aboutsummaryrefslogtreecommitdiff
path: root/sys/geom/eli/g_eli_integrity.c
blob: e36ec9c1b0227f7e26c37ab5bf8fdcaddfbb7482 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/*-
 * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/bio.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/vnode.h>

#include <vm/uma.h>

#include <geom/geom.h>
#include <geom/eli/g_eli.h>
#include <geom/eli/pkcs5v2.h>

/*
 * The data layout description when integrity verification is configured.
 *
 * One of the most important assumption here is that authenticated data and its
 * HMAC has to be stored in the same place (namely in the same sector) to make
 * it work reliable.
 * The problem is that file systems work only with sectors that are multiple of
 * 512 bytes and a power of two number.
 * My idea to implement it is as follows.
 * Let's store HMAC in sector. This is a must. This leaves us 480 bytes for
 * data. We can't use that directly (ie. we can't create provider with 480 bytes
 * sector size). We need another sector from where we take only 32 bytes of data
 * and we store HMAC of this data as well. This takes two sectors from the
 * original provider at the input and leaves us one sector of authenticated data
 * at the output. Not very efficient, but you got the idea.
 * Now, let's assume, we want to create provider with 4096 bytes sector.
 * To output 4096 bytes of authenticated data we need 8x480 plus 1x256, so we
 * need nine 512-bytes sectors at the input to get one 4096-bytes sector at the
 * output. That's better. With 4096 bytes sector we can use 89% of size of the
 * original provider. I find it as an acceptable cost.
 * The reliability comes from the fact, that every HMAC stored inside the sector
 * is calculated only for the data in the same sector, so its impossible to
 * write new data and leave old HMAC or vice versa.
 *
 * And here is the picture:
 *
 * da0: +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
 *      |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |480b| |32b |256b |
 *      |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data| |HMAC|Data |
 *      +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+----+ +----+-----+
 *      |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |512 bytes| |288 bytes |
 *      +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ +---------+ |224 unused|
 *                                                                                                      +----------+
 * da0.eli: +----+----+----+----+----+----+----+----+----+
 *          |480b|480b|480b|480b|480b|480b|480b|480b|256b|
 *          +----+----+----+----+----+----+----+----+----+
 *          |                 4096 bytes                 |
 *          +--------------------------------------------+
 *
 * PS. You can use any sector size with geli(8). My example is using 4kB,
 *     because it's most efficient. For 8kB sectors you need 2 extra sectors,
 *     so the cost is the same as for 4kB sectors.
 */

/*
 * Code paths:
 * BIO_READ:
 *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> g_eli_auth_read_done -> g_io_deliver
 * BIO_WRITE:
 *	g_eli_start -> g_eli_auth_run -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
 */

MALLOC_DECLARE(M_ELI);

/*
 * Here we generate key for HMAC. Every sector has its own HMAC key, so it is
 * not possible to copy sectors.
 * We cannot depend on fact, that every sector has its own IV, because different
 * IV doesn't change HMAC, when we use encrypt-then-authenticate method.
 */
static void
g_eli_auth_keygen(struct g_eli_softc *sc, off_t offset, u_char *key)
{
	SHA256_CTX ctx;

	/* Copy precalculated SHA256 context. */
	bcopy(&sc->sc_akeyctx, &ctx, sizeof(ctx));
	SHA256_Update(&ctx, (uint8_t *)&offset, sizeof(offset));
	SHA256_Final(key, &ctx);
}

/*
 * The function is called after we read and decrypt data.
 *
 * g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> g_eli_auth_run -> G_ELI_AUTH_READ_DONE -> g_io_deliver
 */
static int
g_eli_auth_read_done(struct cryptop *crp)
{
	struct g_eli_softc *sc;
	struct bio *bp;

