aboutsummaryrefslogtreecommitdiff
path: root/sys/i386/i386/vm86.c
blob: d125391ae9050b0ea1f44108dcafaf333a3aaad9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 1997 Jonathan Lemon
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>

#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/pcb_ext.h>
#include <machine/psl.h>
#include <machine/specialreg.h>
#include <machine/sysarch.h>

extern int vm86pa;
extern struct pcb *vm86pcb;

static struct mtx vm86_lock;

extern int vm86_bioscall(struct vm86frame *);
extern void vm86_biosret(struct vm86frame *);

void vm86_prepcall(struct vm86frame *);

struct system_map {
	int		type;
	vm_offset_t	start;
	vm_offset_t	end;
};

#define	HLT	0xf4
#define	CLI	0xfa
#define	STI	0xfb
#define	PUSHF	0x9c
#define	POPF	0x9d
#define	INTn	0xcd
#define	IRET	0xcf
#define	CALLm	0xff
#define OPERAND_SIZE_PREFIX	0x66
#define ADDRESS_SIZE_PREFIX	0x67
#define PUSH_MASK	~(PSL_VM | PSL_RF | PSL_I)
#define POP_MASK	~(PSL_VIP | PSL_VIF | PSL_VM | PSL_RF | PSL_IOPL)

static int
vm86_suword16(volatile void *base, int word)
{

	if (curthread->td_critnest != 0) {
		*(volatile uint16_t *)base = word;
		return (0);
	}
	return (suword16(base, word));
}

static int
vm86_suword(volatile void *base, long word)
{

	if (curthread->td_critnest != 0) {
		*(volatile long *)base = word;
		return (0);
	}
	return (suword(base, word));
}

static int
vm86_fubyte(volatile const void *base)
{

	if (curthread->td_critnest != 0)
		return (*(volatile const u_char *)base);
	return (fubyte(base));
}

static int
vm86_fuword16(volatile const void *base)
{

	if (curthread->td_critnest != 0)
		return (*(volatile const uint16_t *)base);
	return (fuword16(base));
}

static long
vm86_fuword(volatile const void *base)
{

	if (curthread->td_critnest != 0)
		return (*(volatile const long *)base);
	return (fuword(base));
}

static __inline caddr_t
MAKE_ADDR(u_short sel, u_short off)
{
	return ((caddr_t)((sel << 4) + off));
}

static __inline void
GET_VEC(u_int vec, u_short *sel, u_short *off)
{
	*sel = vec >> 16;
	*off = vec & 0xffff;
}

static __inline u_int
MAKE_VEC(u_short sel, u_short off)
{
	return ((sel << 16) | off);
}

static __inline void
PUSH(u_short x, struct vm86frame *vmf)
{
	vmf->vmf_sp -= 2;
	vm86_suword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
}

static __inline void
PUSHL(u_int x, struct vm86frame *vmf)
{
	vmf->vmf_sp -= 4;
	vm86_suword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp), x);
}

static __inline u_short
POP(struct vm86frame *vmf)
{
	u_short x = vm86_fuword16(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));

	vmf->vmf_sp += 2;
	return (x);
}

static __inline u_int
POPL(struct vm86frame *vmf)
{
	u_int x = vm86_fuword(MAKE_ADDR(vmf->vmf_ss, vmf->vmf_sp));

	vmf->vmf_sp += 4;
	return (x);
}

int
vm86_emulate(struct vm86frame *vmf)
{
	struct vm86_kernel *vm86;
	caddr_t addr;
	u_char i_byte;
	u_int temp_flags;
	int inc_ip = 1;
	int retcode = 0;

