aboutsummaryrefslogtreecommitdiff
path: root/sys/kern/subr_blist.c
blob: 27b226fd8a18afcd71dcdacc693ab7fb520a31fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
/*-
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/*
 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
 *
 *	This module implements a general bitmap allocator/deallocator.  The
 *	allocator eats around 2 bits per 'block'.  The module does not
 *	try to interpret the meaning of a 'block' other than to return
 *	SWAPBLK_NONE on an allocation failure.
 *
 *	A radix tree controls access to pieces of the bitmap, and includes
 *	auxiliary information at each interior node about the availabilty of
 *	contiguous free blocks in the subtree rooted at that node.  A radix
 *	constant defines the size of the bitmaps contained in a leaf node
 *	and the number of descendents of each of the meta (interior) nodes.
 *	Each subtree is associated with a range of blocks.  The root of any
 *	subtree stores a hint field that defines an upper bound on the size
 *	of the largest allocation that can begin in the associated block
 *	range.  A hint is an upper bound on a potential allocation, but not
 *	necessarily a tight upper bound.
 *
 *	The bitmap field in each node directs the search for available blocks.
 *	For a leaf node, a bit is set if the corresponding block is free.  For a
 *	meta node, a bit is set if the corresponding subtree contains a free
 *	block somewhere within it.  The search at a meta node considers only
 *	children of that node that represent a range that includes a free block.
 *
 * 	The hinting greatly increases code efficiency for allocations while
 *	the general radix structure optimizes both allocations and frees.  The
 *	radix tree should be able to operate well no matter how much
 *	fragmentation there is and no matter how large a bitmap is used.
 *
 *	The blist code wires all necessary memory at creation time.  Neither
 *	allocations nor frees require interaction with the memory subsystem.
 *	The non-blocking nature of allocations and frees is required by swap
 *	code (vm/swap_pager.c).
 *
 *	LAYOUT: The radix tree is laid out recursively using a linear array.
 *	Each meta node is immediately followed (laid out sequentially in
 *	memory) by BLIST_RADIX lower-level nodes.  This is a recursive
 *	structure but one that can be easily scanned through a very simple
 *	'skip' calculation.  The memory allocation is only large enough to
 *	cover the number of blocks requested at creation time.  Nodes that
 *	represent blocks beyond that limit, nodes that would never be read
 *	or written, are not allocated, so that the last of the
 *	BLIST_RADIX lower-level nodes of a some nodes may not be allocated.
 *
 *	NOTE: the allocator cannot currently allocate more than
 *	BLIST_RADIX blocks per call.  It will panic with 'allocation too
 *	large' if you try.  This is an area that could use improvement.  The
 *	radix is large enough that this restriction does not effect the swap
 *	system, though.  Currently only the allocation code is affected by
 *	this algorithmic unfeature.  The freeing code can handle arbitrary
 *	ranges.
 *
 *	This code can be compiled stand-alone for debugging.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#ifdef _KERNEL

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/blist.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
#include <sys/proc.h>
#include <sys/mutex.h>

#else

#ifndef BLIST_NO_DEBUG
#define BLIST_DEBUG
#endif

#include <sys/errno.h>
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>

#define	bitcount64(x)	__bitcount64((uint64_t)(x))
#define malloc(a,b,c)	calloc(a, 1)
#define free(a,b)	free(a)
#define ummin(a,b)	((a) < (b) ? (a) : (b))
#define imin(a,b)	((a) < (b) ? (a) : (b))
#define KASSERT(a,b)	assert(a)

#include <sys/blist.h>

#endif

/*
 * static support functions
 */
static daddr_t	blst_leaf_alloc(blmeta_t *scan, daddr_t blk,
    int *count, int maxcount);
static daddr_t	blst_meta_alloc(blmeta_t *scan, daddr_t cursor, int *count,
    int maxcount, u_daddr_t radix);
static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
		    u_daddr_t radix);
static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
		    blist_t dest, daddr_t count);
static daddr_t blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count);
static daddr_t blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count,
		    u_daddr_t radix);
#ifndef _KERNEL
static void	blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix,
		    int tab);
#endif

#ifdef _KERNEL
static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
#endif

#define	BLIST_MASK	(BLIST_RADIX - 1)

