
#define F_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT \
    V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1U)

#define S_TLS_KEYCTX_TX_WR_SALT_PRESENT 10
#define M_TLS_KEYCTX_TX_WR_SALT_PRESENT 0x1
#define V_TLS_KEYCTX_TX_WR_SALT_PRESENT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_SALT_PRESENT)
#define G_TLS_KEYCTX_TX_WR_SALT_PRESENT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_SALT_PRESENT) & \
     M_TLS_KEYCTX_TX_WR_SALT_PRESENT)
#define F_TLS_KEYCTX_TX_WR_SALT_PRESENT \
    V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1U)

#define S_TLS_KEYCTX_TX_WR_TXCK_SIZE 6
#define M_TLS_KEYCTX_TX_WR_TXCK_SIZE 0xf
#define V_TLS_KEYCTX_TX_WR_TXCK_SIZE(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_TXCK_SIZE)
#define G_TLS_KEYCTX_TX_WR_TXCK_SIZE(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_TXCK_SIZE) & \
     M_TLS_KEYCTX_TX_WR_TXCK_SIZE)

#define S_TLS_KEYCTX_TX_WR_TXMK_SIZE 2
#define M_TLS_KEYCTX_TX_WR_TXMK_SIZE 0xf
#define V_TLS_KEYCTX_TX_WR_TXMK_SIZE(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_TXMK_SIZE)
#define G_TLS_KEYCTX_TX_WR_TXMK_SIZE(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_TXMK_SIZE) & \
     M_TLS_KEYCTX_TX_WR_TXMK_SIZE)

#define S_TLS_KEYCTX_TX_WR_TXVALID   0
#define M_TLS_KEYCTX_TX_WR_TXVALID   0x1
#define V_TLS_KEYCTX_TX_WR_TXVALID(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_TXVALID)
#define G_TLS_KEYCTX_TX_WR_TXVALID(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_TXVALID) & M_TLS_KEYCTX_TX_WR_TXVALID)
#define F_TLS_KEYCTX_TX_WR_TXVALID   V_TLS_KEYCTX_TX_WR_TXVALID(1U)

#define S_TLS_KEYCTX_TX_WR_FLITCNT   3
#define M_TLS_KEYCTX_TX_WR_FLITCNT   0x1f
#define V_TLS_KEYCTX_TX_WR_FLITCNT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_FLITCNT)
#define G_TLS_KEYCTX_TX_WR_FLITCNT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_FLITCNT) & M_TLS_KEYCTX_TX_WR_FLITCNT)

#define S_TLS_KEYCTX_TX_WR_HMACCTRL  0
#define M_TLS_KEYCTX_TX_WR_HMACCTRL  0x7
#define V_TLS_KEYCTX_TX_WR_HMACCTRL(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_HMACCTRL)
#define G_TLS_KEYCTX_TX_WR_HMACCTRL(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_HMACCTRL) & M_TLS_KEYCTX_TX_WR_HMACCTRL)

#define S_TLS_KEYCTX_TX_WR_PROTOVER  4
#define M_TLS_KEYCTX_TX_WR_PROTOVER  0xf
#define V_TLS_KEYCTX_TX_WR_PROTOVER(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_PROTOVER)
#define G_TLS_KEYCTX_TX_WR_PROTOVER(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_PROTOVER) & M_TLS_KEYCTX_TX_WR_PROTOVER)

#define S_TLS_KEYCTX_TX_WR_CIPHMODE  0
#define M_TLS_KEYCTX_TX_WR_CIPHMODE  0xf
#define V_TLS_KEYCTX_TX_WR_CIPHMODE(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_CIPHMODE)
#define G_TLS_KEYCTX_TX_WR_CIPHMODE(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_CIPHMODE) & M_TLS_KEYCTX_TX_WR_CIPHMODE)