	/*
	 * pcb_ext contains the address of the extension area, or zero if
	 * the extension is not present.  (This check should not be needed,
	 * as we can't enter vm86 mode until we set up an extension area)
	 */
	if (curpcb->pcb_ext == 0)
		return (SIGBUS);
	vm86 = &curpcb->pcb_ext->ext_vm86;

	if (vmf->vmf_eflags & PSL_T)
		retcode = SIGTRAP;

	addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
	i_byte = vm86_fubyte(addr);
	if (i_byte == ADDRESS_SIZE_PREFIX) {
		i_byte = vm86_fubyte(++addr);
		inc_ip++;
	}

	if (vm86->vm86_has_vme) {
		switch (i_byte) {
		case OPERAND_SIZE_PREFIX:
			i_byte = vm86_fubyte(++addr);
			inc_ip++;
			switch (i_byte) {
			case PUSHF:
				if (vmf->vmf_eflags & PSL_VIF)
					PUSHL((vmf->vmf_eflags & PUSH_MASK)
					    | PSL_IOPL | PSL_I, vmf);
				else
					PUSHL((vmf->vmf_eflags & PUSH_MASK)
					    | PSL_IOPL, vmf);
				vmf->vmf_ip += inc_ip;
				return (retcode);

			case POPF:
				temp_flags = POPL(vmf) & POP_MASK;
				vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
				    | temp_flags | PSL_VM | PSL_I;
				vmf->vmf_ip += inc_ip;
				if (temp_flags & PSL_I) {
					vmf->vmf_eflags |= PSL_VIF;
					if (vmf->vmf_eflags & PSL_VIP)
						break;
				} else {
					vmf->vmf_eflags &= ~PSL_VIF;
				}
				return (retcode);
			}
			break;

		/* VME faults here if VIP is set, but does not set VIF. */
		case STI:
			vmf->vmf_eflags |= PSL_VIF;
			vmf->vmf_ip += inc_ip;
			if ((vmf->vmf_eflags & PSL_VIP) == 0) {
				uprintf("fatal sti\n");
				return (SIGKILL);
			}
			break;

		/* VME if no redirection support */
		case INTn:
			break;

		/* VME if trying to set PSL_T, or PSL_I when VIP is set */
		case POPF:
			temp_flags = POP(vmf) & POP_MASK;
			vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
			    | temp_flags | PSL_VM | PSL_I;
			vmf->vmf_ip += inc_ip;
			if (temp_flags & PSL_I) {
				vmf->vmf_eflags |= PSL_VIF;
				if (vmf->vmf_eflags & PSL_VIP)
					break;
			} else {
				vmf->vmf_eflags &= ~PSL_VIF;
			}
			return (retcode);

		/* VME if trying to set PSL_T, or PSL_I when VIP is set */
		case IRET:
			vmf->vmf_ip = POP(vmf);
			vmf->vmf_cs = POP(vmf);
			temp_flags = POP(vmf) & POP_MASK;
			vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
			    | temp_flags | PSL_VM | PSL_I;
			if (temp_flags & PSL_I) {
				vmf->vmf_eflags |= PSL_VIF;
				if (vmf->vmf_eflags & PSL_VIP)
					break;
			} else {
				vmf->vmf_eflags &= ~PSL_VIF;
			}
			return (retcode);
		}
		return (SIGBUS);
	}

	switch (i_byte) {
	case OPERAND_SIZE_PREFIX:
		i_byte = vm86_fubyte(++addr);
		inc_ip++;
		switch (i_byte) {
		case PUSHF:
			if (vm86->vm86_eflags & PSL_VIF)
				PUSHL((vmf->vmf_flags & PUSH_MASK)
				    | PSL_IOPL | PSL_I, vmf);
			else
				PUSHL((vmf->vmf_flags & PUSH_MASK)
				    | PSL_IOPL, vmf);
			vmf->vmf_ip += inc_ip;
			return (retcode);

		case POPF:
			temp_flags = POPL(vmf) & POP_MASK;
			vmf->vmf_eflags = (vmf->vmf_eflags & ~POP_MASK)
			    | temp_flags | PSL_VM | PSL_I;
			vmf->vmf_ip += inc_ip;
			if (temp_flags & PSL_I) {
				vm86->vm86_eflags |= PSL_VIF;
				if (vm86->vm86_eflags & PSL_VIP)
					break;
			} else {
				vm86->vm86_eflags &= ~PSL_VIF;
			}
			return (retcode);
		}
		return (SIGBUS);