/*
 * For a subtree that can represent the state of up to 'radix' blocks, the
 * number of leaf nodes of the subtree is L=radix/BLIST_RADIX.  If 'm'
 * is short for BLIST_RADIX, then for a tree of height h with L=m**h
 * leaf nodes, the total number of tree nodes is 1 + m + m**2 + ... + m**h,
 * or, equivalently, (m**(h+1)-1)/(m-1).  This quantity is called 'skip'
 * in the 'meta' functions that process subtrees.  Since integer division
 * discards remainders, we can express this computation as
 * skip = (m * m**h) / (m - 1)
 * skip = (m * (radix / m)) / (m - 1)
 * skip = radix / (m - 1)
 * so that simple integer division by a constant can safely be used for the
 * calculation.
 */
static inline daddr_t
radix_to_skip(daddr_t radix)
{

	return (radix / BLIST_MASK);
}

/*
 * Provide a mask with count bits set, starting as position n.
 */
static inline u_daddr_t
bitrange(int n, int count)
{

	return (((u_daddr_t)-1 << n) &
	    ((u_daddr_t)-1 >> (BLIST_RADIX - (n + count))));
}

/*
 * Find the first bit set in a u_daddr_t.
 */
static inline int
generic_bitpos(u_daddr_t mask)
{
	int hi, lo, mid;

	lo = 0;
	hi = BLIST_RADIX;
	while (lo + 1 < hi) {
		mid = (lo + hi) >> 1;
		if (mask & bitrange(0, mid))
			hi = mid;
		else
			lo = mid;
	}
	return (lo);
}

static inline int
bitpos(u_daddr_t mask)
{

	switch (sizeof(mask)) {
#ifdef HAVE_INLINE_FFSLL
	case sizeof(long long):
		return (ffsll(mask) - 1);
#endif
#ifdef HAVE_INLINE_FFS
	case sizeof(int):
		return (ffs(mask) - 1);
#endif
	default:
		return (generic_bitpos(mask));
	}
}

/*
 * blist_create() - create a blist capable of handling up to the specified
 *		    number of blocks
 *
 *	blocks - must be greater than 0
 * 	flags  - malloc flags
 *
 *	The smallest blist consists of a single leaf node capable of
 *	managing BLIST_RADIX blocks.
 */
blist_t
blist_create(daddr_t blocks, int flags)
{
	blist_t bl;
	u_daddr_t nodes, radix;

	KASSERT(blocks > 0, ("invalid block count"));

	/*
	 * Calculate the radix and node count used for scanning.
	 */
	nodes = 1;
	for (radix = 1; radix <= blocks / BLIST_RADIX; radix *= BLIST_RADIX)
		nodes += 1 + (blocks - 1) / radix / BLIST_RADIX;

	bl = malloc(offsetof(struct blist, bl_root[nodes]), M_SWAP, flags |
	    M_ZERO);
	if (bl == NULL)
		return (NULL);

	bl->bl_blocks = blocks;
	bl->bl_radix = radix;

#if defined(BLIST_DEBUG)
	printf(
		"BLIST representing %lld blocks (%lld MB of swap)"
		", requiring %lldK of ram\n",
		(long long)bl->bl_blocks,
		(long long)bl->bl_blocks * 4 / 1024,
		(long long)(nodes * sizeof(blmeta_t) + 1023) / 1024
	);
	printf("BLIST raw radix tree contains %lld records\n",
	    (long long)nodes);
#endif

	return (bl);
}

void
blist_destroy(blist_t bl)
{

	free(bl, M_SWAP);
}

/*
 * blist_alloc() -   reserve space in the block bitmap.  Return the base
 *		     of a contiguous region or SWAPBLK_NONE if space could
 *		     not be allocated.
 */
daddr_t
blist_alloc(blist_t bl, int *count, int maxcount)
{
	daddr_t blk, cursor;

	KASSERT(*count <= maxcount,
	    ("invalid parameters %d > %d", *count, maxcount));
	KASSERT(*count <= BLIST_MAX_ALLOC,
	    ("minimum allocation too large: %d", *count));

	/*
	 * This loop iterates at most twice.  An allocation failure in the
	 * first iteration leads to a second iteration only if the cursor was
	 * non-zero.  When the cursor is zero, an allocation failure will
	 * stop further iterations.
	 */
	for (cursor = bl->bl_cursor;; cursor = 0) {
		blk = blst_meta_alloc(bl->bl_root, cursor, count, maxcount,
		    bl->bl_radix);
		if (blk != SWAPBLK_NONE) {
			bl->bl_avail -= *count;
			bl->bl_cursor = blk + *count;
			if (bl->bl_cursor == bl->bl_blocks)
				bl->bl_cursor = 0;
			return (blk);
		}
		if (cursor == 0)
			return (SWAPBLK_NONE);
	}
}

/*
 * blist_avail() -	return the number of free blocks.
 */
daddr_t
blist_avail(blist_t bl)
{

	return (bl->bl_avail);
}

/*
 * blist_free() -	free up space in the block bitmap.  Return the base
 *		     	of a contiguous region.
 */
void
blist_free(blist_t bl, daddr_t blkno, daddr_t count)
{