#define S_TLS_KEYCTX_TX_WR_AUTHMODE  4
#define M_TLS_KEYCTX_TX_WR_AUTHMODE  0xf
#define V_TLS_KEYCTX_TX_WR_AUTHMODE(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_AUTHMODE)
#define G_TLS_KEYCTX_TX_WR_AUTHMODE(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_AUTHMODE) & M_TLS_KEYCTX_TX_WR_AUTHMODE)

#define S_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL 3
#define M_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL 0x1
#define V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL)
#define G_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL) & \
     M_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL)
#define F_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL \
    V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1U)

#define S_TLS_KEYCTX_TX_WR_SEQNUMCTRL 1
#define M_TLS_KEYCTX_TX_WR_SEQNUMCTRL 0x3
#define V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_SEQNUMCTRL)
#define G_TLS_KEYCTX_TX_WR_SEQNUMCTRL(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_SEQNUMCTRL) & \
     M_TLS_KEYCTX_TX_WR_SEQNUMCTRL)

#define S_TLS_KEYCTX_TX_WR_RXVALID   0
#define M_TLS_KEYCTX_TX_WR_RXVALID   0x1
#define V_TLS_KEYCTX_TX_WR_RXVALID(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_RXVALID)
#define G_TLS_KEYCTX_TX_WR_RXVALID(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_RXVALID) & M_TLS_KEYCTX_TX_WR_RXVALID)
#define F_TLS_KEYCTX_TX_WR_RXVALID   V_TLS_KEYCTX_TX_WR_RXVALID(1U)

#define S_TLS_KEYCTX_TX_WR_IVPRESENT 7
#define M_TLS_KEYCTX_TX_WR_IVPRESENT 0x1
#define V_TLS_KEYCTX_TX_WR_IVPRESENT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_IVPRESENT)
#define G_TLS_KEYCTX_TX_WR_IVPRESENT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_IVPRESENT) & \
     M_TLS_KEYCTX_TX_WR_IVPRESENT)
#define F_TLS_KEYCTX_TX_WR_IVPRESENT V_TLS_KEYCTX_TX_WR_IVPRESENT(1U)

#define S_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT 6
#define M_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT 0x1
#define V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT)
#define G_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT) & \
     M_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT)
#define F_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT \
    V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1U)

#define S_TLS_KEYCTX_TX_WR_RXCK_SIZE 3
#define M_TLS_KEYCTX_TX_WR_RXCK_SIZE 0x7
#define V_TLS_KEYCTX_TX_WR_RXCK_SIZE(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_RXCK_SIZE)
#define G_TLS_KEYCTX_TX_WR_RXCK_SIZE(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_RXCK_SIZE) & \
     M_TLS_KEYCTX_TX_WR_RXCK_SIZE)

#define S_TLS_KEYCTX_TX_WR_RXMK_SIZE 0
#define M_TLS_KEYCTX_TX_WR_RXMK_SIZE 0x7
#define V_TLS_KEYCTX_TX_WR_RXMK_SIZE(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_RXMK_SIZE)
#define G_TLS_KEYCTX_TX_WR_RXMK_SIZE(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_RXMK_SIZE) & \
     M_TLS_KEYCTX_TX_WR_RXMK_SIZE)

#define S_TLS_KEYCTX_TX_WR_IVINSERT  55
#define M_TLS_KEYCTX_TX_WR_IVINSERT  0x1ffULL
#define V_TLS_KEYCTX_TX_WR_IVINSERT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_IVINSERT)
#define G_TLS_KEYCTX_TX_WR_IVINSERT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_IVINSERT) & M_TLS_KEYCTX_TX_WR_IVINSERT)

#define S_TLS_KEYCTX_TX_WR_AADSTRTOFST 47
#define M_TLS_KEYCTX_TX_WR_AADSTRTOFST 0xffULL
#define V_TLS_KEYCTX_TX_WR_AADSTRTOFST(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_AADSTRTOFST)
#define G_TLS_KEYCTX_TX_WR_AADSTRTOFST(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_AADSTRTOFST) & \
     M_TLS_KEYCTX_TX_WR_AADSTRTOFST)

