1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
|
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2014-2019 Netflix Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_kern_tls.h"
#include "opt_ratelimit.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/domainset.h>
#include <sys/endian.h>
#include <sys/ktls.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/rmlock.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/refcount.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/kthread.h>
#include <sys/uio.h>
#include <sys/vmmeter.h>
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
#include <machine/pcb.h>
#endif
#include <machine/vmparam.h>
#include <net/if.h>
#include <net/if_var.h>
#ifdef RSS
#include <net/netisr.h>
#include <net/rss_config.h>
#endif
#include <net/route.h>
#include <net/route/nhop.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp_var.h>
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#include <opencrypto/cryptodev.h>
#include <opencrypto/ktls.h>
#include <vm/uma_dbg.h>
#include <vm/vm.h>
#include <vm/vm_pageout.h>
#include <vm/vm_page.h>
#include <vm/vm_pagequeue.h>
struct ktls_wq {
struct mtx mtx;
STAILQ_HEAD(, mbuf) m_head;
STAILQ_HEAD(, socket) so_head;
bool running;
int lastallocfail;
} __aligned(CACHE_LINE_SIZE);
struct ktls_alloc_thread {
uint64_t wakeups;
uint64_t allocs;
struct thread *td;
int running;
};
struct ktls_domain_info {
int count;
int cpu[MAXCPU];
struct ktls_alloc_thread alloc_td;
};
struct ktls_domain_info ktls_domains[MAXMEMDOM];
static struct ktls_wq *ktls_wq;
static struct proc *ktls_proc;
static uma_zone_t ktls_session_zone;
static uma_zone_t ktls_buffer_zone;
static uint16_t ktls_cpuid_lookup[MAXCPU];
static int ktls_init_state;
static struct sx ktls_init_lock;
SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Kernel TLS offload");
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Kernel TLS offload stats");
#ifdef RSS
static int ktls_bind_threads = 1;
#else
static int ktls_bind_threads;
#endif
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
&ktls_bind_threads, 0,
"Bind crypto threads to cores (1) or cores and domains (2) at boot");
static u_int ktls_maxlen = 16384;
SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
&ktls_maxlen, 0, "Maximum TLS record size");
static int ktls_number_threads;
SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
&ktls_number_threads, 0,
"Number of TLS threads in thread-pool");
unsigned int ktls_ifnet_max_rexmit_pct = 2;
SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
&ktls_ifnet_max_rexmit_pct, 2,
"Max percent bytes retransmitted before ifnet TLS is disabled");
static bool ktls_offload_enable;
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
&ktls_offload_enable, 0,
"Enable support for kernel TLS offload");
static bool ktls_cbc_enable = true;
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
&ktls_cbc_enable, 1,
"Enable support of AES-CBC crypto for kernel TLS");
static bool ktls_sw_buffer_cache = true;
SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
&ktls_sw_buffer_cache, 1,
"Enable caching of output buffers for SW encryption");
static int ktls_max_alloc = 128;
SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN,
&ktls_max_alloc, 128,
"Max number of 16k buffers to allocate in thread context");
static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
&ktls_tasks_active, "Number of active tasks");
static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
&ktls_cnt_tx_pending,
"Number of TLS 1.0 records waiting for earlier TLS records");
static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
&ktls_cnt_tx_queued,
"Number of TLS records in queue to tasks for SW encryption");
static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
&ktls_cnt_rx_queued,
"Number of TLS sockets in queue to tasks for SW decryption");
static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
CTLFLAG_RD, &ktls_offload_total,
"Total successful TLS setups (parameters set)");
static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
CTLFLAG_RD, &ktls_offload_enable_calls,
"Total number of TLS enable calls made");
static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
&ktls_offload_active, "Total Active TLS sessions");
static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
&ktls_offload_corrupted_records, "Total corrupted TLS records received");
static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
&ktls_offload_failed_crypto, "Total TLS crypto failures");
static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
&ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
&ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
&ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
&ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
&ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
&ktls_destroy_task,
"Number of times ktls session was destroyed via taskqueue");
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Software TLS session stats");
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Hardware (ifnet) TLS session stats");
#ifdef TCP_OFFLOAD
SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"TOE TLS session stats");
#endif
static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
"Active number of software TLS sessions using AES-CBC");
static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
"Active number of software TLS sessions using AES-GCM");
static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
&ktls_sw_chacha20,
"Active number of software TLS sessions using Chacha20-Poly1305");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
&ktls_ifnet_cbc,
"Active number of ifnet TLS sessions using AES-CBC");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
&ktls_ifnet_gcm,
"Active number of ifnet TLS sessions using AES-GCM");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
&ktls_ifnet_chacha20,
"Active number of ifnet TLS sessions using Chacha20-Poly1305");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
&ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
&ktls_ifnet_reset_dropped,
"TLS sessions dropped after failing to update ifnet send tag");
static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
&ktls_ifnet_reset_failed,
"TLS sessions that failed to allocate a new ifnet send tag");
static int ktls_ifnet_permitted;
SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
&ktls_ifnet_permitted, 1,
"Whether to permit hardware (ifnet) TLS sessions");
#ifdef TCP_OFFLOAD
static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
&ktls_toe_cbc,
"Active number of TOE TLS sessions using AES-CBC");
static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
&ktls_toe_gcm,
"Active number of TOE TLS sessions using AES-GCM");
static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
&ktls_toe_chacha20,
"Active number of TOE TLS sessions using Chacha20-Poly1305");
#endif
static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
static void ktls_reset_receive_tag(void *context, int pending);
static void ktls_reset_send_tag(void *context, int pending);
static void ktls_work_thread(void *ctx);
static void ktls_alloc_thread(void *ctx);
static u_int
ktls_get_cpu(struct socket *so)
{
struct inpcb *inp;
#ifdef NUMA
struct ktls_domain_info *di;
#endif
u_int cpuid;
inp = sotoinpcb(so);
#ifdef RSS
cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
if (cpuid != NETISR_CPUID_NONE)
return (cpuid);
#endif
/*
* Just use the flowid to shard connections in a repeatable
* fashion. Note that TLS 1.0 sessions rely on the
* serialization provided by having the same connection use
* the same queue.