	KASSERT(blkno >= 0 && blkno + count <= bl->bl_blocks,
	    ("freeing invalid range: blkno %jx, count %d, blocks %jd",
	    (uintmax_t)blkno, (int)count, (uintmax_t)bl->bl_blocks));
	blst_meta_free(bl->bl_root, blkno, count, bl->bl_radix);
	bl->bl_avail += count;
}

/*
 * blist_fill() -	mark a region in the block bitmap as off-limits
 *			to the allocator (i.e. allocate it), ignoring any
 *			existing allocations.  Return the number of blocks
 *			actually filled that were free before the call.
 */
daddr_t
blist_fill(blist_t bl, daddr_t blkno, daddr_t count)
{
	daddr_t filled;

	KASSERT(blkno >= 0 && blkno + count <= bl->bl_blocks,
	    ("filling invalid range: blkno %jx, count %d, blocks %jd",
	    (uintmax_t)blkno, (int)count, (uintmax_t)bl->bl_blocks));
	filled = blst_meta_fill(bl->bl_root, blkno, count, bl->bl_radix);
	bl->bl_avail -= filled;
	return (filled);
}

/*
 * blist_resize() -	resize an existing radix tree to handle the
 *			specified number of blocks.  This will reallocate
 *			the tree and transfer the previous bitmap to the new
 *			one.  When extending the tree you can specify whether
 *			the new blocks are to left allocated or freed.
 */
void
blist_resize(blist_t *pbl, daddr_t count, int freenew, int flags)
{
    blist_t newbl = blist_create(count, flags);
    blist_t save = *pbl;

    *pbl = newbl;
    if (count > save->bl_blocks)
	    count = save->bl_blocks;
    blst_copy(save->bl_root, 0, save->bl_radix, newbl, count);

    /*
     * If resizing upwards, should we free the new space or not?
     */
    if (freenew && count < newbl->bl_blocks) {
	    blist_free(newbl, count, newbl->bl_blocks - count);
    }
    blist_destroy(save);
}

#ifdef BLIST_DEBUG

/*
 * blist_print()    - dump radix tree
 */
void
blist_print(blist_t bl)
{
	printf("BLIST avail = %jd, cursor = %08jx {\n",
	    (uintmax_t)bl->bl_avail, (uintmax_t)bl->bl_cursor);

	if (bl->bl_root->bm_bitmap != 0)
		blst_radix_print(bl->bl_root, 0, bl->bl_radix, 4);
	printf("}\n");
}

#endif

static const u_daddr_t fib[] = {
	1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
	4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,
	514229, 832040, 1346269, 2178309, 3524578,
};

/*
 * Use 'gap' to describe a maximal range of unallocated blocks/bits.
 */
struct gap_stats {
	daddr_t	start;		/* current gap start, or SWAPBLK_NONE */
	daddr_t	num;		/* number of gaps observed */
	daddr_t	max;		/* largest gap size */
	daddr_t	avg;		/* average gap size */
	daddr_t	err;		/* sum - num * avg */
	daddr_t	histo[nitems(fib)]; /* # gaps in each size range */
	int	max_bucket;	/* last histo elt with nonzero val */
};

/*
 * gap_stats_counting()    - is the state 'counting 1 bits'?
 *                           or 'skipping 0 bits'?
 */
static inline bool
gap_stats_counting(const struct gap_stats *stats)
{

	return (stats->start != SWAPBLK_NONE);
}

/*
 * init_gap_stats()    - initialize stats on gap sizes
 */
static inline void
init_gap_stats(struct gap_stats *stats)
{

	bzero(stats, sizeof(*stats));
	stats->start = SWAPBLK_NONE;
}

/*
 * update_gap_stats()    - update stats on gap sizes
 */
static void
update_gap_stats(struct gap_stats *stats, daddr_t posn)
{
	daddr_t size;
	int hi, lo, mid;

	if (!gap_stats_counting(stats)) {
		stats->start = posn;
		return;
	}
	size = posn - stats->start;
	stats->start = SWAPBLK_NONE;
	if (size > stats->max)
		stats->max = size;

	/*
	 * Find the fibonacci range that contains size,
	 * expecting to find it in an early range.
	 */
	lo = 0;
	hi = 1;
	while (hi < nitems(fib) && fib[hi] <= size) {
		lo = hi;
		hi *= 2;
	}
	if (hi >= nitems(fib))
		hi = nitems(fib);
	while (lo + 1 != hi) {
		mid = (lo + hi) >> 1;
		if (fib[mid] <= size)
			lo = mid;
		else
			hi = mid;
	}
	stats->histo[lo]++;
	if (lo > stats->max_bucket)
		stats->max_bucket = lo;
	stats->err += size - stats->avg;
	stats->num++;
	stats->avg += stats->err / stats->num;
	stats->err %= stats->num;
}

