aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/kern_fork.c
blob: e6f891d992ca9869a95e7b69dcfe1061f7d6dcb4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*-
 * Copyright (c) 1982, 1986, 1989, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ktrace.h"
#include "opt_mac.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/eventhandler.h>
#include <sys/filedesc.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/pioctl.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/syscall.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <sys/acct.h>
#include <sys/ktr.h>
#include <sys/ktrace.h>
#include <sys/unistd.h>	
#include <sys/sx.h>
#include <sys/signalvar.h>

#include <security/audit/audit.h>
#include <security/mac/mac_framework.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>


#ifndef _SYS_SYSPROTO_H_
struct fork_args {
	int     dummy;
};
#endif

/* ARGSUSED */
int
fork(td, uap)
	struct thread *td;
	struct fork_args *uap;
{
	int error;
	struct proc *p2;

	error = fork1(td, RFFDG | RFPROC, 0, &p2);
	if (error == 0) {
		td->td_retval[0] = p2->p_pid;
		td->td_retval[1] = 0;
	}
	return (error);
}

/* ARGSUSED */
int
vfork(td, uap)
	struct thread *td;
	struct vfork_args *uap;
{
	int error;
	struct proc *p2;

	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
	if (error == 0) {
		td->td_retval[0] = p2->p_pid;
		td->td_retval[1] = 0;
	}
	return (error);
}

int
rfork(td, uap)
	struct thread *td;
	struct rfork_args *uap;
{
	struct proc *p2;
	int error;

	/* Don't allow kernel-only flags. */
	if ((uap->flags & RFKERNELONLY) != 0)
		return (EINVAL);

	AUDIT_ARG(fflags, uap->flags);
	error = fork1(td, uap->flags, 0, &p2);
	if (error == 0) {
		td->td_retval[0] = p2 ? p2->p_pid : 0;
		td->td_retval[1] = 0;
	}
	return (error);
}

int	nprocs = 1;		/* process 0 */
int	lastpid = 0;
SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 
    "Last used PID");

/*
 * Random component to lastpid generation.  We mix in a random factor to make
 * it a little harder to predict.  We sanity check the modulus value to avoid
 * doing it in critical paths.  Don't let it be too small or we pointlessly
 * waste randomness entropy, and don't let it be impossibly large.  Using a
 * modulus that is too big causes a LOT more process table scans and slows
 * down fork processing as the pidchecked caching is defeated.
 */
static int randompid = 0;

static int
sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
{
	int error, pid;

	error = sysctl_wire_old_buffer(req, sizeof(int));
	if (error != 0)
		return(error);
	sx_xlock(&allproc_lock);
	pid = randompid;
	error = sysctl_handle_int(oidp, &pid, 0, req);
	if (error == 0 && req->newptr != NULL) {
		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
			pid = PID_MAX - 100;
		else if (pid < 2)			/* NOP */
			pid = 0;
		else if (pid < 100)			/* Make it reasonable */
			pid = 100;
		randompid = pid;
	}
	sx_xunlock(&allproc_lock);
	return (error);
}

SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");

int
fork1(td, flags, pages, procp)
	struct thread *td;
	int flags;
	int pages;
	struct proc **procp;
{
	struct proc *p1, *p2, *pptr;
	struct proc *newproc;
	int ok, trypid;
	static int curfail, pidchecked = 0;
	static struct timeval lastfail;
	struct filedesc *fd;
	struct filedesc_to_leader *fdtol;
	struct thread *td2;
	struct sigacts *newsigacts;
	struct vmspace *vm2;
	int error;

	/* Can't copy and clear. */
	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
		return (EINVAL);

	p1 = td->td_proc;

	/*
	 * Here we don't create a new process, but we divorce
	 * certain parts of a process from itself.
	 */
	if ((flags & RFPROC) == 0) {
		if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
		    (flags & (RFCFDG | RFFDG))) {
			PROC_LOCK(p1);
			if (thread_single(SINGLE_BOUNDARY)) {
				PROC_UNLOCK(p1);
				return (ERESTART);
			}
			PROC_UNLOCK(p1);
		}

		error = vm_forkproc(td, NULL, NULL, NULL, flags);
		if (error)
			goto norfproc_fail;

