aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/kern_procctl.c
blob: 68fa4bc0c3acb881a8a243bd152cef4bd84eb526 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/*-
 * Copyright (c) 2014 John Baldwin
 * Copyright (c) 2014, 2016 The FreeBSD Foundation
 *
 * Portions of this software were developed by Konstantin Belousov
 * under sponsorship from the FreeBSD Foundation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/capsicum.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/procctl.h>
#include <sys/sx.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/wait.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>

static int
protect_setchild(struct thread *td, struct proc *p, int flags)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);
	if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0)
		return (0);
	if (flags & PPROT_SET) {
		p->p_flag |= P_PROTECTED;
		if (flags & PPROT_INHERIT)
			p->p_flag2 |= P2_INHERIT_PROTECTED;
	} else {
		p->p_flag &= ~P_PROTECTED;
		p->p_flag2 &= ~P2_INHERIT_PROTECTED;
	}
	return (1);
}

static int
protect_setchildren(struct thread *td, struct proc *top, int flags)
{
	struct proc *p;
	int ret;

	p = top;
	ret = 0;
	sx_assert(&proctree_lock, SX_LOCKED);
	for (;;) {
		ret |= protect_setchild(td, p, flags);
		PROC_UNLOCK(p);
		/*
		 * If this process has children, descend to them next,
		 * otherwise do any siblings, and if done with this level,
		 * follow back up the tree (but not past top).
		 */
		if (!LIST_EMPTY(&p->p_children))
			p = LIST_FIRST(&p->p_children);
		else for (;;) {
			if (p == top) {
				PROC_LOCK(p);
				return (ret);
			}
			if (LIST_NEXT(p, p_sibling)) {
				p = LIST_NEXT(p, p_sibling);
				break;
			}
			p = p->p_pptr;
		}
		PROC_LOCK(p);
	}
}

static int
protect_set(struct thread *td, struct proc *p, int flags)
{
	int error, ret;

	switch (PPROT_OP(flags)) {
	case PPROT_SET:
	case PPROT_CLEAR:
		break;
	default:
		return (EINVAL);
	}

	if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0)
		return (EINVAL);

	error = priv_check(td, PRIV_VM_MADV_PROTECT);
	if (error)
		return (error);

	if (flags & PPROT_DESCEND)
		ret = protect_setchildren(td, p, flags);
	else
		ret = protect_setchild(td, p, flags);
	if (ret == 0)
		return (EPERM);
	return (0);
}

static int
reap_acquire(struct thread *td, struct proc *p)
{

	sx_assert(&proctree_lock, SX_XLOCKED);
	if (p != curproc)
		return (EPERM);
	if ((p->p_treeflag & P_TREE_REAPER) != 0)
		return (EBUSY);
	p->p_treeflag |= P_TREE_REAPER;
	/*
	 * We do not reattach existing children and the whole tree
	 * under them to us, since p->p_reaper already seen them.
	 */
	return (0);
}

static int
reap_release(struct thread *td, struct proc *p)
{

	sx_assert(&proctree_lock, SX_XLOCKED);
	if (p != curproc)
		return (EPERM);
	if (p == initproc)
		return (EINVAL);
	if ((p->p_treeflag & P_TREE_REAPER) == 0)
		return (EINVAL);
	reaper_abandon_children(p, false);
	return (0);
}

static int
reap_status(struct thread *td, struct proc *p,
    struct procctl_reaper_status *rs)
{
	struct proc *reap, *p2, *first_p;

	sx_assert(&proctree_lock, SX_LOCKED);
	bzero(rs, sizeof(*rs));
	if ((p->p_treeflag & P_TREE_REAPER) == 0) {
		reap = p->p_reaper;
	} else {
		reap = p;
		rs->rs_flags |= REAPER_STATUS_OWNED;
	}
	if (reap == initproc)
		rs->rs_flags |= REAPER_STATUS_REALINIT;
	rs->rs_reaper = reap->p_pid;
	rs->rs_descendants = 0;
	rs->rs_children = 0;
	if (!LIST_EMPTY(&reap->p_reaplist)) {
		first_p = LIST_FIRST(&reap->p_children);
		if (first_p == NULL)
			first_p = LIST_FIRST(&reap->p_reaplist);
		rs->rs_pid = first_p->p_pid;
		LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
			if (proc_realparent(p2) == reap)
				rs->rs_children++;
			rs->rs_descendants++;
		}
	} else {
		rs->rs_pid = -1;
	}
	return (0);
}