	case CLI:
		vm86->vm86_eflags &= ~PSL_VIF;
		vmf->vmf_ip += inc_ip;
		return (retcode);

	case STI:
		/* if there is a pending interrupt, go to the emulator */
		vm86->vm86_eflags |= PSL_VIF;
		vmf->vmf_ip += inc_ip;
		if (vm86->vm86_eflags & PSL_VIP)
			break;
		return (retcode);

	case PUSHF:
		if (vm86->vm86_eflags & PSL_VIF)
			PUSH((vmf->vmf_flags & PUSH_MASK)
			    | PSL_IOPL | PSL_I, vmf);
		else
			PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
		vmf->vmf_ip += inc_ip;
		return (retcode);

	case INTn:
		i_byte = vm86_fubyte(addr + 1);
		if ((vm86->vm86_intmap[i_byte >> 3] & (1 << (i_byte & 7))) != 0)
			break;
		if (vm86->vm86_eflags & PSL_VIF)
			PUSH((vmf->vmf_flags & PUSH_MASK)
			    | PSL_IOPL | PSL_I, vmf);
		else
			PUSH((vmf->vmf_flags & PUSH_MASK) | PSL_IOPL, vmf);
		PUSH(vmf->vmf_cs, vmf);
		PUSH(vmf->vmf_ip + inc_ip + 1, vmf);	/* increment IP */
		GET_VEC(vm86_fuword((caddr_t)(i_byte * 4)),
		     &vmf->vmf_cs, &vmf->vmf_ip);
		vmf->vmf_flags &= ~PSL_T;
		vm86->vm86_eflags &= ~PSL_VIF;
		return (retcode);

	case IRET:
		vmf->vmf_ip = POP(vmf);
		vmf->vmf_cs = POP(vmf);
		temp_flags = POP(vmf) & POP_MASK;
		vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
		    | temp_flags | PSL_VM | PSL_I;
		if (temp_flags & PSL_I) {
			vm86->vm86_eflags |= PSL_VIF;
			if (vm86->vm86_eflags & PSL_VIP)
				break;
		} else {
			vm86->vm86_eflags &= ~PSL_VIF;
		}
		return (retcode);

	case POPF:
		temp_flags = POP(vmf) & POP_MASK;
		vmf->vmf_flags = (vmf->vmf_flags & ~POP_MASK)
		    | temp_flags | PSL_VM | PSL_I;
		vmf->vmf_ip += inc_ip;
		if (temp_flags & PSL_I) {
			vm86->vm86_eflags |= PSL_VIF;
			if (vm86->vm86_eflags & PSL_VIP)
				break;
		} else {
			vm86->vm86_eflags &= ~PSL_VIF;
		}
		return (retcode);
	}
	return (SIGBUS);
}

#define PGTABLE_SIZE	((1024 + 64) * 1024 / PAGE_SIZE)
#define INTMAP_SIZE	32
#define IOMAP_SIZE	ctob(IOPAGES)
#define TSS_SIZE \
	(sizeof(struct pcb_ext) - sizeof(struct segment_descriptor) + \
	 INTMAP_SIZE + IOMAP_SIZE + 1)

struct vm86_layout_pae {
	uint64_t	vml_pgtbl[PGTABLE_SIZE];
	struct 	pcb vml_pcb;
	struct	pcb_ext vml_ext;
	char	vml_intmap[INTMAP_SIZE];
	char	vml_iomap[IOMAP_SIZE];
	char	vml_iomap_trailer;
};

struct vm86_layout_nopae {
	uint32_t	vml_pgtbl[PGTABLE_SIZE];
	struct 	pcb vml_pcb;
	struct	pcb_ext vml_ext;
	char	vml_intmap[INTMAP_SIZE];
	char	vml_iomap[IOMAP_SIZE];
	char	vml_iomap_trailer;
};

