aboutsummaryrefslogtreecommitdiff
path: root/sys/i386/isa/clock.c
blob: 196d34ce75ca0d7a2bcdd91ac5b9995ef60b5fc6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*-
 * Copyright (c) 1990 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * William Jolitz and Don Ahn.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
 *	$Id: clock.c,v 1.32 1995/03/16 18:11:58 bde Exp $
 */

/*
 * inittodr, settodr and support routines written
 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
 *
 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
 */

/*
 * Primitive clock interrupt routines.
 */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <machine/clock.h>
#include <machine/frame.h>
#include <i386/isa/icu.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/rtc.h>
#include <i386/isa/timerreg.h>

/*
 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
 * can use a simple formula for leap years.
 */
#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)

/* X-tals being what they are, it's nice to be able to fudge this one... */
#ifndef TIMER_FREQ
#define	TIMER_FREQ	1193182	/* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))

/*
 * Time in timer cycles that it takes for microtime() to disable interrupts
 * and latch the count.  microtime() currently uses "cli; outb ..." so it
 * normally takes less than 2 timer cycles.  Add a few for cache misses.
 * Add a few more to allow for latency in bogus calls to microtime() with
 * interrupts already disabled.
 */
#define	TIMER0_LATCH_COUNT	20

/*
 * Minimum maximum count that we are willing to program into timer0.
 * Must be large enough to guarantee that the timer interrupt handler
 * returns before the next timer interrupt.  Must be larger than
 * TIMER0_LATCH_COUNT so that we don't have to worry about underflow in
 * the calculation of timer0_overflow_threshold.
 */
#define	TIMER0_MIN_MAX_COUNT	TIMER_DIV(20000)

int	adjkerntz = 0;		/* offset from CMOS clock */
int	disable_rtc_set	= 0;	/* disable resettodr() if != 0 */
u_int	idelayed;
#ifdef I586_CPU
int	pentium_mhz;
#endif
u_int	stat_imask = SWI_CLOCK_MASK;
int 	timer0_max_count;
u_int 	timer0_overflow_threshold;
u_int 	timer0_prescaler_count;

static	int	beeping = 0;
static	u_int	clk_imask = HWI_MASK | SWI_MASK;
static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
static 	u_int	hardclock_max_count;
/*
 * XXX new_function and timer_func should not handle clockframes, but
 * timer_func currently needs to hold hardclock to handle the
 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
 * to switch between clkintr() and a slightly different timerintr().
 * This will require locking when acquiring and releasing timer0 - the
 * current (nonexistent) locking doesn't seem to be adequate even now.
 */
static 	void	(*new_function) __P((struct clockframe *frame));
static 	u_int	new_rate;
static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static 	char	timer0_state = 0;
static	char	timer2_state = 0;
static 	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;

#if 0
void
clkintr(struct clockframe frame)
{
	hardclock(&frame);
	setdelayed();
}
#else
void
clkintr(struct clockframe frame)
{
	timer_func(&frame);
	switch (timer0_state) {
	case 0:
		setdelayed();
		break;
	case 1:
		if ((timer0_prescaler_count += timer0_max_count)
		    >= hardclock_max_count) {
			hardclock(&frame);
			setdelayed();
			timer0_prescaler_count -= hardclock_max_count;
		}
		break;
	case 2:
		setdelayed();
		timer0_max_count = TIMER_DIV(new_rate);
		timer0_overflow_threshold =
			timer0_max_count - TIMER0_LATCH_COUNT;
		disable_intr();
		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
		outb(TIMER_CNTR0, timer0_max_count & 0xff);
		outb(TIMER_CNTR0, timer0_max_count >> 8);
		enable_intr();
		timer0_prescaler_count = 0;
		timer_func = new_function;
		timer0_state = 1;
		break;
	case 3:
		if ((timer0_prescaler_count += timer0_max_count)
		    >= hardclock_max_count) {
			hardclock(&frame);
			setdelayed();
			timer0_max_count = hardclock_max_count;
			timer0_overflow_threshold =
				timer0_max_count - TIMER0_LATCH_COUNT;
			disable_intr();
			outb(TIMER_MODE,
			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
			outb(TIMER_CNTR0, timer0_max_count & 0xff);
			outb(TIMER_CNTR0, timer0_max_count >> 8);
			enable_intr();
			/*
			 * See microtime.s for this magic.
			 */
			time.tv_usec += (27645 *
				(timer0_prescaler_count - hardclock_max_count))
				>> 15;
			if (time.tv_usec >= 1000000)
				time.tv_usec -= 1000000;
			timer0_prescaler_count = 0;
			timer_func = hardclock;;
			timer0_state = 0;
		}
		break;
	}
}
#endif

int
acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
{
	if (timer0_state || TIMER_DIV(rate) < TIMER0_MIN_MAX_COUNT ||
	    !function) 	
		return -1;
	new_function = function;
	new_rate = rate;
	timer0_state = 2;
	return 0;
}

int
acquire_timer2(int mode)
{
	if (timer2_state) 	
		return -1;
	timer2_state = 1;
	outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
	return 0;
}

int
release_timer0()
{
	if (!timer0_state)
		return -1;
	timer0_state = 3;
	return 0;
}

int
release_timer2()
{
	if (!timer2_state)
		return -1;
	timer2_state = 0;
	outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
	return 0;
}