		/*
		 * Close all file descriptors.
		 */
		if (flags & RFCFDG) {
			struct filedesc *fdtmp;
			fdtmp = fdinit(td->td_proc->p_fd);
			fdfree(td);
			p1->p_fd = fdtmp;
		}

		/*
		 * Unshare file descriptors (from parent).
		 */
		if (flags & RFFDG) 
			fdunshare(p1, td);

norfproc_fail:
		if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
		    (flags & (RFCFDG | RFFDG))) {
			PROC_LOCK(p1);
			thread_single_end();
			PROC_UNLOCK(p1);
		}
		*procp = NULL;
		return (error);
	}

	/*
	 * XXX
	 * We did have single-threading code here
	 * however it proved un-needed and caused problems
	 */

	/* Allocate new proc. */
	newproc = uma_zalloc(proc_zone, M_WAITOK);
	if (TAILQ_EMPTY(&newproc->p_threads)) {
		td2 = thread_alloc();
		if (td2 == NULL) {
			error = ENOMEM;
			goto fail1;
		}
		proc_linkup(newproc, td2);
		sched_newproc(newproc, td2);
	} else
		td2 = FIRST_THREAD_IN_PROC(newproc);

	/* Allocate and switch to an alternate kstack if specified. */
	if (pages != 0) {
		if (!vm_thread_new_altkstack(td2, pages)) {
			error = ENOMEM;
			goto fail1;
		}
	}
	if ((flags & RFMEM) == 0) {
		vm2 = vmspace_fork(p1->p_vmspace);
		if (vm2 == NULL) {
			error = ENOMEM;
			goto fail1;
		}
	} else
		vm2 = NULL;
#ifdef MAC
	mac_proc_init(newproc);
#endif
	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
	STAILQ_INIT(&newproc->p_ktr);

	/* We have to lock the process tree while we look for a pid. */
	sx_slock(&proctree_lock);

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create.  Don't allow
	 * a nonprivileged user to use the last ten processes; don't let root
	 * exceed the limit. The variable nprocs is the current number of
	 * processes, maxproc is the limit.
	 */
	sx_xlock(&allproc_lock);
	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
		error = EAGAIN;
		goto fail;
	}

	/*
	 * Increment the count of procs running with this uid. Don't allow
	 * a nonprivileged user to exceed their current limit.
	 *
	 * XXXRW: Can we avoid privilege here if it's not needed?
	 */
	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
	if (error == 0)
		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
	else {
		PROC_LOCK(p1);
		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
		    lim_cur(p1, RLIMIT_NPROC));
		PROC_UNLOCK(p1);
	}
	if (!ok) {
		error = EAGAIN;
		goto fail;
	}

	/*
	 * Increment the nprocs resource before blocking can occur.  There
	 * are hard-limits as to the number of processes that can run.
	 */
	nprocs++;

	/*
	 * Find an unused process ID.  We remember a range of unused IDs
	 * ready to use (from lastpid+1 through pidchecked-1).
	 *
	 * If RFHIGHPID is set (used during system boot), do not allocate
	 * low-numbered pids.
	 */
	trypid = lastpid + 1;
	if (flags & RFHIGHPID) {
		if (trypid < 10)
			trypid = 10;
	} else {
		if (randompid)
			trypid += arc4random() % randompid;
	}
retry:
	/*
	 * If the process ID prototype has wrapped around,
	 * restart somewhat above 0, as the low-numbered procs
	 * tend to include daemons that don't exit.
	 */
	if (trypid >= PID_MAX) {
		trypid = trypid % PID_MAX;
		if (trypid < 100)
			trypid += 100;
		pidchecked = 0;
	}
	if (trypid >= pidchecked) {
		int doingzomb = 0;