*/
#ifdef NUMA
if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
di = &ktls_domains[inp->inp_numa_domain];
cpuid = di->cpu[inp->inp_flowid % di->count];
} else
#endif
cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
return (cpuid);
}
static int
ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
{
vm_page_t m;
int i, req;
KASSERT((ktls_maxlen & PAGE_MASK) == 0,
("%s: ktls max length %d is not page size-aligned",
__func__, ktls_maxlen));
req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
for (i = 0; i < count; i++) {
m = vm_page_alloc_noobj_contig_domain(domain, req,
atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
VM_MEMATTR_DEFAULT);
if (m == NULL)
break;
store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
}
return (i);
}
static void
ktls_buffer_release(void *arg __unused, void **store, int count)
{
vm_page_t m;
int i, j;
for (i = 0; i < count; i++) {
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
for (j = 0; j < atop(ktls_maxlen); j++) {
(void)vm_page_unwire_noq(m + j);
vm_page_free(m + j);
}
}
}
static void
ktls_free_mext_contig(struct mbuf *m)
{
M_ASSERTEXTPG(m);
uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
}
static int
ktls_init(void)
{
struct thread *td;
struct pcpu *pc;
int count, domain, error, i;
ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
M_WAITOK | M_ZERO);
ktls_session_zone = uma_zcreate("ktls_session",
sizeof(struct ktls_session),
NULL, NULL, NULL, NULL,
UMA_ALIGN_CACHE, 0);
if (ktls_sw_buffer_cache) {
ktls_buffer_zone = uma_zcache_create("ktls_buffers",
roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
ktls_buffer_import, ktls_buffer_release, NULL,
UMA_ZONE_FIRSTTOUCH);
}
/*
* Initialize the workqueues to run the TLS work. We create a
* work queue for each CPU.
*/
CPU_FOREACH(i) {
STAILQ_INIT(&ktls_wq[i].m_head);
STAILQ_INIT(&ktls_wq[i].so_head);
mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
if (ktls_bind_threads > 1) {
pc = pcpu_find(i);
domain = pc->pc_domain;
count = ktls_domains[domain].count;
ktls_domains[domain].cpu[count] = i;
ktls_domains[domain].count++;
}
ktls_cpuid_lookup[ktls_number_threads] = i;
ktls_number_threads++;
}
/*
* If we somehow have an empty domain, fall back to choosing
* among all KTLS threads.
*/
if (ktls_bind_threads > 1) {
for (i = 0; i < vm_ndomains; i++) {
if (ktls_domains[i].count == 0) {
ktls_bind_threads = 1;
break;
}
}
}
/* Start kthreads for each workqueue. */
CPU_FOREACH(i) {
error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
&ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
if (error) {
printf("Can't add KTLS thread %d error %d\n", i, error);
return (error);
}
}
/*
* Start an allocation thread per-domain to perform blocking allocations
* of 16k physically contiguous TLS crypto destination buffers.
*/
if (ktls_sw_buffer_cache) {
for (domain = 0; domain < vm_ndomains; domain++) {
if (VM_DOMAIN_EMPTY(domain))
continue;
if (CPU_EMPTY(&cpuset_domain[domain]))
continue;
error = kproc_kthread_add(ktls_alloc_thread,
&ktls_domains[domain], &ktls_proc,
&ktls_domains[domain].alloc_td.td,
0, 0, "KTLS", "alloc_%d", domain);
if (error) {
printf("Can't add KTLS alloc thread %d error %d\n",
domain, error);
return (error);
}
}
}
if (bootverbose)
printf("KTLS: Initialized %d threads\n", ktls_number_threads);
return (0);
}
static int
ktls_start_kthreads(void)
{
int error, state;
start:
state = atomic_load_acq_int(&ktls_init_state);
if (__predict_true(state > 0))
return (0);
if (state < 0)
return (ENXIO);
sx_xlock(&ktls_init_lock);
if (ktls_init_state != 0) {
sx_xunlock(&ktls_init_lock);
goto start;
}
error = ktls_init();
if (error == 0)
state = 1;
else
state = -1;
atomic_store_rel_int(&ktls_init_state, state);
sx_xunlock(&ktls_init_lock);
return (error);
}
static int
ktls_create_session(struct socket *so, struct tls_enable *en,
struct ktls_session **tlsp, int direction)
{
struct ktls_session *tls;
int error;
/* Only TLS 1.0 - 1.3 are supported. */
if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
return (EINVAL);
if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
en->tls_vminor > TLS_MINOR_VER_THREE)
return (EINVAL);
if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
return (EINVAL);
if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
return (EINVAL);
if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
return (EINVAL);
/* All supported algorithms require a cipher key. */
if (en->cipher_key_len == 0)
return (EINVAL);
/* No flags are currently supported. */
if (en->flags != 0)
return (EINVAL);
/* Common checks for supported algorithms. */
switch (en->cipher_algorithm) {
case CRYPTO_AES_NIST_GCM_16:
/*
* auth_algorithm isn't used, but permit GMAC values
* for compatibility.
*/
switch (en->auth_algorithm) {
case 0:
#ifdef COMPAT_FREEBSD12
/* XXX: Really 13.0-current COMPAT. */
case CRYPTO_AES_128_NIST_GMAC:
case CRYPTO_AES_192_NIST_GMAC:
case CRYPTO_AES_256_NIST_GMAC:
#endif
break;
default:
return (EINVAL);
}
if (en->auth_key_len != 0)
return (EINVAL);
switch (en->tls_vminor) {
case TLS_MINOR_VER_TWO:
if (en->iv_len != TLS_AEAD_GCM_LEN)
return (EINVAL);
break;
case TLS_MINOR_VER_THREE:
if (en->iv_len != TLS_1_3_GCM_IV_LEN)
return (EINVAL);
break;
default:
return (EINVAL);
}
break;
case CRYPTO_AES_CBC:
switch (en->auth_algorithm) {
case CRYPTO_SHA1_HMAC:
break;
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
if (en->tls_vminor != TLS_MINOR_VER_TWO)
return (EINVAL);
break;
default:
return (EINVAL);
}
if (en->auth_key_len == 0)
return (EINVAL);
/*
* TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2
* use explicit IVs.