static int
reap_getpids(struct thread *td, struct proc *p, struct procctl_reaper_pids *rp)
{
	struct proc *reap, *p2;
	struct procctl_reaper_pidinfo *pi, *pip;
	u_int i, n;
	int error;

	sx_assert(&proctree_lock, SX_LOCKED);
	PROC_UNLOCK(p);
	reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
	n = i = 0;
	error = 0;
	LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling)
		n++;
	sx_unlock(&proctree_lock);
	if (rp->rp_count < n)
		n = rp->rp_count;
	pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK);
	sx_slock(&proctree_lock);
	LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
		if (i == n)
			break;
		pip = &pi[i];
		bzero(pip, sizeof(*pip));
		pip->pi_pid = p2->p_pid;
		pip->pi_subtree = p2->p_reapsubtree;
		pip->pi_flags = REAPER_PIDINFO_VALID;
		if (proc_realparent(p2) == reap)
			pip->pi_flags |= REAPER_PIDINFO_CHILD;
		if ((p2->p_treeflag & P_TREE_REAPER) != 0)
			pip->pi_flags |= REAPER_PIDINFO_REAPER;
		i++;
	}
	sx_sunlock(&proctree_lock);
	error = copyout(pi, rp->rp_pids, i * sizeof(*pi));
	free(pi, M_TEMP);
	sx_slock(&proctree_lock);
	PROC_LOCK(p);
	return (error);
}

static void
reap_kill_proc(struct thread *td, struct proc *p2, ksiginfo_t *ksi,
    struct procctl_reaper_kill *rk, int *error)
{
	int error1;

	PROC_LOCK(p2);
	error1 = p_cansignal(td, p2, rk->rk_sig);
	if (error1 == 0) {
		pksignal(p2, rk->rk_sig, ksi);
		rk->rk_killed++;
		*error = error1;
	} else if (*error == ESRCH) {
		rk->rk_fpid = p2->p_pid;
		*error = error1;
	}
	PROC_UNLOCK(p2);
}

struct reap_kill_tracker {
	struct proc *parent;
	TAILQ_ENTRY(reap_kill_tracker) link;
};

TAILQ_HEAD(reap_kill_tracker_head, reap_kill_tracker);

static void
reap_kill_sched(struct reap_kill_tracker_head *tracker, struct proc *p2)
{
	struct reap_kill_tracker *t;

	t = malloc(sizeof(struct reap_kill_tracker), M_TEMP, M_WAITOK);
	t->parent = p2;
	TAILQ_INSERT_TAIL(tracker, t, link);
}

static int
reap_kill(struct thread *td, struct proc *p, struct procctl_reaper_kill *rk)
{
	struct proc *reap, *p2;
	ksiginfo_t ksi;
	struct reap_kill_tracker_head tracker;
	struct reap_kill_tracker *t;
	int error;

	sx_assert(&proctree_lock, SX_LOCKED);
	if (IN_CAPABILITY_MODE(td))
		return (ECAPMODE);
	if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG ||
	    (rk->rk_flags & ~(REAPER_KILL_CHILDREN |
	    REAPER_KILL_SUBTREE)) != 0 || (rk->rk_flags &
	    (REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) ==
	    (REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE))
		return (EINVAL);
	PROC_UNLOCK(p);
	reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
	ksiginfo_init(&ksi);
	ksi.ksi_signo = rk->rk_sig;
	ksi.ksi_code = SI_USER;
	ksi.ksi_pid = td->td_proc->p_pid;
	ksi.ksi_uid = td->td_ucred->cr_ruid;
	error = ESRCH;
	rk->rk_killed = 0;
	rk->rk_fpid = -1;
	if ((rk->rk_flags & REAPER_KILL_CHILDREN) != 0) {
		for (p2 = LIST_FIRST(&reap->p_children); p2 != NULL;
		    p2 = LIST_NEXT(p2, p_sibling)) {
			reap_kill_proc(td, p2, &ksi, rk, &error);
			/*
			 * Do not end the loop on error, signal
			 * everything we can.
			 */
		}
	} else {
		TAILQ_INIT(&tracker);
		reap_kill_sched(&tracker, reap);
		while ((t = TAILQ_FIRST(&tracker)) != NULL) {
			MPASS((t->parent->p_treeflag & P_TREE_REAPER) != 0);
			TAILQ_REMOVE(&tracker, t, link);
			for (p2 = LIST_FIRST(&t->parent->p_reaplist); p2 != NULL;
			    p2 = LIST_NEXT(p2, p_reapsibling)) {
				if (t->parent == reap &&
				    (rk->rk_flags & REAPER_KILL_SUBTREE) != 0 &&
				    p2->p_reapsubtree != rk->rk_subtree)
					continue;
				if ((p2->p_treeflag & P_TREE_REAPER) != 0)
					reap_kill_sched(&tracker, p2);
				reap_kill_proc(td, p2, &ksi, rk, &error);
			}
			free(t, M_TEMP);
		}
	}
	PROC_LOCK(p);
	return (error);
}