		pidchecked = PID_MAX;
		/*
		 * Scan the active and zombie procs to check whether this pid
		 * is in use.  Remember the lowest pid that's greater
		 * than trypid, so we can avoid checking for a while.
		 */
		p2 = LIST_FIRST(&allproc);
again:
		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
			while (p2->p_pid == trypid ||
			    (p2->p_pgrp != NULL &&
			    (p2->p_pgrp->pg_id == trypid ||
			    (p2->p_session != NULL &&
			    p2->p_session->s_sid == trypid)))) {
				trypid++;
				if (trypid >= pidchecked)
					goto retry;
			}
			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
				pidchecked = p2->p_pid;
			if (p2->p_pgrp != NULL) {
				if (p2->p_pgrp->pg_id > trypid &&
				    pidchecked > p2->p_pgrp->pg_id)
					pidchecked = p2->p_pgrp->pg_id;
				if (p2->p_session != NULL &&
				    p2->p_session->s_sid > trypid &&
				    pidchecked > p2->p_session->s_sid)
					pidchecked = p2->p_session->s_sid;
			}
		}
		if (!doingzomb) {
			doingzomb = 1;
			p2 = LIST_FIRST(&zombproc);
			goto again;
		}
	}
	sx_sunlock(&proctree_lock);

	/*
	 * RFHIGHPID does not mess with the lastpid counter during boot.
	 */
	if (flags & RFHIGHPID)
		pidchecked = 0;
	else
		lastpid = trypid;

	p2 = newproc;
	p2->p_state = PRS_NEW;		/* protect against others */
	p2->p_pid = trypid;
	/*
	 * Allow the scheduler to initialize the child.
	 */
	thread_lock(td);
	sched_fork(td, td2);
	thread_unlock(td);
	AUDIT_ARG(pid, p2->p_pid);
	LIST_INSERT_HEAD(&allproc, p2, p_list);
	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);

	PROC_LOCK(p2);
	PROC_LOCK(p1);

	sx_xunlock(&allproc_lock);

	bcopy(&p1->p_startcopy, &p2->p_startcopy,
	    __rangeof(struct proc, p_startcopy, p_endcopy));
	PROC_UNLOCK(p1);

	bzero(&p2->p_startzero,
	    __rangeof(struct proc, p_startzero, p_endzero));

	p2->p_ucred = crhold(td->td_ucred);
	PROC_UNLOCK(p2);

	/*
	 * Malloc things while we don't hold any locks.
	 */
	if (flags & RFSIGSHARE)
		newsigacts = NULL;
	else
		newsigacts = sigacts_alloc();

	/*
	 * Copy filedesc.
	 */
	if (flags & RFCFDG) {
		fd = fdinit(p1->p_fd);
		fdtol = NULL;
	} else if (flags & RFFDG) {
		fd = fdcopy(p1->p_fd);
		fdtol = NULL;
	} else {
		fd = fdshare(p1->p_fd);
		if (p1->p_fdtol == NULL)
			p1->p_fdtol =
				filedesc_to_leader_alloc(NULL,
							 NULL,
							 p1->p_leader);
		if ((flags & RFTHREAD) != 0) {
			/*
			 * Shared file descriptor table and
			 * shared process leaders.
			 */
			fdtol = p1->p_fdtol;
			FILEDESC_XLOCK(p1->p_fd);
			fdtol->fdl_refcount++;
			FILEDESC_XUNLOCK(p1->p_fd);
		} else {
			/* 
			 * Shared file descriptor table, and
			 * different process leaders 
			 */
			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
							 p1->p_fd,
							 p2);
		}
	}
	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */

	PROC_LOCK(p2);
	PROC_LOCK(p1);

	bzero(&td2->td_startzero,
	    __rangeof(struct thread, td_startzero, td_endzero));

	bcopy(&td->td_startcopy, &td2->td_startcopy,
	    __rangeof(struct thread, td_startcopy, td_endcopy));

	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
	td2->td_sigstk = td->td_sigstk;
	td2->td_sigmask = td->td_sigmask;
	td2->td_flags = TDF_INMEM;

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 */
	p2->p_flag = P_INMEM;
	p2->p_swtick = ticks;
	if (p1->p_flag & P_PROFIL)
		startprofclock(p2);
	td2->td_ucred = crhold(p2->p_ucred);
	pargs_hold(p2->p_args);

	if (flags & RFSIGSHARE) {
		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
	} else {
		sigacts_copy(newsigacts, p1->p_sigacts);
		p2->p_sigacts = newsigacts;
	}
	if (flags & RFLINUXTHPN) 
	        p2->p_sigparent = SIGUSR1;
	else
	        p2->p_sigparent = SIGCHLD;

	p2->p_textvp = p1->p_textvp;
	p2->p_fd = fd;
	p2->p_fdtol = fdtol;