/*
 * dump_gap_stats()    - print stats on gap sizes
 */
static inline void
dump_gap_stats(const struct gap_stats *stats, struct sbuf *s)
{
	int i;

	sbuf_printf(s, "number of maximal free ranges: %jd\n",
	    (intmax_t)stats->num);
	sbuf_printf(s, "largest free range: %jd\n", (intmax_t)stats->max);
	sbuf_printf(s, "average maximal free range size: %jd\n",
	    (intmax_t)stats->avg);
	sbuf_printf(s, "number of maximal free ranges of different sizes:\n");
	sbuf_printf(s, "               count  |  size range\n");
	sbuf_printf(s, "               -----  |  ----------\n");
	for (i = 0; i < stats->max_bucket; i++) {
		if (stats->histo[i] != 0) {
			sbuf_printf(s, "%20jd  |  ",
			    (intmax_t)stats->histo[i]);
			if (fib[i] != fib[i + 1] - 1)
				sbuf_printf(s, "%jd to %jd\n", (intmax_t)fib[i],
				    (intmax_t)fib[i + 1] - 1);
			else
				sbuf_printf(s, "%jd\n", (intmax_t)fib[i]);
		}
	}
	sbuf_printf(s, "%20jd  |  ", (intmax_t)stats->histo[i]);
	if (stats->histo[i] > 1)
		sbuf_printf(s, "%jd to %jd\n", (intmax_t)fib[i],
		    (intmax_t)stats->max);
	else
		sbuf_printf(s, "%jd\n", (intmax_t)stats->max);
}

/*
 * blist_stats()    - dump radix tree stats
 */
void
blist_stats(blist_t bl, struct sbuf *s)
{
	struct gap_stats gstats;
	struct gap_stats *stats = &gstats;
	daddr_t i, nodes, radix;
	u_daddr_t diff, mask;
	int digit;

	init_gap_stats(stats);
	nodes = 0;
	radix = bl->bl_radix;
	for (i = 0; i < bl->bl_blocks; ) {
		/*
		 * Check for skippable subtrees starting at i.
		 */
		while (radix != 1) {
			if (bl->bl_root[nodes].bm_bitmap == 0) {
				if (gap_stats_counting(stats))
					update_gap_stats(stats, i);
				break;
			}

			/*
			 * Skip subtree root.
			 */
			nodes++;
			radix /= BLIST_RADIX;
		}
		if (radix == 1) {
			/*
			 * Scan leaf.
			 */
			mask = bl->bl_root[nodes].bm_bitmap;
			diff = mask ^ (mask << 1);
			if (gap_stats_counting(stats))
				diff ^= 1;
			while (diff != 0) {
				digit = bitpos(diff);
				update_gap_stats(stats, i + digit);
				diff ^= bitrange(digit, 1);
			}
		}
		nodes += radix_to_skip(radix * BLIST_RADIX);
		i += radix * BLIST_RADIX;

		/*
		 * Find max size subtree starting at i.
		 */
		for (radix = 1; 
		    ((i / BLIST_RADIX / radix) & BLIST_MASK) == 0;
		    radix *= BLIST_RADIX)
			;
	}
	update_gap_stats(stats, i);
	dump_gap_stats(stats, s);
}

/************************************************************************
 *			  ALLOCATION SUPPORT FUNCTIONS			*
 ************************************************************************
 *
 *	These support functions do all the actual work.  They may seem
 *	rather longish, but that's because I've commented them up.  The
 *	actual code is straight forward.
 *
 */

/*
 * BLST_NEXT_LEAF_ALLOC() - allocate the blocks starting with the next leaf.
 *
 *	'scan' is a leaf node, and its first block is at address 'start'.  The
 *	next leaf node could be adjacent, or several nodes away if the least
 *	common ancestor of 'scan' and its neighbor is several levels up.  Use
 *	addresses to determine how many meta-nodes lie between the leaves.  If
 *	sequence of leaves starting with the next one has enough initial bits
 *	set, clear them and clear the bits in the meta nodes on the path up to
 *	the least common ancestor to mark any subtrees made completely empty.
 */
static int
blst_next_leaf_alloc(blmeta_t *scan, daddr_t start, int count, int maxcount)
{
	u_daddr_t radix;
	daddr_t blk;
	int avail, digit;