	if (crp->crp_etype == EAGAIN) {
		if (g_eli_crypto_rerun(crp) == 0)
			return (0);
	}
	bp = (struct bio *)crp->crp_opaque;
	bp->bio_inbed++;
	if (crp->crp_etype == 0) {
		bp->bio_completed += crp->crp_olen;
		G_ELI_DEBUG(3, "Crypto READ request done (%d/%d) (add=%jd completed=%jd).",
		    bp->bio_inbed, bp->bio_children, (intmax_t)crp->crp_olen, (intmax_t)bp->bio_completed);
	} else {
		G_ELI_DEBUG(1, "Crypto READ request failed (%d/%d) error=%d.",
		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
		if (bp->bio_error == 0)
			bp->bio_error = crp->crp_etype;
	}
	sc = bp->bio_to->geom->softc;
	g_eli_key_drop(sc, crp->crp_desc->crd_next->crd_key);
	/*
	 * Do we have all sectors already?
	 */
	if (bp->bio_inbed < bp->bio_children)
		return (0);
	if (bp->bio_error == 0) {
		u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
		u_char *srcdata, *dstdata, *auth;
		off_t coroff, corsize;

		/*
		 * Verify data integrity based on calculated and read HMACs.
		 */
		/* Sectorsize of decrypted provider eg. 4096. */
		decr_secsize = bp->bio_to->sectorsize;
		/* The real sectorsize of encrypted provider, eg. 512. */
		encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
		/* Number of data bytes in one encrypted sector, eg. 480. */
		data_secsize = sc->sc_data_per_sector;
		/* Number of sectors from decrypted provider, eg. 2. */
		nsec = bp->bio_length / decr_secsize;
		/* Number of sectors from encrypted provider, eg. 18. */
		nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
		/* Last sector number in every big sector, eg. 9. */
		lsec = sc->sc_bytes_per_sector / encr_secsize;

		srcdata = bp->bio_driver2;
		dstdata = bp->bio_data;
		auth = srcdata + encr_secsize * nsec;
		coroff = -1;
		corsize = 0;

		for (i = 1; i <= nsec; i++) {
			data_secsize = sc->sc_data_per_sector;
			if ((i % lsec) == 0)
				data_secsize = decr_secsize % data_secsize;
			if (bcmp(srcdata, auth, sc->sc_alen) != 0) {
				/*
				 * Curruption detected, remember the offset if
				 * this is the first corrupted sector and
				 * increase size.
				 */
				if (bp->bio_error == 0)
					bp->bio_error = -1;
				if (coroff == -1) {
					coroff = bp->bio_offset +
					    (dstdata - (u_char *)bp->bio_data);
				}
				corsize += data_secsize;
			} else {
				/*
				 * No curruption, good.
				 * Report previous corruption if there was one.
				 */
				if (coroff != -1) {
					G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
					    "bytes of data at offset %jd.",
					    sc->sc_name, (intmax_t)corsize,
					    (intmax_t)coroff);
					coroff = -1;
					corsize = 0;
				}
				bcopy(srcdata + sc->sc_alen, dstdata,
				    data_secsize);
			}
			srcdata += encr_secsize;
			dstdata += data_secsize;
			auth += sc->sc_alen;
		}
		/* Report previous corruption if there was one. */
		if (coroff != -1) {
			G_ELI_DEBUG(0, "%s: Failed to authenticate %jd "
			    "bytes of data at offset %jd.",
			    sc->sc_name, (intmax_t)corsize, (intmax_t)coroff);
		}
	}
	free(bp->bio_driver2, M_ELI);
	bp->bio_driver2 = NULL;
	if (bp->bio_error != 0) {
		if (bp->bio_error == -1)
			bp->bio_error = EINVAL;
		else {
			G_ELI_LOGREQ(0, bp,
			    "Crypto READ request failed (error=%d).",
			    bp->bio_error);
		}
		bp->bio_completed = 0;
	}
	/*
	 * Read is finished, send it up.
	 */
	g_io_deliver(bp, bp->bio_error);
	atomic_subtract_int(&sc->sc_inflight, 1);
	return (0);
}