static int
trace_ctl(struct thread *td, struct proc *p, int state)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);

	/*
	 * Ktrace changes p_traceflag from or to zero under the
	 * process lock, so the test does not need to acquire ktrace
	 * mutex.
	 */
	if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0)
		return (EBUSY);

	switch (state) {
	case PROC_TRACE_CTL_ENABLE:
		if (td->td_proc != p)
			return (EPERM);
		p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC);
		break;
	case PROC_TRACE_CTL_DISABLE_EXEC:
		p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE;
		break;
	case PROC_TRACE_CTL_DISABLE:
		if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) {
			KASSERT((p->p_flag2 & P2_NOTRACE) != 0,
			    ("dandling P2_NOTRACE_EXEC"));
			if (td->td_proc != p)
				return (EPERM);
			p->p_flag2 &= ~P2_NOTRACE_EXEC;
		} else {
			p->p_flag2 |= P2_NOTRACE;
		}
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

static int
trace_status(struct thread *td, struct proc *p, int *data)
{

	if ((p->p_flag2 & P2_NOTRACE) != 0) {
		KASSERT((p->p_flag & P_TRACED) == 0,
		    ("%d traced but tracing disabled", p->p_pid));
		*data = -1;
	} else if ((p->p_flag & P_TRACED) != 0) {
		*data = p->p_pptr->p_pid;
	} else {
		*data = 0;
	}
	return (0);
}

static int
trapcap_ctl(struct thread *td, struct proc *p, int state)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);

	switch (state) {
	case PROC_TRAPCAP_CTL_ENABLE:
		p->p_flag2 |= P2_TRAPCAP;
		break;
	case PROC_TRAPCAP_CTL_DISABLE:
		p->p_flag2 &= ~P2_TRAPCAP;
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

static int
trapcap_status(struct thread *td, struct proc *p, int *data)
{

	*data = (p->p_flag2 & P2_TRAPCAP) != 0 ? PROC_TRAPCAP_CTL_ENABLE :
	    PROC_TRAPCAP_CTL_DISABLE;
	return (0);
}

static int
no_new_privs_ctl(struct thread *td, struct proc *p, int state)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);

	if (state != PROC_NO_NEW_PRIVS_ENABLE)
		return (EINVAL);
	p->p_flag2 |= P2_NO_NEW_PRIVS;
	return (0);
}

static int
no_new_privs_status(struct thread *td, struct proc *p, int *data)
{

	*data = (p->p_flag2 & P2_NO_NEW_PRIVS) != 0 ?
	    PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE;
	return (0);
}

static int
protmax_ctl(struct thread *td, struct proc *p, int state)
{
	PROC_LOCK_ASSERT(p, MA_OWNED);

	switch (state) {
	case PROC_PROTMAX_FORCE_ENABLE:
		p->p_flag2 &= ~P2_PROTMAX_DISABLE;
		p->p_flag2 |= P2_PROTMAX_ENABLE;
		break;
	case PROC_PROTMAX_FORCE_DISABLE:
		p->p_flag2 |= P2_PROTMAX_DISABLE;
		p->p_flag2 &= ~P2_PROTMAX_ENABLE;
		break;
	case PROC_PROTMAX_NOFORCE:
		p->p_flag2 &= ~(P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE);
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

static int
protmax_status(struct thread *td, struct proc *p, int *data)
{
	int d;

	switch (p->p_flag2 & (P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE)) {
	case 0:
		d = PROC_PROTMAX_NOFORCE;
		break;
	case P2_PROTMAX_ENABLE:
		d = PROC_PROTMAX_FORCE_ENABLE;
		break;
	case P2_PROTMAX_DISABLE:
		d = PROC_PROTMAX_FORCE_DISABLE;
		break;
	}
	if (kern_mmap_maxprot(p, PROT_READ) == PROT_READ)
		d |= PROC_PROTMAX_ACTIVE;
	*data = d;
	return (0);
}