#define S_TLS_KEYCTX_TX_WR_AADSTOPOFST 39
#define M_TLS_KEYCTX_TX_WR_AADSTOPOFST 0xffULL
#define V_TLS_KEYCTX_TX_WR_AADSTOPOFST(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_AADSTOPOFST)
#define G_TLS_KEYCTX_TX_WR_AADSTOPOFST(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_AADSTOPOFST) & \
     M_TLS_KEYCTX_TX_WR_AADSTOPOFST)

#define S_TLS_KEYCTX_TX_WR_CIPHERSRTOFST 30
#define M_TLS_KEYCTX_TX_WR_CIPHERSRTOFST 0x1ffULL
#define V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_CIPHERSRTOFST)
#define G_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_CIPHERSRTOFST) & \
     M_TLS_KEYCTX_TX_WR_CIPHERSRTOFST)

#define S_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST 23
#define M_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST 0x7f
#define V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST)
#define G_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST) & \
     M_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST)

#define S_TLS_KEYCTX_TX_WR_AUTHSRTOFST 14
#define M_TLS_KEYCTX_TX_WR_AUTHSRTOFST 0x1ff
#define V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_AUTHSRTOFST)
#define G_TLS_KEYCTX_TX_WR_AUTHSRTOFST(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_AUTHSRTOFST) & \
     M_TLS_KEYCTX_TX_WR_AUTHSRTOFST)

#define S_TLS_KEYCTX_TX_WR_AUTHSTOPOFST 7
#define M_TLS_KEYCTX_TX_WR_AUTHSTOPOFST 0x7f
#define V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_AUTHSTOPOFST)
#define G_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_AUTHSTOPOFST) & \
     M_TLS_KEYCTX_TX_WR_AUTHSTOPOFST)

#define S_TLS_KEYCTX_TX_WR_AUTHINSRT 0
#define M_TLS_KEYCTX_TX_WR_AUTHINSRT 0x7f
#define V_TLS_KEYCTX_TX_WR_AUTHINSRT(x) \
    ((x) << S_TLS_KEYCTX_TX_WR_AUTHINSRT)
#define G_TLS_KEYCTX_TX_WR_AUTHINSRT(x) \
    (((x) >> S_TLS_KEYCTX_TX_WR_AUTHINSRT) & \
     M_TLS_KEYCTX_TX_WR_AUTHINSRT)

/* Key Context Programming Operation type */
#define KEY_WRITE_RX			0x1
#define KEY_WRITE_TX			0x2
#define KEY_DELETE_RX			0x4
#define KEY_DELETE_TX			0x8

#define S_KEY_CLR_LOC		4
#define M_KEY_CLR_LOC		0xf
#define V_KEY_CLR_LOC(x)	((x) << S_KEY_CLR_LOC)
#define G_KEY_CLR_LOC(x)	(((x) >> S_KEY_CLR_LOC) & M_KEY_CLR_LOC)
#define F_KEY_CLR_LOC		V_KEY_CLR_LOC(1U)

#define S_KEY_GET_LOC           0
#define M_KEY_GET_LOC           0xf
#define V_KEY_GET_LOC(x)        ((x) << S_KEY_GET_LOC)
#define G_KEY_GET_LOC(x)        (((x) >> S_KEY_GET_LOC) & M_KEY_GET_LOC)

/*
 * Generate the initial GMAC hash state for a AES-GCM key.
 *
 * Borrowed from AES_GMAC_Setkey().
 */
void
t4_init_gmac_hash(const char *key, int klen, char *ghash)
{
	static char zeroes[GMAC_BLOCK_LEN];
	uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
	int rounds;

	rounds = rijndaelKeySetupEnc(keysched, key, klen * 8);
	rijndaelEncrypt(keysched, rounds, zeroes, ghash);
	explicit_bzero(keysched, sizeof(keysched));
}