/*
 * The function is called after data encryption.
 *
 * g_eli_start -> g_eli_auth_run -> G_ELI_AUTH_WRITE_DONE -> g_io_request -> g_eli_write_done -> g_io_deliver
 */
static int
g_eli_auth_write_done(struct cryptop *crp)
{
	struct g_eli_softc *sc;
	struct g_consumer *cp;
	struct bio *bp, *cbp, *cbp2;
	u_int nsec;

	if (crp->crp_etype == EAGAIN) {
		if (g_eli_crypto_rerun(crp) == 0)
			return (0);
	}
	bp = (struct bio *)crp->crp_opaque;
	bp->bio_inbed++;
	if (crp->crp_etype == 0) {
		G_ELI_DEBUG(3, "Crypto WRITE request done (%d/%d).",
		    bp->bio_inbed, bp->bio_children);
	} else {
		G_ELI_DEBUG(1, "Crypto WRITE request failed (%d/%d) error=%d.",
		    bp->bio_inbed, bp->bio_children, crp->crp_etype);
		if (bp->bio_error == 0)
			bp->bio_error = crp->crp_etype;
	}
	sc = bp->bio_to->geom->softc;
	g_eli_key_drop(sc, crp->crp_desc->crd_key);
	/*
	 * All sectors are already encrypted?
	 */
	if (bp->bio_inbed < bp->bio_children)
		return (0);
	if (bp->bio_error != 0) {
		G_ELI_LOGREQ(0, bp, "Crypto WRITE request failed (error=%d).",
		    bp->bio_error);
		free(bp->bio_driver2, M_ELI);
		bp->bio_driver2 = NULL;
		cbp = bp->bio_driver1;
		bp->bio_driver1 = NULL;
		g_destroy_bio(cbp);
		g_io_deliver(bp, bp->bio_error);
		atomic_subtract_int(&sc->sc_inflight, 1);
		return (0);
	}
	cp = LIST_FIRST(&sc->sc_geom->consumer);
	cbp = bp->bio_driver1;
	bp->bio_driver1 = NULL;
	cbp->bio_to = cp->provider;
	cbp->bio_done = g_eli_write_done;

	/* Number of sectors from decrypted provider, eg. 1. */
	nsec = bp->bio_length / bp->bio_to->sectorsize;
	/* Number of sectors from encrypted provider, eg. 9. */
	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;

	cbp->bio_length = cp->provider->sectorsize * nsec;
	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
	cbp->bio_data = bp->bio_driver2;

	/*
	 * We write more than what is requested, so we have to be ready to write
	 * more than MAXPHYS.
	 */
	cbp2 = NULL;
	if (cbp->bio_length > MAXPHYS) {
		cbp2 = g_duplicate_bio(bp);
		cbp2->bio_length = cbp->bio_length - MAXPHYS;
		cbp2->bio_data = cbp->bio_data + MAXPHYS;
		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
		cbp2->bio_to = cp->provider;
		cbp2->bio_done = g_eli_write_done;
		cbp->bio_length = MAXPHYS;
	}
	/*
	 * Send encrypted data to the provider.
	 */
	G_ELI_LOGREQ(2, cbp, "Sending request.");
	bp->bio_inbed = 0;
	bp->bio_children = (cbp2 != NULL ? 2 : 1);
	g_io_request(cbp, cp);
	if (cbp2 != NULL) {
		G_ELI_LOGREQ(2, cbp2, "Sending request.");
		g_io_request(cbp2, cp);
	}
	return (0);
}

void
g_eli_auth_read(struct g_eli_softc *sc, struct bio *bp)
{
	struct g_consumer *cp;
	struct bio *cbp, *cbp2;
	size_t size;
	off_t nsec;

	bp->bio_pflags = 0;

	cp = LIST_FIRST(&sc->sc_geom->consumer);
	cbp = bp->bio_driver1;
	bp->bio_driver1 = NULL;
	cbp->bio_to = cp->provider;
	cbp->bio_done = g_eli_read_done;