_Static_assert(sizeof(struct vm86_layout_pae) <= ctob(3),
    "struct vm86_layout_pae exceeds space allocated in locore.s");
_Static_assert(sizeof(struct vm86_layout_nopae) <= ctob(3),
    "struct vm86_layout_nopae exceeds space allocated in locore.s");

static void
vm86_initialize_pae(void)
{
	int i;
	u_int *addr;
	struct vm86_layout_pae *vml;
	struct pcb *pcb;
	struct pcb_ext *ext;
	struct soft_segment_descriptor ssd = {
		0,			/* segment base address (overwritten) */
		0,			/* length (overwritten) */
		SDT_SYS386TSS,		/* segment type */
		0,			/* priority level */
		1,			/* descriptor present */
		0, 0,
		0,			/* default 16 size */
		0			/* granularity */
	};

	/*
	 * Below is the memory layout that we use for the vm86 region.
	 *
	 * +--------+
	 * |        | 
	 * |        |
	 * | page 0 |       
	 * |        | +--------+
	 * |        | | stack  |
	 * +--------+ +--------+ <--------- vm86paddr
	 * |        | |Page Tbl| 1M + 64K = 272 entries = 1088 bytes
	 * |        | +--------+
	 * |        | |  PCB   | size: ~240 bytes
	 * | page 1 | |PCB Ext | size: ~140 bytes (includes TSS)
	 * |        | +--------+
	 * |        | |int map |
	 * |        | +--------+
	 * +--------+ |        |
	 * | page 2 | |  I/O   |
	 * +--------+ | bitmap |
	 * | page 3 | |        |
	 * |        | +--------+
	 * +--------+ 
	 */

	/*
	 * A rudimentary PCB must be installed, in order to get to the
	 * PCB extension area.  We use the PCB area as a scratchpad for
	 * data storage, the layout of which is shown below.
	 *
	 * pcb_esi	= new PTD entry 0
	 * pcb_ebp	= pointer to frame on vm86 stack
	 * pcb_esp	=    stack frame pointer at time of switch
	 * pcb_ebx	= va of vm86 page table
	 * pcb_eip	=    argument pointer to initial call
	 * pcb_vm86[0]	=    saved TSS descriptor, word 0
	 * pcb_vm86[1]	=    saved TSS descriptor, word 1
	 */
#define new_ptd		pcb_esi
#define vm86_frame	pcb_ebp
#define pgtable_va	pcb_ebx

	vml = (struct vm86_layout_pae *)vm86paddr;
	pcb = &vml->vml_pcb;
	ext = &vml->vml_ext;

	mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);

	bzero(pcb, sizeof(struct pcb));
	pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
	pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
	pcb->pgtable_va = vm86paddr;
	pcb->pcb_flags = PCB_VM86CALL;
	pcb->pcb_ext = ext;

	bzero(ext, sizeof(struct pcb_ext));
	ext->ext_tss.tss_esp0 = vm86paddr;
	ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
	ext->ext_tss.tss_ioopt =
		((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
	ext->ext_iomap = vml->vml_iomap;
	ext->ext_vm86.vm86_intmap = vml->vml_intmap;

	if (cpu_feature & CPUID_VME)
		ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);

	addr = (u_int *)ext->ext_vm86.vm86_intmap;
	for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
		*addr++ = 0;
	vml->vml_iomap_trailer = 0xff;

	ssd.ssd_base = (u_int)&ext->ext_tss;
	ssd.ssd_limit = TSS_SIZE - 1;
	ssdtosd(&ssd, &ext->ext_tssd);

	vm86pcb = pcb;