	/*
	 * p_limit is copy-on-write.  Bump its refcount.
	 */
	lim_fork(p1, p2);

	pstats_fork(p1->p_stats, p2->p_stats);

	PROC_UNLOCK(p1);
	PROC_UNLOCK(p2);

	/* Bump references to the text vnode (for procfs) */
	if (p2->p_textvp)
		vref(p2->p_textvp);

	/*
	 * Set up linkage for kernel based threading.
	 */
	if ((flags & RFTHREAD) != 0) {
		mtx_lock(&ppeers_lock);
		p2->p_peers = p1->p_peers;
		p1->p_peers = p2;
		p2->p_leader = p1->p_leader;
		mtx_unlock(&ppeers_lock);
		PROC_LOCK(p1->p_leader);
		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
			PROC_UNLOCK(p1->p_leader);
			/*
			 * The task leader is exiting, so process p1 is
			 * going to be killed shortly.  Since p1 obviously
			 * isn't dead yet, we know that the leader is either
			 * sending SIGKILL's to all the processes in this
			 * task or is sleeping waiting for all the peers to
			 * exit.  We let p1 complete the fork, but we need
			 * to go ahead and kill the new process p2 since
			 * the task leader may not get a chance to send
			 * SIGKILL to it.  We leave it on the list so that
			 * the task leader will wait for this new process
			 * to commit suicide.
			 */
			PROC_LOCK(p2);
			psignal(p2, SIGKILL);
			PROC_UNLOCK(p2);
		} else
			PROC_UNLOCK(p1->p_leader);
	} else {
		p2->p_peers = NULL;
		p2->p_leader = p2;
	}

	sx_xlock(&proctree_lock);
	PGRP_LOCK(p1->p_pgrp);
	PROC_LOCK(p2);
	PROC_LOCK(p1);

	/*
	 * Preserve some more flags in subprocess.  P_PROFIL has already
	 * been preserved.
	 */
	p2->p_flag |= p1->p_flag & P_SUGID;
	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
	SESS_LOCK(p1->p_session);
	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
		p2->p_flag |= P_CONTROLT;
	SESS_UNLOCK(p1->p_session);
	if (flags & RFPPWAIT)
		p2->p_flag |= P_PPWAIT;

	p2->p_pgrp = p1->p_pgrp;
	LIST_INSERT_AFTER(p1, p2, p_pglist);
	PGRP_UNLOCK(p1->p_pgrp);
	LIST_INIT(&p2->p_children);

	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);

#ifdef KTRACE
	/*
	 * Copy traceflag and tracefile if enabled.
	 */
	mtx_lock(&ktrace_mtx);
	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
	if (p1->p_traceflag & KTRFAC_INHERIT) {
		p2->p_traceflag = p1->p_traceflag;
		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
			VREF(p2->p_tracevp);
			KASSERT(p1->p_tracecred != NULL,
			    ("ktrace vnode with no cred"));
			p2->p_tracecred = crhold(p1->p_tracecred);
		}
	}
	mtx_unlock(&ktrace_mtx);
#endif

	/*
	 * If PF_FORK is set, the child process inherits the
	 * procfs ioctl flags from its parent.
	 */
	if (p1->p_pfsflags & PF_FORK) {
		p2->p_stops = p1->p_stops;
		p2->p_pfsflags = p1->p_pfsflags;
	}

	/*
	 * This begins the section where we must prevent the parent
	 * from being swapped.
	 */
	_PHOLD(p1);
	PROC_UNLOCK(p1);

	/*
	 * Attach the new process to its parent.
	 *
	 * If RFNOWAIT is set, the newly created process becomes a child
	 * of init.  This effectively disassociates the child from the
	 * parent.
	 */
	if (flags & RFNOWAIT)
		pptr = initproc;
	else
		pptr = p1;
	p2->p_pptr = pptr;
	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
	sx_xunlock(&proctree_lock);

	/* Inform accounting that we have forked. */
	p2->p_acflag = AFORK;
	PROC_UNLOCK(p2);