	start += BLIST_RADIX;
	for (blk = start; blk - start < maxcount; blk += BLIST_RADIX) {
		/* Skip meta-nodes, as long as they promise more free blocks. */
		radix = BLIST_RADIX;
		while (((++scan)->bm_bitmap & 1) == 1 &&
		    ((blk / radix) & BLIST_MASK) == 0)
			radix *= BLIST_RADIX;
		if (~scan->bm_bitmap != 0) {
			/*
			 * Either there is no next leaf with any free blocks,
			 * or we've reached the next leaf and found that some
			 * of its blocks are not free.  In the first case,
			 * bitpos() returns zero here.
			 */
			avail = blk - start + bitpos(~scan->bm_bitmap);
			if (avail < count || avail == 0) {
				/*
				 * There isn't a next leaf with enough free
				 * blocks at its beginning to bother
				 * allocating.
				 */
				return (avail);
			}
			maxcount = imin(avail, maxcount);
			if (maxcount % BLIST_RADIX == 0) {
				/*
				 * There was no next leaf.  Back scan up to
				 * last leaf.
				 */
				do {
					radix /= BLIST_RADIX;
					--scan;
				} while (radix != 1);
				blk -= BLIST_RADIX;
			}
		}
	}

	/*
	 * 'scan' is the last leaf that provides blocks.  Clear from 1 to
	 * BLIST_RADIX bits to represent the allocation of those last blocks.
	 */
	if (maxcount % BLIST_RADIX != 0)
		scan->bm_bitmap &= ~bitrange(0, maxcount % BLIST_RADIX);
	else
		scan->bm_bitmap = 0;

	for (;;) {
		/* Back up over meta-nodes, clearing bits if necessary. */
		blk -= BLIST_RADIX;
		for (radix = BLIST_RADIX;
		    (digit = ((blk / radix) & BLIST_MASK)) == 0;
		    radix *= BLIST_RADIX) {
			if ((scan--)->bm_bitmap == 0)
				scan->bm_bitmap ^= 1;
		}
		if ((scan--)->bm_bitmap == 0)
			scan[-digit * radix_to_skip(radix)].bm_bitmap ^=
			    (u_daddr_t)1 << digit;

		if (blk == start)
			break;
		/* Clear all the bits of this leaf. */
		scan->bm_bitmap = 0;
	}
	return (maxcount);
}

/*
 * BLST_LEAF_ALLOC() -	allocate at a leaf in the radix tree (a bitmap).
 *
 *	This function is the core of the allocator.  Its execution time is
 *	proportional to log(count), plus height of the tree if the allocation
 *	crosses a leaf boundary.
 */
static daddr_t
blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int *count, int maxcount)
{
	u_daddr_t mask;
	int bighint, count1, hi, lo, num_shifts;

	count1 = *count - 1;
	num_shifts = fls(count1);
	mask = ~scan->bm_bitmap;
	while ((mask & (mask + 1)) != 0 && num_shifts > 0) {
		/*
		 * If bit i is 0 in mask, then bits in [i, i + (count1 >>
		 * num_shifts)] are 1 in scan->bm_bitmap.  Reduce num_shifts to
		 * 0, while preserving this invariant.  The updates to mask
		 * leave fewer bits 0, but each bit that remains 0 represents a
		 * longer string of consecutive 1-bits in scan->bm_bitmap.  If
		 * more updates to mask cannot set more bits, because mask is
		 * partitioned with all 1 bits following all 0 bits, the loop
		 * terminates immediately.
		 */
		num_shifts--;
		mask |= mask >> ((count1 >> num_shifts) + 1) / 2;
	}
	bighint = count1 >> num_shifts;
	if (~mask == 0) {
		/*
		 * Update bighint.  There is no allocation bigger than
		 * count1 >> num_shifts starting in this leaf.
		 */
		scan->bm_bighint = bighint;
		return (SWAPBLK_NONE);
	}

	/* Discard any candidates that appear before blk. */
	if ((blk & BLIST_MASK) != 0) {
		if ((~mask & bitrange(0, blk & BLIST_MASK)) != 0) {
			/* Grow bighint in case all discarded bits are set. */
			bighint += blk & BLIST_MASK;
			mask |= bitrange(0, blk & BLIST_MASK);
			if (~mask == 0) {
				scan->bm_bighint = bighint;
				return (SWAPBLK_NONE);
			}
		}
		blk -= blk & BLIST_MASK;
	}

	/*
	 * The least significant set bit in mask marks the start of the first
	 * available range of sufficient size.  Find its position.
	 */
	lo = bitpos(~mask);