*/
switch (en->tls_vminor) {
case TLS_MINOR_VER_ZERO:
if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
return (EINVAL);
break;
case TLS_MINOR_VER_ONE:
case TLS_MINOR_VER_TWO:
/* Ignore any supplied IV. */
en->iv_len = 0;
break;
default:
return (EINVAL);
}
break;
case CRYPTO_CHACHA20_POLY1305:
if (en->auth_algorithm != 0 || en->auth_key_len != 0)
return (EINVAL);
if (en->tls_vminor != TLS_MINOR_VER_TWO &&
en->tls_vminor != TLS_MINOR_VER_THREE)
return (EINVAL);
if (en->iv_len != TLS_CHACHA20_IV_LEN)
return (EINVAL);
break;
default:
return (EINVAL);
}
error = ktls_start_kthreads();
if (error != 0)
return (error);
tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
counter_u64_add(ktls_offload_active, 1);
refcount_init(&tls->refcount, 1);
if (direction == KTLS_RX) {
TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
} else {
TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
tls->inp = so->so_pcb;
in_pcbref(tls->inp);
tls->tx = true;
}
tls->wq_index = ktls_get_cpu(so);
tls->params.cipher_algorithm = en->cipher_algorithm;
tls->params.auth_algorithm = en->auth_algorithm;
tls->params.tls_vmajor = en->tls_vmajor;
tls->params.tls_vminor = en->tls_vminor;
tls->params.flags = en->flags;
tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
/* Set the header and trailer lengths. */
tls->params.tls_hlen = sizeof(struct tls_record_layer);
switch (en->cipher_algorithm) {
case CRYPTO_AES_NIST_GCM_16:
/*
* TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
* nonce. TLS 1.3 uses a 12 byte implicit IV.
*/
if (en->tls_vminor < TLS_MINOR_VER_THREE)
tls->params.tls_hlen += sizeof(uint64_t);
tls->params.tls_tlen = AES_GMAC_HASH_LEN;
tls->params.tls_bs = 1;
break;
case CRYPTO_AES_CBC:
switch (en->auth_algorithm) {
case CRYPTO_SHA1_HMAC:
if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
/* Implicit IV, no nonce. */
tls->sequential_records = true;
tls->next_seqno = be64dec(en->rec_seq);
STAILQ_INIT(&tls->pending_records);
} else {
tls->params.tls_hlen += AES_BLOCK_LEN;
}
tls->params.tls_tlen = AES_BLOCK_LEN +
SHA1_HASH_LEN;
break;
case CRYPTO_SHA2_256_HMAC:
tls->params.tls_hlen += AES_BLOCK_LEN;
tls->params.tls_tlen = AES_BLOCK_LEN +
SHA2_256_HASH_LEN;
break;
case CRYPTO_SHA2_384_HMAC:
tls->params.tls_hlen += AES_BLOCK_LEN;
tls->params.tls_tlen = AES_BLOCK_LEN +
SHA2_384_HASH_LEN;
break;
default:
panic("invalid hmac");
}
tls->params.tls_bs = AES_BLOCK_LEN;
break;
case CRYPTO_CHACHA20_POLY1305:
/*
* Chacha20 uses a 12 byte implicit IV.
*/
tls->params.tls_tlen = POLY1305_HASH_LEN;
tls->params.tls_bs = 1;
break;
default:
panic("invalid cipher");
}
/*
* TLS 1.3 includes optional padding which we do not support,
* and also puts the "real" record type at the end of the
* encrypted data.
*/
if (en->tls_vminor == TLS_MINOR_VER_THREE)
tls->params.tls_tlen += sizeof(uint8_t);
KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
("TLS header length too long: %d", tls->params.tls_hlen));
KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
("TLS trailer length too long: %d", tls->params.tls_tlen));
if (en->auth_key_len != 0) {
tls->params.auth_key_len = en->auth_key_len;
tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
M_WAITOK);
error = copyin(en->auth_key, tls->params.auth_key,
en->auth_key_len);
if (error)
goto out;
}
tls->params.cipher_key_len = en->cipher_key_len;
tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
error = copyin(en->cipher_key, tls->params.cipher_key,
en->cipher_key_len);
if (error)
goto out;
/*
* This holds the implicit portion of the nonce for AEAD
* ciphers and the initial implicit IV for TLS 1.0. The
* explicit portions of the IV are generated in ktls_frame().
*/
if (en->iv_len != 0) {
tls->params.iv_len = en->iv_len;
error = copyin(en->iv, tls->params.iv, en->iv_len);
if (error)
goto out;
/*
* For TLS 1.2 with GCM, generate an 8-byte nonce as a
* counter to generate unique explicit IVs.
*
* Store this counter in the last 8 bytes of the IV
* array so that it is 8-byte aligned.
*/
if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
en->tls_vminor == TLS_MINOR_VER_TWO)
arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
}
*tlsp = tls;
return (0);
out:
ktls_free(tls);
return (error);
}
static struct ktls_session *
ktls_clone_session(struct ktls_session *tls, int direction)
{
struct ktls_session *tls_new;
tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
counter_u64_add(ktls_offload_active, 1);
refcount_init(&tls_new->refcount, 1);
if (direction == KTLS_RX) {
TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
tls_new);
} else {
TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
tls_new);
tls_new->inp = tls->inp;
tls_new->tx = true;
in_pcbref(tls_new->inp);
}
/* Copy fields from existing session. */
tls_new->params = tls->params;
tls_new->wq_index = tls->wq_index;
/* Deep copy keys. */
if (tls_new->params.auth_key != NULL) {
tls_new->params.auth_key = malloc(tls->params.auth_key_len,
M_KTLS, M_WAITOK);
memcpy(tls_new->params.auth_key, tls->params.auth_key,
tls->params.auth_key_len);
}
tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
M_WAITOK);
memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
tls->params.cipher_key_len);
return (tls_new);
}
#ifdef TCP_OFFLOAD
static int
ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
{
struct inpcb *inp;
struct tcpcb *tp;
int error;
inp = so->so_pcb;
INP_WLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
if (inp->inp_socket == NULL) {
INP_WUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
if (!(tp->t_flags & TF_TOE)) {
INP_WUNLOCK(inp);
return (EOPNOTSUPP);
}
error = tcp_offload_alloc_tls_session(tp, tls, direction);
INP_WUNLOCK(inp);
if (error == 0) {
tls->mode = TCP_TLS_MODE_TOE;
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_CBC:
counter_u64_add(ktls_toe_cbc, 1);
break;
case CRYPTO_AES_NIST_GCM_16:
counter_u64_add(ktls_toe_gcm, 1);
break;
case CRYPTO_CHACHA20_POLY1305:
counter_u64_add(ktls_toe_chacha20, 1);
break;
}
}
return (error);
}
#endif
/*
* Common code used when first enabling ifnet TLS on a connection or
* when allocating a new ifnet TLS session due to a routing change.
* This function allocates a new TLS send tag on whatever interface
* the connection is currently routed over.
*/
static int
ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
struct m_snd_tag **mstp)
{
union if_snd_tag_alloc_params params;
struct ifnet *ifp;
struct nhop_object *nh;
struct tcpcb *tp;
int error;
INP_RLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_RUNLOCK(inp);
return (ECONNRESET);
}
if (inp->inp_socket == NULL) {
INP_RUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
/*
* Check administrative controls on ifnet TLS to determine if
* ifnet TLS should be denied.