	/* Number of sectors from decrypted provider, eg. 1. */
	nsec = bp->bio_length / bp->bio_to->sectorsize;
	/* Number of sectors from encrypted provider, eg. 9. */
	nsec = (nsec * sc->sc_bytes_per_sector) / cp->provider->sectorsize;

	cbp->bio_length = cp->provider->sectorsize * nsec;
	size = cbp->bio_length;
	size += sc->sc_alen * nsec;
	size += sizeof(struct cryptop) * nsec;
	size += sizeof(struct cryptodesc) * nsec * 2;
	size += G_ELI_AUTH_SECKEYLEN * nsec;
	cbp->bio_offset = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;
	bp->bio_driver2 = malloc(size, M_ELI, M_WAITOK);
	cbp->bio_data = bp->bio_driver2;

	/*
	 * We read more than what is requested, so we have to be ready to read
	 * more than MAXPHYS.
	 */
	cbp2 = NULL;
	if (cbp->bio_length > MAXPHYS) {
		cbp2 = g_duplicate_bio(bp);
		cbp2->bio_length = cbp->bio_length - MAXPHYS;
		cbp2->bio_data = cbp->bio_data + MAXPHYS;
		cbp2->bio_offset = cbp->bio_offset + MAXPHYS;
		cbp2->bio_to = cp->provider;
		cbp2->bio_done = g_eli_read_done;
		cbp->bio_length = MAXPHYS;
	}
	/*
	 * Read encrypted data from provider.
	 */
	G_ELI_LOGREQ(2, cbp, "Sending request.");
	g_io_request(cbp, cp);
	if (cbp2 != NULL) {
		G_ELI_LOGREQ(2, cbp2, "Sending request.");
		g_io_request(cbp2, cp);
	}
}

/*
 * This is the main function responsible for cryptography (ie. communication
 * with crypto(9) subsystem).
 *
 * BIO_READ:
 *	g_eli_start -> g_eli_auth_read -> g_io_request -> g_eli_read_done -> G_ELI_AUTH_RUN -> g_eli_auth_read_done -> g_io_deliver
 * BIO_WRITE:
 *	g_eli_start -> G_ELI_AUTH_RUN -> g_eli_auth_write_done -> g_io_request -> g_eli_write_done -> g_io_deliver
 */
void
g_eli_auth_run(struct g_eli_worker *wr, struct bio *bp)
{
	struct g_eli_softc *sc;
	struct cryptop *crp;
	struct cryptodesc *crde, *crda;
	u_int i, lsec, nsec, data_secsize, decr_secsize, encr_secsize;
	off_t dstoff;
	u_char *p, *data, *auth, *authkey, *plaindata;
	int error;

	G_ELI_LOGREQ(3, bp, "%s", __func__);

	bp->bio_pflags = wr->w_number;
	sc = wr->w_softc;
	/* Sectorsize of decrypted provider eg. 4096. */
	decr_secsize = bp->bio_to->sectorsize;
	/* The real sectorsize of encrypted provider, eg. 512. */
	encr_secsize = LIST_FIRST(&sc->sc_geom->consumer)->provider->sectorsize;
	/* Number of data bytes in one encrypted sector, eg. 480. */
	data_secsize = sc->sc_data_per_sector;
	/* Number of sectors from decrypted provider, eg. 2. */
	nsec = bp->bio_length / decr_secsize;
	/* Number of sectors from encrypted provider, eg. 18. */
	nsec = (nsec * sc->sc_bytes_per_sector) / encr_secsize;
	/* Last sector number in every big sector, eg. 9. */
	lsec = sc->sc_bytes_per_sector / encr_secsize;
	/* Destination offset, used for IV generation. */
	dstoff = (bp->bio_offset / bp->bio_to->sectorsize) * sc->sc_bytes_per_sector;

	auth = NULL;	/* Silence compiler warning. */
	plaindata = bp->bio_data;
	if (bp->bio_cmd == BIO_READ) {
		data = bp->bio_driver2;
		auth = data + encr_secsize * nsec;
		p = auth + sc->sc_alen * nsec;
	} else {
		size_t size;

		size = encr_secsize * nsec;
		size += sizeof(*crp) * nsec;
		size += sizeof(*crde) * nsec;
		size += sizeof(*crda) * nsec;
		size += G_ELI_AUTH_SECKEYLEN * nsec;
		size += sizeof(uintptr_t);	/* Space for alignment. */
		data = malloc(size, M_ELI, M_WAITOK);
		bp->bio_driver2 = data;
		p = data + encr_secsize * nsec;
	}
	bp->bio_inbed = 0;
	bp->bio_children = nsec;