/* Copy out the partial hash state from a software hash implementation. */
void
t4_copy_partial_hash(int alg, union authctx *auth_ctx, void *dst)
{
	uint32_t *u32;
	uint64_t *u64;
	u_int i;

	u32 = (uint32_t *)dst;
	u64 = (uint64_t *)dst;
	switch (alg) {
	case CRYPTO_SHA1:
	case CRYPTO_SHA1_HMAC:
		for (i = 0; i < SHA1_HASH_LEN / 4; i++)
			u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
		break;
	case CRYPTO_SHA2_224:
	case CRYPTO_SHA2_224_HMAC:
		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
			u32[i] = htobe32(auth_ctx->sha224ctx.state[i]);
		break;
	case CRYPTO_SHA2_256:
	case CRYPTO_SHA2_256_HMAC:
		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
			u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
		break;
	case CRYPTO_SHA2_384:
	case CRYPTO_SHA2_384_HMAC:
		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
			u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
		break;
	case CRYPTO_SHA2_512:
	case CRYPTO_SHA2_512_HMAC:
		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
			u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
		break;
	}
}

void
t4_init_hmac_digest(const struct auth_hash *axf, u_int partial_digest_len,
    const char *key, int klen, char *dst)
{
	union authctx auth_ctx;

	hmac_init_ipad(axf, key, klen, &auth_ctx);
	t4_copy_partial_hash(axf->type, &auth_ctx, dst);

	dst += roundup2(partial_digest_len, 16);

	hmac_init_opad(axf, key, klen, &auth_ctx);
	t4_copy_partial_hash(axf->type, &auth_ctx, dst);

	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
}

/*
 * Borrowed from cesa_prep_aes_key().
 *
 * NB: The crypto engine wants the words in the decryption key in reverse
 * order.
 */
void
t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
{
	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
	uint32_t *dkey;
	int i;

	rijndaelKeySetupEnc(ek, enc_key, kbits);
	dkey = dec_key;
	dkey += (kbits / 8) / 4;

	switch (kbits) {
	case 128:
		for (i = 0; i < 4; i++)
			*--dkey = htobe32(ek[4 * 10 + i]);
		break;
	case 192:
		for (i = 0; i < 2; i++)
			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
		for (i = 0; i < 4; i++)
			*--dkey = htobe32(ek[4 * 12 + i]);
		break;
	case 256:
		for (i = 0; i < 4; i++)
			*--dkey = htobe32(ek[4 * 13 + i]);
		for (i = 0; i < 4; i++)
			*--dkey = htobe32(ek[4 * 14 + i]);
		break;
	}
	MPASS(dkey == dec_key);
	explicit_bzero(ek, sizeof(ek));
}

#ifdef KERN_TLS
/*
 * - keyid management
 * - request to program key?
 */
u_int
t4_tls_key_info_size(const struct ktls_session *tls)
{
	u_int key_info_size, mac_key_size;

	key_info_size = sizeof(struct tx_keyctx_hdr) +
	    tls->params.cipher_key_len;
	if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
		key_info_size += GMAC_BLOCK_LEN;
	} else {
		switch (tls->params.auth_algorithm) {
		case CRYPTO_SHA1_HMAC:
			mac_key_size = SHA1_HASH_LEN;
			break;
		case CRYPTO_SHA2_256_HMAC:
			mac_key_size = SHA2_256_HASH_LEN;
			break;
		case CRYPTO_SHA2_384_HMAC:
			mac_key_size = SHA2_512_HASH_LEN;
			break;
		default:
			__assert_unreachable();
		}
		key_info_size += roundup2(mac_key_size, 16) * 2;
	}
	return (key_info_size);
}