/*
 * This routine receives statistical clock interrupts from the RTC.
 * As explained above, these occur at 128 interrupts per second.
 * When profiling, we receive interrupts at a rate of 1024 Hz.
 *
 * This does not actually add as much overhead as it sounds, because
 * when the statistical clock is active, the hardclock driver no longer
 * needs to keep (inaccurate) statistics on its own.  This decouples
 * statistics gathering from scheduling interrupts.
 *
 * The RTC chip requires that we read status register C (RTC_INTR)
 * to acknowledge an interrupt, before it will generate the next one.
 */
void
rtcintr(struct clockframe frame)
{
	u_char stat;
	stat = rtcin(RTC_INTR);
	if(stat & RTCIR_PERIOD) {
		statclock(&frame);
	}
}

#ifdef DDB
static void
printrtc(void)
{
	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
}
#endif

static int
getit() 
{
	int high, low;

	disable_intr();
	/* select timer0 and latch counter value */
	outb(TIMER_MODE, TIMER_SEL0);
	low = inb(TIMER_CNTR0);
	high = inb(TIMER_CNTR0);
	enable_intr();
	return ((high << 8) | low);
}

#ifdef I586_CPU
static long long cycles_per_sec = 0;

/*
 * Figure out how fast the cyclecounter runs.  This must be run with
 * clock interrupts disabled, but with the timer/counter programmed
 * and running.
 */
void
calibrate_cyclecounter(void)
{
	/*
	 * Don't need volatile; should always use unsigned if 2's
	 * complement arithmetic is desired.
	 */
	unsigned long long count, last_count;

	__asm __volatile(".byte 0xf,0x31" : "=A" (last_count));
	DELAY(1000000);
	__asm __volatile(".byte 0xf,0x31" : "=A" (count));
	/*
	 * XX lose if the clock rate is not nearly a multiple of 1000000.
	 */
	pentium_mhz = ((count - last_count) + 500000) / 1000000;
}
#endif

/*
 * Wait "n" microseconds.
 * Relies on timer 1 counting down from (TIMER_FREQ / hz) 
 * Note: timer had better have been programmed before this is first used!
 */
void
DELAY(int n)
{
	int prev_tick, tick, ticks_left, sec, usec;

#ifdef DELAYDEBUG
	int getit_calls = 1;
	int n1;
	static int state = 0;

	if (state == 0) {
		state = 1;
		for (n1 = 1; n1 <= 10000000; n1 *= 10)
			DELAY(n1);
		state = 2;
	}
	if (state == 1)
		printf("DELAY(%d)...", n);
#endif
	/*
	 * Read the counter first, so that the rest of the setup overhead is
	 * counted.  Guess the initial overhead is 20 usec (on most systems it
	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
	 * multiplications and divisions to scale the count take a while).
	 */
	prev_tick = getit(0, 0);
	n -= 20;
	/*
	 * Calculate (n * (TIMER_FREQ / 1e6)) without using floating point 
	 * and without any avoidable overflows.
	 */
	sec = n / 1000000;
	usec = n - sec * 1000000;
	ticks_left = sec * TIMER_FREQ
		     + usec * (TIMER_FREQ / 1000000)
		     + usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
		     + usec * (TIMER_FREQ % 1000) / 1000000;

	while (ticks_left > 0) {
		tick = getit(0, 0);
#ifdef DELAYDEBUG
		++getit_calls;
#endif
		if (tick > prev_tick)
			ticks_left -= prev_tick - (tick - timer0_max_count);
		else
			ticks_left -= prev_tick - tick;
		prev_tick = tick;
	}
#ifdef DELAYDEBUG
	if (state == 1)
		printf(" %d calls to getit() at %d usec each\n",
		       getit_calls, (n + 5) / getit_calls);
#endif
}

static void
sysbeepstop(void *chan)
{
	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
	release_timer2();
	beeping = 0;
}

int 
sysbeep(int pitch, int period)
{

	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT)) 
		return -1;
	disable_intr();
	outb(TIMER_CNTR2, pitch);
	outb(TIMER_CNTR2, (pitch>>8));
	enable_intr();
	if (!beeping) {
	outb(IO_PPI, inb(IO_PPI) | 3);	/* enable counter2 output to speaker */
		beeping = period;
		timeout(sysbeepstop, (void *)NULL, period);
	}
	return 0;
}