static int
aslr_ctl(struct thread *td, struct proc *p, int state)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);

	switch (state) {
	case PROC_ASLR_FORCE_ENABLE:
		p->p_flag2 &= ~P2_ASLR_DISABLE;
		p->p_flag2 |= P2_ASLR_ENABLE;
		break;
	case PROC_ASLR_FORCE_DISABLE:
		p->p_flag2 |= P2_ASLR_DISABLE;
		p->p_flag2 &= ~P2_ASLR_ENABLE;
		break;
	case PROC_ASLR_NOFORCE:
		p->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE);
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

static int
aslr_status(struct thread *td, struct proc *p, int *data)
{
	struct vmspace *vm;
	int d;

	switch (p->p_flag2 & (P2_ASLR_ENABLE | P2_ASLR_DISABLE)) {
	case 0:
		d = PROC_ASLR_NOFORCE;
		break;
	case P2_ASLR_ENABLE:
		d = PROC_ASLR_FORCE_ENABLE;
		break;
	case P2_ASLR_DISABLE:
		d = PROC_ASLR_FORCE_DISABLE;
		break;
	}
	if ((p->p_flag & P_WEXIT) == 0) {
		_PHOLD(p);
		PROC_UNLOCK(p);
		vm = vmspace_acquire_ref(p);
		if (vm != NULL) {
			if ((vm->vm_map.flags & MAP_ASLR) != 0)
				d |= PROC_ASLR_ACTIVE;
			vmspace_free(vm);
		}
		PROC_LOCK(p);
		_PRELE(p);
	}
	*data = d;
	return (0);
}

static int
stackgap_ctl(struct thread *td, struct proc *p, int state)
{
	PROC_LOCK_ASSERT(p, MA_OWNED);

	if ((state & ~(PROC_STACKGAP_ENABLE | PROC_STACKGAP_DISABLE |
	    PROC_STACKGAP_ENABLE_EXEC | PROC_STACKGAP_DISABLE_EXEC)) != 0)
		return (EINVAL);
	switch (state & (PROC_STACKGAP_ENABLE | PROC_STACKGAP_DISABLE)) {
	case PROC_STACKGAP_ENABLE:
		if ((p->p_flag2 & P2_STKGAP_DISABLE) != 0)
			return (EINVAL);
		break;
	case PROC_STACKGAP_DISABLE:
		p->p_flag2 |= P2_STKGAP_DISABLE;
		break;
	case 0:
		break;
	default:
		return (EINVAL);
	}
	switch (state & (PROC_STACKGAP_ENABLE_EXEC |
	    PROC_STACKGAP_DISABLE_EXEC)) {
	case PROC_STACKGAP_ENABLE_EXEC:
		p->p_flag2 &= ~P2_STKGAP_DISABLE_EXEC;
		break;
	case PROC_STACKGAP_DISABLE_EXEC:
		p->p_flag2 |= P2_STKGAP_DISABLE_EXEC;
		break;
	case 0:
		break;
	default:
		return (EINVAL);
	}
	return (0);
}

static int
stackgap_status(struct thread *td, struct proc *p, int *data)
{
	PROC_LOCK_ASSERT(p, MA_OWNED);

	*data = (p->p_flag2 & P2_STKGAP_DISABLE) != 0 ? PROC_STACKGAP_DISABLE :
	    PROC_STACKGAP_ENABLE;
	*data |= (p->p_flag2 & P2_STKGAP_DISABLE_EXEC) != 0 ?
	    PROC_STACKGAP_DISABLE_EXEC : PROC_STACKGAP_ENABLE_EXEC;
	return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct procctl_args {
	idtype_t idtype;
	id_t	id;
	int	com;
	void	*data;
};
#endif
/* ARGSUSED */
int
sys_procctl(struct thread *td, struct procctl_args *uap)
{
	void *data;
	union {
		struct procctl_reaper_status rs;
		struct procctl_reaper_pids rp;
		struct procctl_reaper_kill rk;
	} x;
	int error, error1, flags, signum;

	if (uap->com >= PROC_PROCCTL_MD_MIN)
		return (cpu_procctl(td, uap->idtype, uap->id,
		    uap->com, uap->data));