int
t4_tls_proto_ver(const struct ktls_session *tls)
{
	switch (tls->params.tls_vminor) {
	case TLS_MINOR_VER_ONE:
		return (SCMD_PROTO_VERSION_TLS_1_1);
	case TLS_MINOR_VER_TWO:
		return (SCMD_PROTO_VERSION_TLS_1_2);
	case TLS_MINOR_VER_THREE:
		return (SCMD_PROTO_VERSION_TLS_1_3);
	default:
		__assert_unreachable();
	}
}

int
t4_tls_cipher_mode(const struct ktls_session *tls)
{
	switch (tls->params.cipher_algorithm) {
	case CRYPTO_AES_CBC:
		return (SCMD_CIPH_MODE_AES_CBC);
	case CRYPTO_AES_NIST_GCM_16:
		return (SCMD_CIPH_MODE_AES_GCM);
	default:
		return (SCMD_CIPH_MODE_NOP);
	}
}

int
t4_tls_auth_mode(const struct ktls_session *tls)
{
	switch (tls->params.cipher_algorithm) {
	case CRYPTO_AES_CBC:
		switch (tls->params.auth_algorithm) {
		case CRYPTO_SHA1_HMAC:
			return (SCMD_AUTH_MODE_SHA1);
		case CRYPTO_SHA2_256_HMAC:
			return (SCMD_AUTH_MODE_SHA256);
		case CRYPTO_SHA2_384_HMAC:
			return (SCMD_AUTH_MODE_SHA512_384);
		default:
			return (SCMD_AUTH_MODE_NOP);
		}
	case CRYPTO_AES_NIST_GCM_16:
		return (SCMD_AUTH_MODE_GHASH);
	default:
		return (SCMD_AUTH_MODE_NOP);
	}
}

int
t4_tls_hmac_ctrl(const struct ktls_session *tls)
{
	switch (tls->params.cipher_algorithm) {
	case CRYPTO_AES_CBC:
		return (SCMD_HMAC_CTRL_NO_TRUNC);
	case CRYPTO_AES_NIST_GCM_16:
		return (SCMD_HMAC_CTRL_NOP);
	default:
		return (SCMD_HMAC_CTRL_NOP);
	}
}

static int
tls_seqnum_ctrl(const struct ktls_session *tls)
{
	switch (tls->params.tls_vminor) {
	case TLS_MINOR_VER_THREE:
		return (0);
	default:
		return (3);
	}
}

static int
tls_cipher_key_size(const struct ktls_session *tls)
{
	switch (tls->params.cipher_key_len) {
	case 128 / 8:
		return (CHCR_KEYCTX_CIPHER_KEY_SIZE_128);
	case 192 / 8:
		return (CHCR_KEYCTX_CIPHER_KEY_SIZE_192);
	case 256 / 8:
		return (CHCR_KEYCTX_CIPHER_KEY_SIZE_256);
	default:
		__assert_unreachable();
	}
}

static int
tls_mac_key_size(const struct ktls_session *tls)
{
	if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
		return (CHCR_KEYCTX_MAC_KEY_SIZE_512);
	else {
		switch (tls->params.auth_algorithm) {
		case CRYPTO_SHA1_HMAC:
			return (CHCR_KEYCTX_MAC_KEY_SIZE_160);
		case CRYPTO_SHA2_256_HMAC:
			return (CHCR_KEYCTX_MAC_KEY_SIZE_256);
		case CRYPTO_SHA2_384_HMAC:
			return (CHCR_KEYCTX_MAC_KEY_SIZE_512);
		default:
			__assert_unreachable();
		}
	}
}

void
t4_tls_key_ctx(const struct ktls_session *tls, int direction,
    struct tls_keyctx *kctx)
{
	const struct auth_hash *axf;
	u_int mac_key_size;
	char *hash;