	/*
	 * Finish creating the child process.  It will return via a different
	 * execution path later.  (ie: directly into user mode)
	 */
	vm_forkproc(td, p2, td2, vm2, flags);

	if (flags == (RFFDG | RFPROC)) {
		PCPU_INC(cnt.v_forks);
		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
		PCPU_INC(cnt.v_vforks);
		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else if (p1 == &proc0) {
		PCPU_INC(cnt.v_kthreads);
		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	} else {
		PCPU_INC(cnt.v_rforks);
		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
		    p2->p_vmspace->vm_ssize);
	}

	/*
	 * Both processes are set up, now check if any loadable modules want
	 * to adjust anything.
	 *   What if they have an error? XXX
	 */
	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);

	/*
	 * Set the child start time and mark the process as being complete.
	 */
	microuptime(&p2->p_stats->p_start);
	PROC_SLOCK(p2);
	p2->p_state = PRS_NORMAL;
	PROC_SUNLOCK(p2);

	/*
	 * If RFSTOPPED not requested, make child runnable and add to
	 * run queue.
	 */
	if ((flags & RFSTOPPED) == 0) {
		thread_lock(td2);
		TD_SET_CAN_RUN(td2);
		sched_add(td2, SRQ_BORING);
		thread_unlock(td2);
	}

	/*
	 * Now can be swapped.
	 */
	PROC_LOCK(p1);
	_PRELE(p1);

	/*
	 * Tell any interested parties about the new process.
	 */
	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);

	PROC_UNLOCK(p1);

	/*
	 * Preserve synchronization semantics of vfork.  If waiting for
	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
	 * proc (in case of exit).
	 */
	PROC_LOCK(p2);
	while (p2->p_flag & P_PPWAIT)
		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
	PROC_UNLOCK(p2);

	/*
	 * Return child proc pointer to parent.
	 */
	*procp = p2;
	return (0);
fail:
	sx_sunlock(&proctree_lock);
	if (ppsratecheck(&lastfail, &curfail, 1))
		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
		    td->td_ucred->cr_ruid);
	sx_xunlock(&allproc_lock);
#ifdef MAC
	mac_proc_destroy(newproc);
#endif
fail1:
	uma_zfree(proc_zone, newproc);
	pause("fork", hz / 2);
	return (error);
}

/*
 * Handle the return of a child process from fork1().  This function
 * is called from the MD fork_trampoline() entry point.
 */
void
fork_exit(callout, arg, frame)
	void (*callout)(void *, struct trapframe *);
	void *arg;
	struct trapframe *frame;
{
	struct proc *p;
	struct thread *td;
	struct thread *dtd;

	td = curthread;
	p = td->td_proc;
	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));

	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
		td, td->td_sched, p->p_pid, td->td_name);

	sched_fork_exit(td);
	/*
	* Processes normally resume in mi_switch() after being
	* cpu_switch()'ed to, but when children start up they arrive here
	* instead, so we must do much the same things as mi_switch() would.
	*/
	if ((dtd = PCPU_GET(deadthread))) {
		PCPU_SET(deadthread, NULL);
		thread_stash(dtd);
	}
	thread_unlock(td);

	/*
	 * cpu_set_fork_handler intercepts this function call to
	 * have this call a non-return function to stay in kernel mode.
	 * initproc has its own fork handler, but it does return.
	 */
	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
	callout(arg, frame);

	/*
	 * Check if a kernel thread misbehaved and returned from its main
	 * function.
	 */
	if (p->p_flag & P_KTHREAD) {
		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
		    td->td_name, p->p_pid);
		kproc_exit(0);
	}
	mtx_assert(&Giant, MA_NOTOWNED);

	EVENTHANDLER_INVOKE(schedtail, p);
}

/*
 * Simplified back end of syscall(), used when returning from fork()
 * directly into user mode.  Giant is not held on entry, and must not
 * be held on return.  This function is passed in to fork_exit() as the
 * first parameter and is called when returning to a new userland process.
 */
void
fork_return(td, frame)
	struct thread *td;
	struct trapframe *frame;
{

	userret(td, frame);
#ifdef KTRACE
	if (KTRPOINT(td, KTR_SYSRET))
		ktrsysret(SYS_fork, 0, 0);
#endif
	mtx_assert(&Giant, MA_NOTOWNED);
}