#if defined(__mips_n64) || defined(__mips_o64)
	p = (char *)roundup((uintptr_t)p, sizeof(uintptr_t));
#endif

	for (i = 1; i <= nsec; i++, dstoff += encr_secsize) {
		crp = (struct cryptop *)p;	p += sizeof(*crp);
		crde = (struct cryptodesc *)p;	p += sizeof(*crde);
		crda = (struct cryptodesc *)p;	p += sizeof(*crda);
		authkey = (u_char *)p;		p += G_ELI_AUTH_SECKEYLEN;

		data_secsize = sc->sc_data_per_sector;
		if ((i % lsec) == 0) {
			data_secsize = decr_secsize % data_secsize;
			/*
			 * Last encrypted sector of each decrypted sector is
			 * only partially filled.
			 */
			if (bp->bio_cmd == BIO_WRITE)
				memset(data + sc->sc_alen + data_secsize, 0,
				    encr_secsize - sc->sc_alen - data_secsize);
		}

		if (bp->bio_cmd == BIO_READ) {
			/* Remember read HMAC. */
			bcopy(data, auth, sc->sc_alen);
			auth += sc->sc_alen;
			/* TODO: bzero(9) can be commented out later. */
			bzero(data, sc->sc_alen);
		} else {
			bcopy(plaindata, data + sc->sc_alen, data_secsize);
			plaindata += data_secsize;
		}

		crp->crp_sid = wr->w_sid;
		crp->crp_ilen = sc->sc_alen + data_secsize;
		crp->crp_olen = data_secsize;
		crp->crp_opaque = (void *)bp;
		crp->crp_buf = (void *)data;
		data += encr_secsize;
		crp->crp_flags = CRYPTO_F_CBIFSYNC;
		if (g_eli_batch)
			crp->crp_flags |= CRYPTO_F_BATCH;
		if (bp->bio_cmd == BIO_WRITE) {
			crp->crp_callback = g_eli_auth_write_done;
			crp->crp_desc = crde;
			crde->crd_next = crda;
			crda->crd_next = NULL;
		} else {
			crp->crp_callback = g_eli_auth_read_done;
			crp->crp_desc = crda;
			crda->crd_next = crde;
			crde->crd_next = NULL;
		}

		crde->crd_skip = sc->sc_alen;
		crde->crd_len = data_secsize;
		crde->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT;
		if ((sc->sc_flags & G_ELI_FLAG_FIRST_KEY) == 0)
			crde->crd_flags |= CRD_F_KEY_EXPLICIT;
		if (bp->bio_cmd == BIO_WRITE)
			crde->crd_flags |= CRD_F_ENCRYPT;
		crde->crd_alg = sc->sc_ealgo;
		crde->crd_key = g_eli_key_hold(sc, dstoff, encr_secsize);
		crde->crd_klen = sc->sc_ekeylen;
		if (sc->sc_ealgo == CRYPTO_AES_XTS)
			crde->crd_klen <<= 1;
		g_eli_crypto_ivgen(sc, dstoff, crde->crd_iv,
		    sizeof(crde->crd_iv));

		crda->crd_skip = sc->sc_alen;
		crda->crd_len = data_secsize;
		crda->crd_inject = 0;
		crda->crd_flags = CRD_F_KEY_EXPLICIT;
		crda->crd_alg = sc->sc_aalgo;
		g_eli_auth_keygen(sc, dstoff, authkey);
		crda->crd_key = authkey;
		crda->crd_klen = G_ELI_AUTH_SECKEYLEN * 8;

		crp->crp_etype = 0;
		error = crypto_dispatch(crp);
		KASSERT(error == 0, ("crypto_dispatch() failed (error=%d)",
		    error));
	}
}