#if 0
        /*
         * use whatever is leftover of the vm86 page layout as a
         * message buffer so we can capture early output.
         */
        msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
            ctob(3) - sizeof(struct vm86_layout));
#endif
}

static void
vm86_initialize_nopae(void)
{
	int i;
	u_int *addr;
	struct vm86_layout_nopae *vml;
	struct pcb *pcb;
	struct pcb_ext *ext;
	struct soft_segment_descriptor ssd = {
		0,			/* segment base address (overwritten) */
		0,			/* length (overwritten) */
		SDT_SYS386TSS,		/* segment type */
		0,			/* priority level */
		1,			/* descriptor present */
		0, 0,
		0,			/* default 16 size */
		0			/* granularity */
	};

	vml = (struct vm86_layout_nopae *)vm86paddr;
	pcb = &vml->vml_pcb;
	ext = &vml->vml_ext;

	mtx_init(&vm86_lock, "vm86 lock", NULL, MTX_DEF);

	bzero(pcb, sizeof(struct pcb));
	pcb->new_ptd = vm86pa | PG_V | PG_RW | PG_U;
	pcb->vm86_frame = vm86paddr - sizeof(struct vm86frame);
	pcb->pgtable_va = vm86paddr;
	pcb->pcb_flags = PCB_VM86CALL;
	pcb->pcb_ext = ext;

	bzero(ext, sizeof(struct pcb_ext));
	ext->ext_tss.tss_esp0 = vm86paddr;
	ext->ext_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
	ext->ext_tss.tss_ioopt =
		((u_int)vml->vml_iomap - (u_int)&ext->ext_tss) << 16;
	ext->ext_iomap = vml->vml_iomap;
	ext->ext_vm86.vm86_intmap = vml->vml_intmap;

	if (cpu_feature & CPUID_VME)
		ext->ext_vm86.vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);

	addr = (u_int *)ext->ext_vm86.vm86_intmap;
	for (i = 0; i < (INTMAP_SIZE + IOMAP_SIZE) / sizeof(u_int); i++)
		*addr++ = 0;
	vml->vml_iomap_trailer = 0xff;

	ssd.ssd_base = (u_int)&ext->ext_tss;
	ssd.ssd_limit = TSS_SIZE - 1;
	ssdtosd(&ssd, &ext->ext_tssd);

	vm86pcb = pcb;

#if 0
        /*
         * use whatever is leftover of the vm86 page layout as a
         * message buffer so we can capture early output.
         */
        msgbufinit((vm_offset_t)vm86paddr + sizeof(struct vm86_layout),
            ctob(3) - sizeof(struct vm86_layout));
#endif
}

void
vm86_initialize(void)
{

	if (pae_mode)
		vm86_initialize_pae();
	else
		vm86_initialize_nopae();
}

vm_offset_t
vm86_getpage(struct vm86context *vmc, int pagenum)
{
	int i;

	for (i = 0; i < vmc->npages; i++)
		if (vmc->pmap[i].pte_num == pagenum)
			return (vmc->pmap[i].kva);
	return (0);
}

vm_offset_t
vm86_addpage(struct vm86context *vmc, int pagenum, vm_offset_t kva)
{
	int i, flags = 0;

	for (i = 0; i < vmc->npages; i++)
		if (vmc->pmap[i].pte_num == pagenum)
			goto overlap;

	if (vmc->npages == VM86_PMAPSIZE)
		goto full;			/* XXX grow map? */

	if (kva == 0) {
		kva = (vm_offset_t)malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
		flags = VMAP_MALLOC;
	}

	i = vmc->npages++;
	vmc->pmap[i].flags = flags;
	vmc->pmap[i].kva = kva;
	vmc->pmap[i].pte_num = pagenum;
	return (kva);
overlap:
	panic("vm86_addpage: overlap");
full:
	panic("vm86_addpage: not enough room");
}