*
* - Always permit 'force' requests.
* - ktls_ifnet_permitted == 0: always deny.
*/
if (!force && ktls_ifnet_permitted == 0) {
INP_RUNLOCK(inp);
return (ENXIO);
}
/*
* XXX: Use the cached route in the inpcb to find the
* interface. This should perhaps instead use
* rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only
* enabled after a connection has completed key negotiation in
* userland, the cached route will be present in practice.
*/
nh = inp->inp_route.ro_nh;
if (nh == NULL) {
INP_RUNLOCK(inp);
return (ENXIO);
}
ifp = nh->nh_ifp;
if_ref(ifp);
/*
* Allocate a TLS + ratelimit tag if the connection has an
* existing pacing rate.
*/
if (tp->t_pacing_rate != -1 &&
(if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
params.tls_rate_limit.inp = inp;
params.tls_rate_limit.tls = tls;
params.tls_rate_limit.max_rate = tp->t_pacing_rate;
} else {
params.hdr.type = IF_SND_TAG_TYPE_TLS;
params.tls.inp = inp;
params.tls.tls = tls;
}
params.hdr.flowid = inp->inp_flowid;
params.hdr.flowtype = inp->inp_flowtype;
params.hdr.numa_domain = inp->inp_numa_domain;
INP_RUNLOCK(inp);
if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
error = EOPNOTSUPP;
goto out;
}
if (inp->inp_vflag & INP_IPV6) {
if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
error = EOPNOTSUPP;
goto out;
}
} else {
if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
error = EOPNOTSUPP;
goto out;
}
}
error = m_snd_tag_alloc(ifp, ¶ms, mstp);
out:
if_rele(ifp);
return (error);
}
/*
* Allocate an initial TLS receive tag for doing HW decryption of TLS
* data.
*
* This function allocates a new TLS receive tag on whatever interface
* the connection is currently routed over. If the connection ends up
* using a different interface for receive this will get fixed up via
* ktls_input_ifp_mismatch as future packets arrive.
*/
static int
ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
struct m_snd_tag **mstp)
{
union if_snd_tag_alloc_params params;
struct ifnet *ifp;
struct nhop_object *nh;
int error;
if (!ktls_ocf_recrypt_supported(tls))
return (ENXIO);
INP_RLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_RUNLOCK(inp);
return (ECONNRESET);
}
if (inp->inp_socket == NULL) {
INP_RUNLOCK(inp);
return (ECONNRESET);
}
/*
* Check administrative controls on ifnet TLS to determine if
* ifnet TLS should be denied.
*/
if (ktls_ifnet_permitted == 0) {
INP_RUNLOCK(inp);
return (ENXIO);
}
/*
* XXX: As with ktls_alloc_snd_tag, use the cached route in
* the inpcb to find the interface.
*/
nh = inp->inp_route.ro_nh;
if (nh == NULL) {
INP_RUNLOCK(inp);
return (ENXIO);
}
ifp = nh->nh_ifp;
if_ref(ifp);
tls->rx_ifp = ifp;
params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
params.hdr.flowid = inp->inp_flowid;
params.hdr.flowtype = inp->inp_flowtype;
params.hdr.numa_domain = inp->inp_numa_domain;
params.tls_rx.inp = inp;
params.tls_rx.tls = tls;
params.tls_rx.vlan_id = 0;
INP_RUNLOCK(inp);
if (inp->inp_vflag & INP_IPV6) {
if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) {
error = EOPNOTSUPP;
goto out;
}
} else {
if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) {
error = EOPNOTSUPP;
goto out;
}
}
error = m_snd_tag_alloc(ifp, ¶ms, mstp);
/*
* If this connection is over a vlan, vlan_snd_tag_alloc
* rewrites vlan_id with the saved interface. Save the VLAN
* ID for use in ktls_reset_receive_tag which allocates new
* receive tags directly from the leaf interface bypassing
* if_vlan.
*/
if (error == 0)
tls->rx_vlan_id = params.tls_rx.vlan_id;
out:
return (error);
}
static int
ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
bool force)
{
struct m_snd_tag *mst;
int error;
switch (direction) {
case KTLS_TX:
error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
if (__predict_false(error != 0))
goto done;
break;
case KTLS_RX:
KASSERT(!force, ("%s: forced receive tag", __func__));
error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
if (__predict_false(error != 0))
goto done;
break;
default:
__assert_unreachable();
}
tls->mode = TCP_TLS_MODE_IFNET;
tls->snd_tag = mst;
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_CBC:
counter_u64_add(ktls_ifnet_cbc, 1);
break;
case CRYPTO_AES_NIST_GCM_16:
counter_u64_add(ktls_ifnet_gcm, 1);
break;
case CRYPTO_CHACHA20_POLY1305:
counter_u64_add(ktls_ifnet_chacha20, 1);
break;
default:
break;
}
done:
return (error);
}
static void
ktls_use_sw(struct ktls_session *tls)
{
tls->mode = TCP_TLS_MODE_SW;
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_CBC:
counter_u64_add(ktls_sw_cbc, 1);
break;
case CRYPTO_AES_NIST_GCM_16:
counter_u64_add(ktls_sw_gcm, 1);
break;
case CRYPTO_CHACHA20_POLY1305:
counter_u64_add(ktls_sw_chacha20, 1);
break;
}
}
static int
ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
{
int error;
error = ktls_ocf_try(so, tls, direction);
if (error)
return (error);
ktls_use_sw(tls);
return (0);
}
/*
* KTLS RX stores data in the socket buffer as a list of TLS records,
* where each record is stored as a control message containg the TLS
* header followed by data mbufs containing the decrypted data. This
* is different from KTLS TX which always uses an mb_ext_pgs mbuf for
* both encrypted and decrypted data. TLS records decrypted by a NIC
* should be queued to the socket buffer as records, but encrypted
* data which needs to be decrypted by software arrives as a stream of
* regular mbufs which need to be converted. In addition, there may
* already be pending encrypted data in the socket buffer when KTLS RX
* is enabled.
*
* To manage not-yet-decrypted data for KTLS RX, the following scheme
* is used:
*
* - A single chain of NOTREADY mbufs is hung off of sb_mtls.
*
* - ktls_check_rx checks this chain of mbufs reading the TLS header
* from the first mbuf. Once all of the data for that TLS record is
* queued, the socket is queued to a worker thread.