	/* Key context header. */
	if (direction == KTLS_TX) {
		kctx->u.txhdr.ctxlen = t4_tls_key_info_size(tls) / 16;
		kctx->u.txhdr.dualck_to_txvalid =
		    V_TLS_KEYCTX_TX_WR_SALT_PRESENT(1) |
		    V_TLS_KEYCTX_TX_WR_TXCK_SIZE(tls_cipher_key_size(tls)) |
		    V_TLS_KEYCTX_TX_WR_TXMK_SIZE(tls_mac_key_size(tls)) |
		    V_TLS_KEYCTX_TX_WR_TXVALID(1);
		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC)
			kctx->u.txhdr.dualck_to_txvalid |=
			    V_TLS_KEYCTX_TX_WR_TXOPAD_PRESENT(1);
		kctx->u.txhdr.dualck_to_txvalid =
		    htobe16(kctx->u.txhdr.dualck_to_txvalid);
	} else {
		kctx->u.rxhdr.flitcnt_hmacctrl =
		    V_TLS_KEYCTX_TX_WR_FLITCNT(t4_tls_key_info_size(tls) / 16) |
		    V_TLS_KEYCTX_TX_WR_HMACCTRL(t4_tls_hmac_ctrl(tls));

		kctx->u.rxhdr.protover_ciphmode =
		    V_TLS_KEYCTX_TX_WR_PROTOVER(t4_tls_proto_ver(tls)) |
		    V_TLS_KEYCTX_TX_WR_CIPHMODE(t4_tls_cipher_mode(tls));

		kctx->u.rxhdr.authmode_to_rxvalid =
		    V_TLS_KEYCTX_TX_WR_AUTHMODE(t4_tls_auth_mode(tls)) |
		    V_TLS_KEYCTX_TX_WR_SEQNUMCTRL(tls_seqnum_ctrl(tls)) |
		    V_TLS_KEYCTX_TX_WR_RXVALID(1);

		kctx->u.rxhdr.ivpresent_to_rxmk_size =
		    V_TLS_KEYCTX_TX_WR_IVPRESENT(0) |
		    V_TLS_KEYCTX_TX_WR_RXCK_SIZE(tls_cipher_key_size(tls)) |
		    V_TLS_KEYCTX_TX_WR_RXMK_SIZE(tls_mac_key_size(tls));

		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
			kctx->u.rxhdr.ivinsert_to_authinsrt =
			    htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) |
				V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) |
				V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) |
				V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(14ULL) |
				V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(16ULL) |
				V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(14ULL) |
				V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) |
				V_TLS_KEYCTX_TX_WR_AUTHINSRT(16ULL));
		} else {
			kctx->u.rxhdr.authmode_to_rxvalid |=
			    V_TLS_KEYCTX_TX_WR_CIPHAUTHSEQCTRL(1);
			kctx->u.rxhdr.ivpresent_to_rxmk_size |=
			    V_TLS_KEYCTX_TX_WR_RXOPAD_PRESENT(1);
			kctx->u.rxhdr.ivinsert_to_authinsrt =
			    htobe64(V_TLS_KEYCTX_TX_WR_IVINSERT(6ULL) |
				V_TLS_KEYCTX_TX_WR_AADSTRTOFST(1ULL) |
				V_TLS_KEYCTX_TX_WR_AADSTOPOFST(5ULL) |
				V_TLS_KEYCTX_TX_WR_AUTHSRTOFST(22ULL) |
				V_TLS_KEYCTX_TX_WR_AUTHSTOPOFST(0ULL) |
				V_TLS_KEYCTX_TX_WR_CIPHERSRTOFST(22ULL) |
				V_TLS_KEYCTX_TX_WR_CIPHERSTOPOFST(0ULL) |
				V_TLS_KEYCTX_TX_WR_AUTHINSRT(0ULL));
		}
	}

	/* Key. */
	if (direction == KTLS_RX &&
	    tls->params.cipher_algorithm == CRYPTO_AES_CBC)
		t4_aes_getdeckey(kctx->keys.edkey, tls->params.cipher_key,
		    tls->params.cipher_key_len * 8);
	else
		memcpy(kctx->keys.edkey, tls->params.cipher_key,
		    tls->params.cipher_key_len);