/*
 * called from vm86_bioscall, while in vm86 address space, to finalize setup.
 */
void
vm86_prepcall(struct vm86frame *vmf)
{
	struct vm86_kernel *vm86;
	uint32_t *stack;
	uint8_t *code;

	code = (void *)0xa00;
	stack = (void *)(0x1000 - 2);	/* keep aligned */
	if ((vmf->vmf_trapno & PAGE_MASK) <= 0xff) {
		/* interrupt call requested */
		code[0] = INTn;
		code[1] = vmf->vmf_trapno & 0xff;
		code[2] = HLT;
		vmf->vmf_ip = (uintptr_t)code;
		vmf->vmf_cs = 0;
	} else {
		code[0] = HLT;
		stack--;
		stack[0] = MAKE_VEC(0, (uintptr_t)code);
	}
	vmf->vmf_sp = (uintptr_t)stack;
	vmf->vmf_ss = 0;
	vmf->kernel_fs = vmf->kernel_es = vmf->kernel_ds = 0;
	vmf->vmf_eflags = PSL_VIF | PSL_VM | PSL_USER;

	vm86 = &curpcb->pcb_ext->ext_vm86;
	if (!vm86->vm86_has_vme) 
		vm86->vm86_eflags = vmf->vmf_eflags;  /* save VIF, VIP */
}

/*
 * vm86 trap handler; determines whether routine succeeded or not.
 * Called while in vm86 space, returns to calling process.
 */
void
vm86_trap(struct vm86frame *vmf)
{
	void (*p)(struct vm86frame *);
	caddr_t addr;

	/* "should not happen" */
	if ((vmf->vmf_eflags & PSL_VM) == 0)
		panic("vm86_trap called, but not in vm86 mode");

	addr = MAKE_ADDR(vmf->vmf_cs, vmf->vmf_ip);
	if (*(u_char *)addr == HLT)
		vmf->vmf_trapno = vmf->vmf_eflags & PSL_C;
	else
		vmf->vmf_trapno = vmf->vmf_trapno << 16;

	p = (void (*)(struct vm86frame *))((uintptr_t)vm86_biosret +
	    setidt_disp);
	p(vmf);
}

int
vm86_intcall(int intnum, struct vm86frame *vmf)
{
	int (*p)(struct vm86frame *);
	int retval;

	if (intnum < 0 || intnum > 0xff)
		return (EINVAL);

	vmf->vmf_trapno = intnum;
	p = (int (*)(struct vm86frame *))((uintptr_t)vm86_bioscall +
	    setidt_disp);
	mtx_lock(&vm86_lock);
	critical_enter();
	retval = p(vmf);
	critical_exit();
	mtx_unlock(&vm86_lock);
	return (retval);
}

/*
 * struct vm86context contains the page table to use when making
 * vm86 calls.  If intnum is a valid interrupt number (0-255), then
 * the "interrupt trampoline" will be used, otherwise we use the
 * caller's cs:ip routine.  
 */
int
vm86_datacall(int intnum, struct vm86frame *vmf, struct vm86context *vmc)
{
	uint64_t *pte_pae;
	uint32_t *pte_nopae;
	int (*p)(struct vm86frame *);
	vm_paddr_t page;
	int i, entry, retval;

	mtx_lock(&vm86_lock);
	if (pae_mode) {
		pte_pae = (uint64_t *)vm86paddr;
		for (i = 0; i < vmc->npages; i++) {
			page = vtophys(vmc->pmap[i].kva & PG_FRAME_PAE);
			entry = vmc->pmap[i].pte_num;
			vmc->pmap[i].old_pte = pte_pae[entry];
			pte_pae[entry] = page | PG_V | PG_RW | PG_U;
			pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
		}
	} else {
		pte_nopae = (uint32_t *)vm86paddr;
		for (i = 0; i < vmc->npages; i++) {
			page = vtophys(vmc->pmap[i].kva & PG_FRAME_NOPAE);
			entry = vmc->pmap[i].pte_num;
			vmc->pmap[i].old_pte = pte_nopae[entry];
			pte_nopae[entry] = page | PG_V | PG_RW | PG_U;
			pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
		}
	}