*
* - The worker thread calls ktls_decrypt to decrypt TLS records in
* the TLS chain. Each TLS record is detached from the TLS chain,
* decrypted, and inserted into the regular socket buffer chain as
* record starting with a control message holding the TLS header and
* a chain of mbufs holding the encrypted data.
*/
static void
sb_mark_notready(struct sockbuf *sb)
{
struct mbuf *m;
m = sb->sb_mb;
sb->sb_mtls = m;
sb->sb_mb = NULL;
sb->sb_mbtail = NULL;
sb->sb_lastrecord = NULL;
for (; m != NULL; m = m->m_next) {
KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
__func__));
KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
__func__));
KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
__func__));
m->m_flags |= M_NOTREADY;
sb->sb_acc -= m->m_len;
sb->sb_tlscc += m->m_len;
sb->sb_mtlstail = m;
}
KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
sb->sb_ccc));
}
/*
* Return information about the pending TLS data in a socket
* buffer. On return, 'seqno' is set to the sequence number
* of the next TLS record to be received, 'resid' is set to
* the amount of bytes still needed for the last pending
* record. The function returns 'false' if the last pending
* record contains a partial TLS header. In that case, 'resid'
* is the number of bytes needed to complete the TLS header.
*/
bool
ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
{
struct tls_record_layer hdr;
struct mbuf *m;
uint64_t seqno;
size_t resid;
u_int offset, record_len;
SOCKBUF_LOCK_ASSERT(sb);
MPASS(sb->sb_flags & SB_TLS_RX);
seqno = sb->sb_tls_seqno;
resid = sb->sb_tlscc;
m = sb->sb_mtls;
offset = 0;
if (resid == 0) {
*seqnop = seqno;
*residp = 0;
return (true);
}
for (;;) {
seqno++;
if (resid < sizeof(hdr)) {
*seqnop = seqno;
*residp = sizeof(hdr) - resid;
return (false);
}
m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
record_len = sizeof(hdr) + ntohs(hdr.tls_length);
if (resid <= record_len) {
*seqnop = seqno;
*residp = record_len - resid;
return (true);
}
resid -= record_len;
while (record_len != 0) {
if (m->m_len - offset > record_len) {
offset += record_len;
break;
}
record_len -= (m->m_len - offset);
offset = 0;
m = m->m_next;
}
}
}
int
ktls_enable_rx(struct socket *so, struct tls_enable *en)
{
struct ktls_session *tls;
int error;
if (!ktls_offload_enable)
return (ENOTSUP);
counter_u64_add(ktls_offload_enable_calls, 1);
/*
* This should always be true since only the TCP socket option
* invokes this function.
*/
if (so->so_proto->pr_protocol != IPPROTO_TCP)
return (EINVAL);
/*
* XXX: Don't overwrite existing sessions. We should permit
* this to support rekeying in the future.
*/
if (so->so_rcv.sb_tls_info != NULL)
return (EALREADY);
if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
return (ENOTSUP);
error = ktls_create_session(so, en, &tls, KTLS_RX);
if (error)
return (error);
error = ktls_ocf_try(so, tls, KTLS_RX);
if (error) {
ktls_free(tls);
return (error);
}
/* Mark the socket as using TLS offload. */
SOCK_RECVBUF_LOCK(so);
if (SOLISTENING(so)) {
SOCK_RECVBUF_UNLOCK(so);
ktls_free(tls);
return (EINVAL);
}
so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
so->so_rcv.sb_tls_info = tls;
so->so_rcv.sb_flags |= SB_TLS_RX;
/* Mark existing data as not ready until it can be decrypted. */
sb_mark_notready(&so->so_rcv);
ktls_check_rx(&so->so_rcv);
SOCK_RECVBUF_UNLOCK(so);
/* Prefer TOE -> ifnet TLS -> software TLS. */
#ifdef TCP_OFFLOAD
error = ktls_try_toe(so, tls, KTLS_RX);
if (error)
#endif
error = ktls_try_ifnet(so, tls, KTLS_RX, false);
if (error)
ktls_use_sw(tls);
counter_u64_add(ktls_offload_total, 1);
return (0);
}
int
ktls_enable_tx(struct socket *so, struct tls_enable *en)
{
struct ktls_session *tls;
struct inpcb *inp;
struct tcpcb *tp;
int error;
if (!ktls_offload_enable)
return (ENOTSUP);
counter_u64_add(ktls_offload_enable_calls, 1);
/*
* This should always be true since only the TCP socket option
* invokes this function.
*/
if (so->so_proto->pr_protocol != IPPROTO_TCP)
return (EINVAL);
/*
* XXX: Don't overwrite existing sessions. We should permit
* this to support rekeying in the future.
*/
if (so->so_snd.sb_tls_info != NULL)
return (EALREADY);
if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
return (ENOTSUP);
/* TLS requires ext pgs */
if (mb_use_ext_pgs == 0)
return (ENXIO);
error = ktls_create_session(so, en, &tls, KTLS_TX);
if (error)
return (error);
/* Prefer TOE -> ifnet TLS -> software TLS. */
#ifdef TCP_OFFLOAD
error = ktls_try_toe(so, tls, KTLS_TX);
if (error)
#endif
error = ktls_try_ifnet(so, tls, KTLS_TX, false);
if (error)
error = ktls_try_sw(so, tls, KTLS_TX);
if (error) {
ktls_free(tls);
return (error);
}
/*
* Serialize with sosend_generic() and make sure that we're not
* operating on a listening socket.
*/
error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
if (error) {
ktls_free(tls);
return (error);
}
/*
* Write lock the INP when setting sb_tls_info so that
* routines in tcp_ratelimit.c can read sb_tls_info while
* holding the INP lock.
*/
inp = so->so_pcb;
INP_WLOCK(inp);
SOCK_SENDBUF_LOCK(so);
so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
so->so_snd.sb_tls_info = tls;
if (tls->mode != TCP_TLS_MODE_SW) {
tp = intotcpcb(inp);
MPASS(tp->t_nic_ktls_xmit == 0);
tp->t_nic_ktls_xmit = 1;
if (tp->t_fb->tfb_hwtls_change != NULL)
(*tp->t_fb->tfb_hwtls_change)(tp, 1);
}
SOCK_SENDBUF_UNLOCK(so);
INP_WUNLOCK(inp);
SOCK_IO_SEND_UNLOCK(so);
counter_u64_add(ktls_offload_total, 1);
return (0);
}
int
ktls_get_rx_mode(struct socket *so, int *modep)
{
struct ktls_session *tls;
struct inpcb *inp __diagused;
if (SOLISTENING(so))
return (EINVAL);
inp = so->so_pcb;
INP_WLOCK_ASSERT(inp);
SOCK_RECVBUF_LOCK(so);
tls = so->so_rcv.sb_tls_info;
if (tls == NULL)
*modep = TCP_TLS_MODE_NONE;
else
*modep = tls->mode;
SOCK_RECVBUF_UNLOCK(so);
return (0);
}
/*
* ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
*
* This function gets information about the next TCP- and TLS-
* sequence number to be processed by the TLS receive worker
* thread. The information is extracted from the given "inpcb"
* structure. The values are stored in host endian format at the two
* given output pointer locations. The TCP sequence number points to
* the beginning of the TLS header.