	/*
	 * Find how much space is available starting at that position.
	 */
	if ((mask & (mask + 1)) != 0) {
		/* Count the 1 bits starting at position lo. */
		hi = bitpos(mask & (mask + 1)) + count1;
		if (maxcount < hi - lo)
			hi = lo + maxcount;
		*count = hi - lo;
		mask = ~bitrange(lo, *count);
	} else if (maxcount <= BLIST_RADIX - lo) {
		/* All the blocks we can use are available here. */
		hi = lo + maxcount;
		*count = maxcount;
		mask = ~bitrange(lo, *count);
		if (hi == BLIST_RADIX)
			scan->bm_bighint = bighint;
	} else {
		/* Check next leaf for some of the blocks we want or need. */
		count1 = *count - (BLIST_RADIX - lo);
		maxcount -= BLIST_RADIX - lo;
		hi = blst_next_leaf_alloc(scan, blk, count1, maxcount);
		if (hi < count1)
			/*
			 * The next leaf cannot supply enough blocks to reach
			 * the minimum required allocation.  The hint cannot be
			 * updated, because the same allocation request could
			 * be satisfied later, by this leaf, if the state of
			 * the next leaf changes, and without any changes to
			 * this leaf.
			 */
			return (SWAPBLK_NONE);
		*count = BLIST_RADIX - lo + hi;
		scan->bm_bighint = bighint;
	}

	/* Clear the allocated bits from this leaf. */
	scan->bm_bitmap &= mask;
	return (blk + lo);
}

/*
 * blist_meta_alloc() -	allocate at a meta in the radix tree.
 *
 *	Attempt to allocate at a meta node.  If we can't, we update
 *	bighint and return a failure.  Updating bighint optimize future
 *	calls that hit this node.  We have to check for our collapse cases
 *	and we have a few optimizations strewn in as well.
 */
static daddr_t
blst_meta_alloc(blmeta_t *scan, daddr_t cursor, int *count,
    int maxcount, u_daddr_t radix)
{
	daddr_t blk, i, r, skip;
	u_daddr_t mask;
	bool scan_from_start;
	int digit;

	if (radix == 1)
		return (blst_leaf_alloc(scan, cursor, count, maxcount));
	blk = cursor & -(radix * BLIST_RADIX);
	scan_from_start = (cursor == blk);
	skip = radix_to_skip(radix);
	mask = scan->bm_bitmap;

	/* Discard any candidates that appear before cursor. */
	digit = (cursor / radix) & BLIST_MASK;
	mask &= (u_daddr_t)-1 << digit;
	if (mask == 0)
		return (SWAPBLK_NONE);

	/*
	 * If the first try is for a block that includes the cursor, pre-undo
	 * the digit * radix offset in the first call; otherwise, ignore the
	 * cursor entirely.
	 */
	if (((mask >> digit) & 1) == 1)
		cursor -= digit * radix;
	else
		cursor = blk;

	/*
	 * Examine the nonempty subtree associated with each bit set in mask.
	 */
	do {
		digit = bitpos(mask);
		i = 1 + digit * skip;
		if (*count <= scan[i].bm_bighint) {
			/*
			 * The allocation might fit beginning in the i'th subtree.
			 */
			r = blst_meta_alloc(&scan[i], cursor + digit * radix,
			    count, maxcount, radix / BLIST_RADIX);
			if (r != SWAPBLK_NONE) {
				if (scan[i].bm_bitmap == 0)
					scan->bm_bitmap ^= bitrange(digit, 1);
				return (r);
			}
		}
		cursor = blk;
	} while ((mask ^= bitrange(digit, 1)) != 0);

	/*
	 * We couldn't allocate count in this subtree.  If the whole tree was
	 * scanned, and the last tree node is allocated, update bighint.
	 */
	if (scan_from_start && !(digit == BLIST_RADIX - 1 &&
	    scan[i].bm_bighint == BLIST_MAX_ALLOC))
		scan->bm_bighint = *count - 1;

	return (SWAPBLK_NONE);
}

/*
 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
 *
 */
static void
blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
{
	u_daddr_t mask;

	/*
	 * free some data in this bitmap
	 * mask=0000111111111110000
	 *          \_________/\__/
	 *		count   n
	 */
	mask = bitrange(blk & BLIST_MASK, count);
	KASSERT((scan->bm_bitmap & mask) == 0,
	    ("freeing free block: %jx, size %d, mask %jx",
	    (uintmax_t)blk, count, (uintmax_t)scan->bm_bitmap & mask));
	scan->bm_bitmap |= mask;
}