	vmf->vmf_trapno = intnum;
	p = (int (*)(struct vm86frame *))((uintptr_t)vm86_bioscall +
	    setidt_disp);
	critical_enter();
	retval = p(vmf);
	critical_exit();

	if (pae_mode) {
		for (i = 0; i < vmc->npages; i++) {
			entry = vmc->pmap[i].pte_num;
			pte_pae[entry] = vmc->pmap[i].old_pte;
			pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
		}
	} else {
		for (i = 0; i < vmc->npages; i++) {
			entry = vmc->pmap[i].pte_num;
			pte_nopae[entry] = vmc->pmap[i].old_pte;
			pmap_invalidate_page(kernel_pmap, vmc->pmap[i].kva);
		}
	}
	mtx_unlock(&vm86_lock);

	return (retval);
}

vm_offset_t
vm86_getaddr(struct vm86context *vmc, u_short sel, u_short off)
{
	int i, page;
	vm_offset_t addr;

	addr = (vm_offset_t)MAKE_ADDR(sel, off);
	page = addr >> PAGE_SHIFT;
	for (i = 0; i < vmc->npages; i++)
		if (page == vmc->pmap[i].pte_num)
			return (vmc->pmap[i].kva + (addr & PAGE_MASK));
	return (0);
}

int
vm86_getptr(struct vm86context *vmc, vm_offset_t kva, u_short *sel,
     u_short *off)
{
	int i;

	for (i = 0; i < vmc->npages; i++)
		if (kva >= vmc->pmap[i].kva &&
		    kva < vmc->pmap[i].kva + PAGE_SIZE) {
			*off = kva - vmc->pmap[i].kva;
			*sel = vmc->pmap[i].pte_num << 8;
			return (1);
		}
	return (0);
}

int
vm86_sysarch(struct thread *td, char *args)
{
	int error = 0;
	struct i386_vm86_args ua;
	struct vm86_kernel *vm86;

	if ((error = copyin(args, &ua, sizeof(struct i386_vm86_args))) != 0)
		return (error);

	if (td->td_pcb->pcb_ext == 0)
		if ((error = i386_extend_pcb(td)) != 0)
			return (error);
	vm86 = &td->td_pcb->pcb_ext->ext_vm86;

	switch (ua.sub_op) {
	case VM86_INIT: {
		struct vm86_init_args sa;

		if ((error = copyin(ua.sub_args, &sa, sizeof(sa))) != 0)
			return (error);
		if (cpu_feature & CPUID_VME)
			vm86->vm86_has_vme = (rcr4() & CR4_VME ? 1 : 0);
		else
			vm86->vm86_has_vme = 0;
		vm86->vm86_inited = 1;
		vm86->vm86_debug = sa.debug;
		bcopy(&sa.int_map, vm86->vm86_intmap, 32);
		}
		break;

#if 0
	case VM86_SET_VME: {
		struct vm86_vme_args sa;

		if ((cpu_feature & CPUID_VME) == 0)
			return (ENODEV);

		if (error = copyin(ua.sub_args, &sa, sizeof(sa)))
			return (error);
		if (sa.state)
			load_cr4(rcr4() | CR4_VME);
		else
			load_cr4(rcr4() & ~CR4_VME);
		}
		break;
#endif

	case VM86_GET_VME: {
		struct vm86_vme_args sa;

		sa.state = (rcr4() & CR4_VME ? 1 : 0);
        	error = copyout(&sa, ua.sub_args, sizeof(sa));
		}
		break;

	case VM86_INTCALL: {
		struct vm86_intcall_args sa;

		if ((error = priv_check(td, PRIV_VM86_INTCALL)))
			return (error);
		if ((error = copyin(ua.sub_args, &sa, sizeof(sa))))
			return (error);
		if ((error = vm86_intcall(sa.intnum, &sa.vmf)))
			return (error);
		error = copyout(&sa, ua.sub_args, sizeof(sa));
		}
		break;

	default:
		error = EINVAL;
	}
	return (error);
}