/*
 * RTC support routines
 */
static int
bcd2int(int bcd)
{
	return(bcd/16 *	10 + bcd%16);
}

static int
int2bcd(int dez)
{
	return(dez/10 *	16 + dez%10);
}

static inline void
writertc(u_char reg, u_char val)
{
	outb(IO_RTC, reg);
	outb(IO_RTC + 1, val);
}

static int
readrtc(int port)
{
	return(bcd2int(rtcin(port)));
}

/*
 * Initialize 8253 timer 0 early so that it can be used in DELAY().
 * XXX initialization of other timers is unintentionally left blank.
 */
void
startrtclock() 
{
	timer0_max_count = hardclock_max_count = TIMER_DIV(hz);
	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
	outb(TIMER_CNTR0, timer0_max_count & 0xff);
	outb(TIMER_CNTR0, timer0_max_count >> 8);
}

/*
 * Initialize the time of day register,	based on the time base which is, e.g.
 * from	a filesystem.
 */
void
inittodr(time_t base)
{
	unsigned long	sec, days;
	int		yd;
	int		year, month;
	int		y, m, s;

	s = splclock();
	time.tv_sec  = base;
	time.tv_usec = 0;
	splx(s);

	/* Look	if we have a RTC present and the time is valid */
	if (rtcin(RTC_STATUSD) != RTCSD_PWR)
		goto wrong_time;

	/* wait	for time update	to complete */
	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
	while (rtcin(RTC_STATUSA) & RTCSA_TUP);

	days = 0;
#ifdef USE_RTC_CENTURY
	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
#else
	year = readrtc(RTC_YEAR) + 1900;
	if (year < 1970)
		year += 100;
#endif
	if (year < 1970)
		goto wrong_time;
	month =	readrtc(RTC_MONTH);
	for (m = 1; m <	month; m++)
		days +=	daysinmonth[m-1];
	if ((month > 2)	&& LEAPYEAR(year))
		days ++;
	days +=	readrtc(RTC_DAY) - 1;
	yd = days;
	for (y = 1970; y < year; y++)
		days +=	DAYSPERYEAR + LEAPYEAR(y);
	sec = ((( days * 24 +
		  readrtc(RTC_HRS)) * 60 +
		  readrtc(RTC_MIN)) * 60 +
		  readrtc(RTC_SEC));
	/* sec now contains the	number of seconds, since Jan 1 1970,
	   in the local	time zone */

	sec += tz.tz_minuteswest * 60 + adjkerntz;

	s = splclock();
	time.tv_sec = sec;
	splx(s);
	return;

wrong_time:
	printf("Invalid	time in	real time clock.\n");
	printf("Check and reset	the date immediately!\n");
}

/*
 * Write system	time back to RTC
 */
void
resettodr()
{
	unsigned long	tm;
	int		y, m, fd, r, s;

	if (disable_rtc_set)
		return;

	s = splclock();
	tm = time.tv_sec;
	splx(s);

	/* Disable RTC updates and interrupts. */
	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);

	/* Calculate local time	to put in RTC */

	tm -= tz.tz_minuteswest * 60 + adjkerntz;

	writertc(RTC_SEC, int2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
	writertc(RTC_MIN, int2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
	writertc(RTC_HRS, int2bcd(tm%24)); tm /= 24;	/* Write back Hours   */

	/* We have now the days	since 01-01-1970 in tm */
	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
	for (y=1970;; y++)
		if ((tm	- DAYSPERYEAR -	LEAPYEAR(y)) > tm)
			break;
		else
			tm -= DAYSPERYEAR + LEAPYEAR(y);

	/* Now we have the years in y and the day-of-the-year in tm */
	writertc(RTC_YEAR, int2bcd(y%100));		/* Write back Year    */
#ifdef USE_RTC_CENTURY
	writertc(RTC_CENTURY, int2bcd(y/100));		/* ... and Century    */
#endif
	if (LEAPYEAR(y)	&& (tm >= 31+29))
		tm--;					/* Subtract Feb-29 */
	for (m=1;; m++)
		if (tm - daysinmonth[m-1] > tm)
			break;
		else
			tm -= daysinmonth[m-1];

	writertc(RTC_MONTH, int2bcd(m));		/* Write back Month   */
	writertc(RTC_DAY, int2bcd(tm+1));		/* Write back Day     */

	/* Reenable RTC updates and interrupts. */
	writertc(RTC_STATUSB, RTCSB_24HR | RTCSB_PINTR);
}

/*
 * Start both clocks running.
 */
void
cpu_initclocks()
{
	int diag;

	stathz = RTC_NOPROFRATE;
	profhz = RTC_PROFRATE;

	/* Finish initializing 8253 timer 0. */
	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
		      /* unit */ 0);
	INTREN(IRQ0);

	/* Initialize RTC. */
	writertc(RTC_STATUSA, rtc_statusa);
	writertc(RTC_STATUSB, RTCSB_24HR);
	diag = rtcin(RTC_DIAG);
	if (diag != 0)
		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
		      /* unit */ 0);
	INTREN(IRQ8);
	writertc(RTC_STATUSB, RTCSB_24HR | RTCSB_PINTR);
}

void
setstatclockrate(int newhz)
{
	if (newhz == RTC_PROFRATE)
		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
	else
		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
	writertc(RTC_STATUSA, rtc_statusa);
}