/*
 * BLST_META_FREE() - free allocated blocks from radix tree meta info
 *
 *	This support routine frees a range of blocks from the bitmap.
 *	The range must be entirely enclosed by this radix node.  If a
 *	meta node, we break the range down recursively to free blocks
 *	in subnodes (which means that this code can free an arbitrary
 *	range whereas the allocation code cannot allocate an arbitrary
 *	range).
 */
static void
blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, u_daddr_t radix)
{
	daddr_t blk, endBlk, i, skip;
	int digit, endDigit;

	/*
	 * We could probably do a better job here.  We are required to make
	 * bighint at least as large as the biggest allocable block of data.
	 * If we just shoehorn it, a little extra overhead will be incurred
	 * on the next allocation (but only that one typically).
	 */
	scan->bm_bighint = BLIST_MAX_ALLOC;

	if (radix == 1)
		return (blst_leaf_free(scan, freeBlk, count));

	endBlk = freeBlk + count;
	blk = (freeBlk + radix * BLIST_RADIX) & -(radix * BLIST_RADIX);
	/*
	 * blk is first block past the end of the range of this meta node,
	 * or 0 in case of overflow.
	 */
	if (blk != 0)
		endBlk = ummin(endBlk, blk);
	skip = radix_to_skip(radix);
	blk = freeBlk & -radix;
	digit = (blk / radix) & BLIST_MASK;
	endDigit = 1 + (((endBlk - 1) / radix) & BLIST_MASK);
	scan->bm_bitmap |= bitrange(digit, endDigit - digit);
	for (i = 1 + digit * skip; blk < endBlk; i += skip) {
		blk += radix;
		count = ummin(blk, endBlk) - freeBlk;
		blst_meta_free(&scan[i], freeBlk, count, radix / BLIST_RADIX);
		freeBlk = blk;
	}
}

/*
 * BLST_COPY() - copy one radix tree to another
 *
 *	Locates free space in the source tree and frees it in the destination
 *	tree.  The space may not already be free in the destination.
 */
static void
blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix, blist_t dest,
    daddr_t count)
{
	daddr_t endBlk, i, skip;

	/*
	 * Leaf node
	 */

	if (radix == 1) {
		u_daddr_t v = scan->bm_bitmap;

		if (v == (u_daddr_t)-1) {
			blist_free(dest, blk, count);
		} else if (v != 0) {
			int i;

			for (i = 0; i < count; ++i) {
				if (v & ((u_daddr_t)1 << i))
					blist_free(dest, blk + i, 1);
			}
		}
		return;
	}

	/*
	 * Meta node
	 */

	if (scan->bm_bitmap == 0) {
		/*
		 * Source all allocated, leave dest allocated
		 */
		return;
	}

	endBlk = blk + count;
	skip = radix_to_skip(radix);
	for (i = 1; blk < endBlk; i += skip) {
		blk += radix;
		count = radix;
		if (blk >= endBlk)
			count -= blk - endBlk;
		blst_copy(&scan[i], blk - radix,
		    radix / BLIST_RADIX, dest, count);
	}
}

/*
 * BLST_LEAF_FILL() -	allocate specific blocks in leaf bitmap
 *
 *	This routine allocates all blocks in the specified range
 *	regardless of any existing allocations in that range.  Returns
 *	the number of blocks allocated by the call.
 */
static daddr_t
blst_leaf_fill(blmeta_t *scan, daddr_t blk, int count)
{
	daddr_t nblks;
	u_daddr_t mask;

	mask = bitrange(blk & BLIST_MASK, count);

	/* Count the number of blocks that we are allocating. */
	nblks = bitcount64(scan->bm_bitmap & mask);

	scan->bm_bitmap &= ~mask;
	return (nblks);
}

/*
 * BLIST_META_FILL() -	allocate specific blocks at a meta node
 *
 *	This routine allocates the specified range of blocks,
 *	regardless of any existing allocations in the range.  The
 *	range must be within the extent of this node.  Returns the
 *	number of blocks allocated by the call.
 */
static daddr_t
blst_meta_fill(blmeta_t *scan, daddr_t allocBlk, daddr_t count, u_daddr_t radix)
{
	daddr_t blk, endBlk, i, nblks, skip;
	int digit;

	if (radix == 1)
		return (blst_leaf_fill(scan, allocBlk, count));

	endBlk = allocBlk + count;
	blk = (allocBlk + radix * BLIST_RADIX) & -(radix * BLIST_RADIX);
	/*
	 * blk is first block past the end of the range of this meta node,
	 * or 0 in case of overflow.
	 */
	if (blk != 0)
		endBlk = ummin(endBlk, blk);
	skip = radix_to_skip(radix);
	blk = allocBlk & -radix;
	nblks = 0;
	while (blk < endBlk) {
		digit = (blk / radix) & BLIST_MASK;
		i = 1 + digit * skip;
		blk += radix;
		count = ummin(blk, endBlk) - allocBlk;
		nblks += blst_meta_fill(&scan[i], allocBlk, count,
		    radix / BLIST_RADIX);
		if (scan[i].bm_bitmap == 0)
			scan->bm_bitmap &= ~((u_daddr_t)1 << digit);
		allocBlk = blk;
	}
	return (nblks);
}