	switch (uap->com) {
	case PROC_ASLR_CTL:
	case PROC_PROTMAX_CTL:
	case PROC_SPROTECT:
	case PROC_STACKGAP_CTL:
	case PROC_TRACE_CTL:
	case PROC_TRAPCAP_CTL:
	case PROC_NO_NEW_PRIVS_CTL:
		error = copyin(uap->data, &flags, sizeof(flags));
		if (error != 0)
			return (error);
		data = &flags;
		break;
	case PROC_REAP_ACQUIRE:
	case PROC_REAP_RELEASE:
		if (uap->data != NULL)
			return (EINVAL);
		data = NULL;
		break;
	case PROC_REAP_STATUS:
		data = &x.rs;
		break;
	case PROC_REAP_GETPIDS:
		error = copyin(uap->data, &x.rp, sizeof(x.rp));
		if (error != 0)
			return (error);
		data = &x.rp;
		break;
	case PROC_REAP_KILL:
		error = copyin(uap->data, &x.rk, sizeof(x.rk));
		if (error != 0)
			return (error);
		data = &x.rk;
		break;
	case PROC_ASLR_STATUS:
	case PROC_PROTMAX_STATUS:
	case PROC_STACKGAP_STATUS:
	case PROC_TRACE_STATUS:
	case PROC_TRAPCAP_STATUS:
	case PROC_NO_NEW_PRIVS_STATUS:
		data = &flags;
		break;
	case PROC_PDEATHSIG_CTL:
		error = copyin(uap->data, &signum, sizeof(signum));
		if (error != 0)
			return (error);
		data = &signum;
		break;
	case PROC_PDEATHSIG_STATUS:
		data = &signum;
		break;
	default:
		return (EINVAL);
	}
	error = kern_procctl(td, uap->idtype, uap->id, uap->com, data);
	switch (uap->com) {
	case PROC_REAP_STATUS:
		if (error == 0)
			error = copyout(&x.rs, uap->data, sizeof(x.rs));
		break;
	case PROC_REAP_KILL:
		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
		if (error == 0)
			error = error1;
		break;
	case PROC_ASLR_STATUS:
	case PROC_PROTMAX_STATUS:
	case PROC_STACKGAP_STATUS:
	case PROC_TRACE_STATUS:
	case PROC_TRAPCAP_STATUS:
	case PROC_NO_NEW_PRIVS_STATUS:
		if (error == 0)
			error = copyout(&flags, uap->data, sizeof(flags));
		break;
	case PROC_PDEATHSIG_STATUS:
		if (error == 0)
			error = copyout(&signum, uap->data, sizeof(signum));
		break;
	}
	return (error);
}

static int
kern_procctl_single(struct thread *td, struct proc *p, int com, void *data)
{

	PROC_LOCK_ASSERT(p, MA_OWNED);
	switch (com) {
	case PROC_ASLR_CTL:
		return (aslr_ctl(td, p, *(int *)data));
	case PROC_ASLR_STATUS:
		return (aslr_status(td, p, data));
	case PROC_SPROTECT:
		return (protect_set(td, p, *(int *)data));
	case PROC_PROTMAX_CTL:
		return (protmax_ctl(td, p, *(int *)data));
	case PROC_PROTMAX_STATUS:
		return (protmax_status(td, p, data));
	case PROC_STACKGAP_CTL:
		return (stackgap_ctl(td, p, *(int *)data));
	case PROC_STACKGAP_STATUS:
		return (stackgap_status(td, p, data));
	case PROC_REAP_ACQUIRE:
		return (reap_acquire(td, p));
	case PROC_REAP_RELEASE:
		return (reap_release(td, p));
	case PROC_REAP_STATUS:
		return (reap_status(td, p, data));
	case PROC_REAP_GETPIDS:
		return (reap_getpids(td, p, data));
	case PROC_REAP_KILL:
		return (reap_kill(td, p, data));
	case PROC_TRACE_CTL:
		return (trace_ctl(td, p, *(int *)data));
	case PROC_TRACE_STATUS:
		return (trace_status(td, p, data));
	case PROC_TRAPCAP_CTL:
		return (trapcap_ctl(td, p, *(int *)data));
	case PROC_TRAPCAP_STATUS:
		return (trapcap_status(td, p, data));
	case PROC_NO_NEW_PRIVS_CTL:
		return (no_new_privs_ctl(td, p, *(int *)data));
	case PROC_NO_NEW_PRIVS_STATUS:
		return (no_new_privs_status(td, p, data));
	default:
		return (EINVAL);
	}
}