	/* Auth state and implicit IV (salt). */
	hash = kctx->keys.edkey + tls->params.cipher_key_len;
	if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16) {
		_Static_assert(offsetof(struct tx_keyctx_hdr, txsalt) ==
		    offsetof(struct rx_keyctx_hdr, rxsalt),
		    "salt offset mismatch");
		memcpy(kctx->u.txhdr.txsalt, tls->params.iv,
		    tls->params.iv_len);
		t4_init_gmac_hash(tls->params.cipher_key,
		    tls->params.cipher_key_len, hash);
	} else {
		switch (tls->params.auth_algorithm) {
		case CRYPTO_SHA1_HMAC:
			axf = &auth_hash_hmac_sha1;
			mac_key_size = SHA1_HASH_LEN;
			break;
		case CRYPTO_SHA2_256_HMAC:
			axf = &auth_hash_hmac_sha2_256;
			mac_key_size = SHA2_256_HASH_LEN;
			break;
		case CRYPTO_SHA2_384_HMAC:
			axf = &auth_hash_hmac_sha2_384;
			mac_key_size = SHA2_512_HASH_LEN;
			break;
		default:
			__assert_unreachable();
		}
		t4_init_hmac_digest(axf, mac_key_size, tls->params.auth_key,
		    tls->params.auth_key_len, hash);
	}
}

int
t4_alloc_tls_keyid(struct adapter *sc)
{
	vmem_addr_t addr;

	if (sc->vres.key.size == 0)
		return (-1);

	if (vmem_alloc(sc->key_map, TLS_KEY_CONTEXT_SZ, M_NOWAIT | M_FIRSTFIT,
	    &addr) != 0)
		return (-1);

	return (addr);
}

void
t4_free_tls_keyid(struct adapter *sc, int keyid)
{
	vmem_free(sc->key_map, keyid, TLS_KEY_CONTEXT_SZ);
}

void
t4_write_tlskey_wr(const struct ktls_session *tls, int direction, int tid,
    int flags, int keyid, struct tls_key_req *kwr)
{
	kwr->wr_hi = htobe32(V_FW_WR_OP(FW_ULPTX_WR) | F_FW_WR_ATOMIC | flags);
	kwr->wr_mid = htobe32(V_FW_WR_LEN16(DIV_ROUND_UP(TLS_KEY_WR_SZ, 16)) |
	    V_FW_WR_FLOWID(tid));
	kwr->protocol = t4_tls_proto_ver(tls);
	kwr->mfs = htobe16(tls->params.max_frame_len);
	kwr->reneg_to_write_rx = V_KEY_GET_LOC(direction == KTLS_TX ?
	    KEY_WRITE_TX : KEY_WRITE_RX);

	/* We don't need to use V_T7_ULP_MEMIO_DATA_LEN in this routine. */
	_Static_assert(V_T7_ULP_MEMIO_DATA_LEN(TLS_KEY_CONTEXT_SZ >> 5) ==
	    V_ULP_MEMIO_DATA_LEN(TLS_KEY_CONTEXT_SZ >> 5), "datalen mismatch");

	/* master command */
	kwr->cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
	    V_T5_ULP_MEMIO_ORDER(1) | V_T5_ULP_MEMIO_IMM(1));
	kwr->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(TLS_KEY_CONTEXT_SZ >> 5));
	kwr->len16 = htobe32((tid << 8) |
	    DIV_ROUND_UP(TLS_KEY_WR_SZ - sizeof(struct work_request_hdr), 16));
	kwr->kaddr = htobe32(V_ULP_MEMIO_ADDR(keyid >> 5));

	/* sub command */
	kwr->sc_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM));
	kwr->sc_len = htobe32(TLS_KEY_CONTEXT_SZ);
}
#endif