*
* This function returns zero on success, else a non-zero error code
* is returned.
*/
int
ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
{
struct socket *so;
struct tcpcb *tp;
INP_RLOCK(inp);
so = inp->inp_socket;
if (__predict_false(so == NULL)) {
INP_RUNLOCK(inp);
return (EINVAL);
}
if (inp->inp_flags & INP_DROPPED) {
INP_RUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
MPASS(tp != NULL);
SOCKBUF_LOCK(&so->so_rcv);
*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
*tlsseq = so->so_rcv.sb_tls_seqno;
SOCKBUF_UNLOCK(&so->so_rcv);
INP_RUNLOCK(inp);
return (0);
}
int
ktls_get_tx_mode(struct socket *so, int *modep)
{
struct ktls_session *tls;
struct inpcb *inp __diagused;
if (SOLISTENING(so))
return (EINVAL);
inp = so->so_pcb;
INP_WLOCK_ASSERT(inp);
SOCK_SENDBUF_LOCK(so);
tls = so->so_snd.sb_tls_info;
if (tls == NULL)
*modep = TCP_TLS_MODE_NONE;
else
*modep = tls->mode;
SOCK_SENDBUF_UNLOCK(so);
return (0);
}
/*
* Switch between SW and ifnet TLS sessions as requested.
*/
int
ktls_set_tx_mode(struct socket *so, int mode)
{
struct ktls_session *tls, *tls_new;
struct inpcb *inp;
struct tcpcb *tp;
int error;
if (SOLISTENING(so))
return (EINVAL);
switch (mode) {
case TCP_TLS_MODE_SW:
case TCP_TLS_MODE_IFNET:
break;
default:
return (EINVAL);
}
inp = so->so_pcb;
INP_WLOCK_ASSERT(inp);
tp = intotcpcb(inp);
if (mode == TCP_TLS_MODE_IFNET) {
/* Don't allow enabling ifnet ktls multiple times */
if (tp->t_nic_ktls_xmit)
return (EALREADY);
/*
* Don't enable ifnet ktls if we disabled it due to an
* excessive retransmission rate
*/
if (tp->t_nic_ktls_xmit_dis)
return (ENXIO);
}
SOCKBUF_LOCK(&so->so_snd);
tls = so->so_snd.sb_tls_info;
if (tls == NULL) {
SOCKBUF_UNLOCK(&so->so_snd);
return (0);
}
if (tls->mode == mode) {
SOCKBUF_UNLOCK(&so->so_snd);
return (0);
}
tls = ktls_hold(tls);
SOCKBUF_UNLOCK(&so->so_snd);
INP_WUNLOCK(inp);
tls_new = ktls_clone_session(tls, KTLS_TX);
if (mode == TCP_TLS_MODE_IFNET)
error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
else
error = ktls_try_sw(so, tls_new, KTLS_TX);
if (error) {
counter_u64_add(ktls_switch_failed, 1);
ktls_free(tls_new);
ktls_free(tls);
INP_WLOCK(inp);
return (error);
}
error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
if (error) {
counter_u64_add(ktls_switch_failed, 1);
ktls_free(tls_new);
ktls_free(tls);
INP_WLOCK(inp);
return (error);
}
/*
* If we raced with another session change, keep the existing
* session.
*/
if (tls != so->so_snd.sb_tls_info) {
counter_u64_add(ktls_switch_failed, 1);
SOCK_IO_SEND_UNLOCK(so);
ktls_free(tls_new);
ktls_free(tls);
INP_WLOCK(inp);
return (EBUSY);
}
INP_WLOCK(inp);
SOCKBUF_LOCK(&so->so_snd);
so->so_snd.sb_tls_info = tls_new;
if (tls_new->mode != TCP_TLS_MODE_SW) {
MPASS(tp->t_nic_ktls_xmit == 0);
tp->t_nic_ktls_xmit = 1;
if (tp->t_fb->tfb_hwtls_change != NULL)
(*tp->t_fb->tfb_hwtls_change)(tp, 1);
}
SOCKBUF_UNLOCK(&so->so_snd);
SOCK_IO_SEND_UNLOCK(so);
/*
* Drop two references on 'tls'. The first is for the
* ktls_hold() above. The second drops the reference from the
* socket buffer.
*/
KASSERT(tls->refcount >= 2, ("too few references on old session"));
ktls_free(tls);
ktls_free(tls);
if (mode == TCP_TLS_MODE_IFNET)
counter_u64_add(ktls_switch_to_ifnet, 1);
else
counter_u64_add(ktls_switch_to_sw, 1);
return (0);
}
/*
* Try to allocate a new TLS receive tag. This task is scheduled when
* sbappend_ktls_rx detects an input path change. If a new tag is
* allocated, replace the tag in the TLS session. If a new tag cannot
* be allocated, let the session fall back to software decryption.
*/
static void
ktls_reset_receive_tag(void *context, int pending)
{
union if_snd_tag_alloc_params params;
struct ktls_session *tls;
struct m_snd_tag *mst;
struct inpcb *inp;
struct ifnet *ifp;
struct socket *so;
int error;
MPASS(pending == 1);
tls = context;
so = tls->so;
inp = so->so_pcb;
ifp = NULL;
INP_RLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_RUNLOCK(inp);
goto out;
}
SOCKBUF_LOCK(&so->so_rcv);
mst = tls->snd_tag;
tls->snd_tag = NULL;
if (mst != NULL)
m_snd_tag_rele(mst);
ifp = tls->rx_ifp;
if_ref(ifp);
SOCKBUF_UNLOCK(&so->so_rcv);
params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
params.hdr.flowid = inp->inp_flowid;
params.hdr.flowtype = inp->inp_flowtype;
params.hdr.numa_domain = inp->inp_numa_domain;
params.tls_rx.inp = inp;
params.tls_rx.tls = tls;
params.tls_rx.vlan_id = tls->rx_vlan_id;
INP_RUNLOCK(inp);
if (inp->inp_vflag & INP_IPV6) {
if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
goto out;
} else {
if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
goto out;
}
error = m_snd_tag_alloc(ifp, ¶ms, &mst);
if (error == 0) {
SOCKBUF_LOCK(&so->so_rcv);
tls->snd_tag = mst;
SOCKBUF_UNLOCK(&so->so_rcv);
counter_u64_add(ktls_ifnet_reset, 1);
} else {
/*
* Just fall back to software decryption if a tag
* cannot be allocated leaving the connection intact.