int
kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data)
{
	struct pgrp *pg;
	struct proc *p;
	int error, first_error, ok;
	int signum;
	bool tree_locked;

	switch (com) {
	case PROC_ASLR_CTL:
	case PROC_ASLR_STATUS:
	case PROC_PROTMAX_CTL:
	case PROC_PROTMAX_STATUS:
	case PROC_REAP_ACQUIRE:
	case PROC_REAP_RELEASE:
	case PROC_REAP_STATUS:
	case PROC_REAP_GETPIDS:
	case PROC_REAP_KILL:
	case PROC_STACKGAP_CTL:
	case PROC_STACKGAP_STATUS:
	case PROC_TRACE_STATUS:
	case PROC_TRAPCAP_STATUS:
	case PROC_PDEATHSIG_CTL:
	case PROC_PDEATHSIG_STATUS:
	case PROC_NO_NEW_PRIVS_CTL:
	case PROC_NO_NEW_PRIVS_STATUS:
		if (idtype != P_PID)
			return (EINVAL);
	}

	switch (com) {
	case PROC_PDEATHSIG_CTL:
		signum = *(int *)data;
		p = td->td_proc;
		if ((id != 0 && id != p->p_pid) ||
		    (signum != 0 && !_SIG_VALID(signum)))
			return (EINVAL);
		PROC_LOCK(p);
		p->p_pdeathsig = signum;
		PROC_UNLOCK(p);
		return (0);
	case PROC_PDEATHSIG_STATUS:
		p = td->td_proc;
		if (id != 0 && id != p->p_pid)
			return (EINVAL);
		PROC_LOCK(p);
		*(int *)data = p->p_pdeathsig;
		PROC_UNLOCK(p);
		return (0);
	}

	switch (com) {
	case PROC_SPROTECT:
	case PROC_REAP_STATUS:
	case PROC_REAP_GETPIDS:
	case PROC_REAP_KILL:
	case PROC_TRACE_CTL:
	case PROC_TRAPCAP_CTL:
	case PROC_NO_NEW_PRIVS_CTL:
		sx_slock(&proctree_lock);
		tree_locked = true;
		break;
	case PROC_REAP_ACQUIRE:
	case PROC_REAP_RELEASE:
		sx_xlock(&proctree_lock);
		tree_locked = true;
		break;
	case PROC_ASLR_CTL:
	case PROC_ASLR_STATUS:
	case PROC_PROTMAX_CTL:
	case PROC_PROTMAX_STATUS:
	case PROC_STACKGAP_CTL:
	case PROC_STACKGAP_STATUS:
	case PROC_TRACE_STATUS:
	case PROC_TRAPCAP_STATUS:
	case PROC_NO_NEW_PRIVS_STATUS:
		tree_locked = false;
		break;
	default:
		return (EINVAL);
	}

	switch (idtype) {
	case P_PID:
		p = pfind(id);
		if (p == NULL) {
			error = ESRCH;
			break;
		}
		error = p_cansee(td, p);
		if (error == 0)
			error = kern_procctl_single(td, p, com, data);
		PROC_UNLOCK(p);
		break;
	case P_PGID:
		/*
		 * Attempt to apply the operation to all members of the
		 * group.  Ignore processes in the group that can't be
		 * seen.  Ignore errors so long as at least one process is
		 * able to complete the request successfully.
		 */
		pg = pgfind(id);
		if (pg == NULL) {
			error = ESRCH;
			break;
		}
		PGRP_UNLOCK(pg);
		ok = 0;
		first_error = 0;
		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
			PROC_LOCK(p);
			if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) {
				PROC_UNLOCK(p);
				continue;
			}
			error = kern_procctl_single(td, p, com, data);
			PROC_UNLOCK(p);
			if (error == 0)
				ok = 1;
			else if (first_error == 0)
				first_error = error;
		}
		if (ok)
			error = 0;
		else if (first_error != 0)
			error = first_error;
		else
			/*
			 * Was not able to see any processes in the
			 * process group.
			 */
			error = ESRCH;
		break;
	default:
		error = EINVAL;
		break;
	}
	if (tree_locked)
		sx_unlock(&proctree_lock);
	return (error);
}