#ifdef BLIST_DEBUG

static void
blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int tab)
{
	daddr_t skip;
	u_daddr_t mask;
	int digit;

	if (radix == 1) {
		printf(
		    "%*.*s(%08llx,%lld): bitmap %0*llx big=%lld\n",
		    tab, tab, "",
		    (long long)blk, (long long)BLIST_RADIX,
		    (int)(1 + (BLIST_RADIX - 1) / 4),
		    (long long)scan->bm_bitmap,
		    (long long)scan->bm_bighint
		);
		return;
	}

	printf(
	    "%*.*s(%08llx): subtree (%lld/%lld) bitmap %0*llx big=%lld {\n",
	    tab, tab, "",
	    (long long)blk, (long long)radix * BLIST_RADIX,
	    (long long)radix * BLIST_RADIX,
	    (int)(1 + (BLIST_RADIX - 1) / 4),
	    (long long)scan->bm_bitmap,
	    (long long)scan->bm_bighint
	);

	skip = radix_to_skip(radix);
	tab += 4;

	mask = scan->bm_bitmap;
	/* Examine the nonempty subtree associated with each bit set in mask */
	do {
		digit = bitpos(mask);
		blst_radix_print(&scan[1 + digit * skip], blk + digit * radix,
		    radix / BLIST_RADIX, tab);
	} while ((mask ^= bitrange(digit, 1)) != 0);
	tab -= 4;

	printf(
	    "%*.*s}\n",
	    tab, tab, ""
	);
}

#endif

#ifdef BLIST_DEBUG

int
main(int ac, char **av)
{
	daddr_t size = BLIST_RADIX * BLIST_RADIX;
	int i;
	blist_t bl;
	struct sbuf *s;

	for (i = 1; i < ac; ++i) {
		const char *ptr = av[i];
		if (*ptr != '-') {
			size = strtoll(ptr, NULL, 0);
			continue;
		}
		ptr += 2;
		fprintf(stderr, "Bad option: %s\n", ptr - 2);
		exit(1);
	}
	bl = blist_create(size, M_WAITOK);
	if (bl == NULL) {
		fprintf(stderr, "blist_create failed\n");
		exit(1);
	}
	blist_free(bl, 0, size);

	for (;;) {
		char buf[1024];
		long long da = 0;
		int count = 0, maxcount = 0;

		printf("%lld/%lld/%lld> ", (long long)blist_avail(bl),
		    (long long)size, (long long)bl->bl_radix * BLIST_RADIX);
		fflush(stdout);
		if (fgets(buf, sizeof(buf), stdin) == NULL)
			break;
		switch(buf[0]) {
		case 'r':
			if (sscanf(buf + 1, "%d", &count) == 1) {
				blist_resize(&bl, count, 1, M_WAITOK);
			} else {
				printf("?\n");
			}
		case 'p':
			blist_print(bl);
			break;
		case 's':
			s = sbuf_new_auto();
			blist_stats(bl, s);
			sbuf_finish(s);
			printf("%s", sbuf_data(s));
			sbuf_delete(s);
			break;
		case 'a':
			if (sscanf(buf + 1, "%d%d", &count, &maxcount) == 2) {
				daddr_t blk = blist_alloc(bl, &count, maxcount);
				printf("    R=%08llx, c=%08d\n",
				    (long long)blk, count);
			} else {
				printf("?\n");
			}
			break;
		case 'f':
			if (sscanf(buf + 1, "%llx %d", &da, &count) == 2) {
				blist_free(bl, da, count);
			} else {
				printf("?\n");
			}
			break;
		case 'l':
			if (sscanf(buf + 1, "%llx %d", &da, &count) == 2) {
				printf("    n=%jd\n",
				    (intmax_t)blist_fill(bl, da, count));
			} else {
				printf("?\n");
			}
			break;
		case '?':
		case 'h':
			puts(
			    "p          -print\n"
			    "s          -stats\n"
			    "a %d %d    -allocate\n"
			    "f %x %d    -free\n"
			    "l %x %d    -fill\n"
			    "r %d       -resize\n"
			    "h/?        -help\n"
			    "q          -quit"
			);
			break;
		case 'q':
			break;
		default:
			printf("?\n");
			break;
		}
		if (buf[0] == 'q')
			break;
	}
	return (0);
}

#endif