* If a future input path change switches to another
* interface this connection will resume ifnet TLS.
*/
counter_u64_add(ktls_ifnet_reset_failed, 1);
}
out:
mtx_pool_lock(mtxpool_sleep, tls);
tls->reset_pending = false;
mtx_pool_unlock(mtxpool_sleep, tls);
if (ifp != NULL)
if_rele(ifp);
sorele(so);
ktls_free(tls);
}
/*
* Try to allocate a new TLS send tag. This task is scheduled when
* ip_output detects a route change while trying to transmit a packet
* holding a TLS record. If a new tag is allocated, replace the tag
* in the TLS session. Subsequent packets on the connection will use
* the new tag. If a new tag cannot be allocated, drop the
* connection.
*/
static void
ktls_reset_send_tag(void *context, int pending)
{
struct epoch_tracker et;
struct ktls_session *tls;
struct m_snd_tag *old, *new;
struct inpcb *inp;
struct tcpcb *tp;
int error;
MPASS(pending == 1);
tls = context;
inp = tls->inp;
/*
* Free the old tag first before allocating a new one.
* ip[6]_output_send() will treat a NULL send tag the same as
* an ifp mismatch and drop packets until a new tag is
* allocated.
*
* Write-lock the INP when changing tls->snd_tag since
* ip[6]_output_send() holds a read-lock when reading the
* pointer.
*/
INP_WLOCK(inp);
old = tls->snd_tag;
tls->snd_tag = NULL;
INP_WUNLOCK(inp);
if (old != NULL)
m_snd_tag_rele(old);
error = ktls_alloc_snd_tag(inp, tls, true, &new);
if (error == 0) {
INP_WLOCK(inp);
tls->snd_tag = new;
mtx_pool_lock(mtxpool_sleep, tls);
tls->reset_pending = false;
mtx_pool_unlock(mtxpool_sleep, tls);
INP_WUNLOCK(inp);
counter_u64_add(ktls_ifnet_reset, 1);
/*
* XXX: Should we kick tcp_output explicitly now that
* the send tag is fixed or just rely on timers?
*/
} else {
NET_EPOCH_ENTER(et);
INP_WLOCK(inp);
if (!(inp->inp_flags & INP_DROPPED)) {
tp = intotcpcb(inp);
CURVNET_SET(inp->inp_vnet);
tp = tcp_drop(tp, ECONNABORTED);
CURVNET_RESTORE();
if (tp != NULL)
counter_u64_add(ktls_ifnet_reset_dropped, 1);
}
INP_WUNLOCK(inp);
NET_EPOCH_EXIT(et);
counter_u64_add(ktls_ifnet_reset_failed, 1);
/*
* Leave reset_pending true to avoid future tasks while
* the socket goes away.
*/
}
ktls_free(tls);
}
void
ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
{
struct ktls_session *tls;
struct socket *so;
SOCKBUF_LOCK_ASSERT(sb);
KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
__func__, sb));
so = __containerof(sb, struct socket, so_rcv);
tls = sb->sb_tls_info;
if_rele(tls->rx_ifp);
if_ref(ifp);
tls->rx_ifp = ifp;
/*
* See if we should schedule a task to update the receive tag for
* this session.
*/
mtx_pool_lock(mtxpool_sleep, tls);
if (!tls->reset_pending) {
(void) ktls_hold(tls);
soref(so);
tls->so = so;
tls->reset_pending = true;
taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
}
mtx_pool_unlock(mtxpool_sleep, tls);
}
int
ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
{
if (inp == NULL)
return (ENOBUFS);
INP_LOCK_ASSERT(inp);
/*
* See if we should schedule a task to update the send tag for
* this session.
*/
mtx_pool_lock(mtxpool_sleep, tls);
if (!tls->reset_pending) {
(void) ktls_hold(tls);
tls->reset_pending = true;
taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
}
mtx_pool_unlock(mtxpool_sleep, tls);
return (ENOBUFS);
}
#ifdef RATELIMIT
int
ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
{
union if_snd_tag_modify_params params = {
.rate_limit.max_rate = max_pacing_rate,
.rate_limit.flags = M_NOWAIT,
};
struct m_snd_tag *mst;
/* Can't get to the inp, but it should be locked. */
/* INP_LOCK_ASSERT(inp); */
MPASS(tls->mode == TCP_TLS_MODE_IFNET);
if (tls->snd_tag == NULL) {
/*
* Resetting send tag, ignore this change. The
* pending reset may or may not see this updated rate
* in the tcpcb. If it doesn't, we will just lose
* this rate change.
*/
return (0);
}
mst = tls->snd_tag;
MPASS(mst != NULL);
MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
return (mst->sw->snd_tag_modify(mst, ¶ms));
}
#endif
static void
ktls_destroy_help(void *context, int pending __unused)
{
ktls_destroy(context);
}
void
ktls_destroy(struct ktls_session *tls)
{
struct inpcb *inp;
struct tcpcb *tp;
bool wlocked;
MPASS(tls->refcount == 0);
inp = tls->inp;
if (tls->tx) {
wlocked = INP_WLOCKED(inp);
if (!wlocked && !INP_TRY_WLOCK(inp)) {
/*
* rwlocks read locks are anonymous, and there
* is no way to know if our current thread
* holds an rlock on the inp. As a rough
* estimate, check to see if the thread holds
* *any* rlocks at all. If it does not, then we
* know that we don't hold the inp rlock, and
* can safely take the wlock
*/
if (curthread->td_rw_rlocks == 0) {
INP_WLOCK(inp);
} else {
/*
* We might hold the rlock, so let's
* do the destroy in a taskqueue
* context to avoid a potential
* deadlock. This should be very
* rare.
*/
counter_u64_add(ktls_destroy_task, 1);
TASK_INIT(&tls->destroy_task, 0,
ktls_destroy_help, tls);
(void)taskqueue_enqueue(taskqueue_thread,
&tls->destroy_task);
return;
}
}
}
if (tls->sequential_records) {
struct mbuf *m, *n;
int page_count;
STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
page_count = m->m_epg_enc_cnt;
while (page_count > 0) {
KASSERT(page_count >= m->m_epg_nrdy,
("%s: too few pages", __func__));
page_count -= m->m_epg_nrdy;
m = m_free(m);
}
}
}
counter_u64_add(ktls_offload_active, -1);
switch (tls->mode) {
case TCP_TLS_MODE_SW:
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_CBC:
counter_u64_add(ktls_sw_cbc, -1);
break;
case CRYPTO_AES_NIST_GCM_16:
counter_u64_add(ktls_sw_gcm, -1);
break;
case CRYPTO_CHACHA20_POLY1305:
counter_u64_add(ktls_sw_chacha20, -1);
break;
}
break;
case TCP_TLS_MODE_IFNET:
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_CBC:
counter_u64_add(ktls_ifnet_cbc, -1);
break;
case CRYPTO_AES_NIST_GCM_16:
counter_u64_add(ktls_ifnet_gcm, -1);
break;
case CRYPTO_CHACHA20_POLY1305:
counter_u64_add(ktls_ifnet_chacha20, -1);
break;
}
if (tls->snd_tag != NULL)
m_snd_tag_rele(tls->snd_tag);
if (tls->rx_ifp != NULL)
if_rele(tls->rx_ifp);
if (tls->tx) {
INP_WLOCK_ASSERT(inp);
tp = intotcpcb(inp);
MPASS(tp->t_nic_ktls_xmit == 1);
tp->t_nic_ktls_xmit = 0;
}
break;
#ifdef TCP_OFFLOAD
case TCP_TLS_MODE_TOE:
switch (tls->params.cipher_algorithm) {
case CRYPTO_AES_CBC:
counter_u64_add(ktls_toe_cbc, -1);
break;
case CRYPTO_AES_NIST_GCM_16:
counter_u64_add(ktls_toe_gcm, -1);
break;
case CRYPTO_CHACHA20_POLY1305:
counter_u64_add(ktls_toe_chacha20, -1);
break;
}
break;
#endif
}
if (tls->ocf_session != NULL)
ktls_ocf_free(tls);
if (tls->params.auth_key != NULL) {
zfree(tls->params.auth_key, M_KTLS);
tls->params.auth_key = NULL;
tls->params.auth_key_len = 0;
}
if (tls->params.cipher_key != NULL) {
zfree(tls->params.cipher_key, M_KTLS);
tls->params.cipher_key = NULL;
tls->params.cipher_key_len = 0;
}
if (tls->tx) {
INP_WLOCK_ASSERT(inp);
if (!in_pcbrele_wlocked(inp) && !wlocked)
INP_WUNLOCK(inp);
}
explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
uma_zfree(ktls_session_zone, tls);
}
void
ktls_seq(struct sockbuf *sb, struct mbuf *m)
{
for (; m != NULL; m = m->m_next) {
KASSERT((m->m_flags & M_EXTPG) != 0,
("ktls_seq: mapped mbuf %p", m));
m->m_epg_seqno = sb->sb_tls_seqno;
sb->sb_tls_seqno++;
}
}
/*
* Add TLS framing (headers and trailers) to a chain of mbufs. Each
* mbuf in the chain must be an unmapped mbuf. The payload of the
* mbuf must be populated with the payload of each TLS record.
*
* The record_type argument specifies the TLS record type used when
* populating the TLS header.
*
* The enq_count argument on return is set to the number of pages of
* payload data for this entire chain that need to be encrypted via SW
* encryption. The returned value should be passed to ktls_enqueue
* when scheduling encryption of this chain of mbufs. To handle the
* special case of empty fragments for TLS 1.0 sessions, an empty
* fragment counts as one page.
*/
void
ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
uint8_t record_type)
{
struct tls_record_layer *tlshdr;
struct mbuf *m;
uint64_t *noncep;
uint16_t tls_len;
int maxlen __diagused;
maxlen = tls->params.max_frame_len;
*enq_cnt = 0;
for (m = top; m != NULL; m = m->m_next) {
/*
* All mbufs in the chain should be TLS records whose
* payload does not exceed the maximum frame length.
*
* Empty TLS 1.0 records are permitted when using CBC.
*/
KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
(m->m_len > 0 || ktls_permit_empty_frames(tls)),
("ktls_frame: m %p len %d", m, m->m_len));
/*
* TLS frames require unmapped mbufs to store session
* info.
*/
KASSERT((m->m_flags & M_EXTPG) != 0,
("ktls_frame: mapped mbuf %p (top = %p)", m, top));
tls_len = m->m_len;
/* Save a reference to the session. */
m->m_epg_tls = ktls_hold(tls);
m->m_epg_hdrlen = tls->params.tls_hlen;
m->m_epg_trllen = tls->params.tls_tlen;
if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
int bs, delta;
/*
* AES-CBC pads messages to a multiple of the
* block size. Note that the padding is
* applied after the digest and the encryption
* is done on the "plaintext || mac || padding".
* At least one byte of padding is always
* present.
*
* Compute the final trailer length assuming
* at most one block of padding.
* tls->params.tls_tlen is the maximum
* possible trailer length (padding + digest).
* delta holds the number of excess padding
* bytes if the maximum were used. Those
* extra bytes are removed.
*/
bs = tls->params.tls_bs;
delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
m->m_epg_trllen -= delta;
}
m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
/* Populate the TLS header. */
tlshdr = (void *)m->m_epg_hdr;
tlshdr->tls_vmajor = tls->params.tls_vmajor;
/*
* TLS 1.3 masquarades as TLS 1.2 with a record type
* of TLS_RLTYPE_APP.
*/
if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
tlshdr->tls_type = TLS_RLTYPE_APP;
/* save the real record type for later */
m->m_epg_record_type = record_type;
m->m_epg_trail[0] = record_type;
} else {
tlshdr->tls_vminor = tls->params.tls_vminor;
tlshdr->tls_type = record_type;
}
tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
/*
* Store nonces / explicit IVs after the end of the
* TLS header.
*
* For GCM with TLS 1.2, an 8 byte nonce is copied
* from the end of the IV. The nonce is then
* incremented for use by the next record.
*
* For CBC, a random nonce is inserted for TLS 1.1+.
*/
if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
noncep = (uint64_t *)(tls->params.iv + 8);
be64enc(tlshdr + 1, *noncep);
(*noncep)++;
} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
/*
* When using SW encryption, mark the mbuf not ready.
* It will be marked ready via sbready() after the
* record has been encrypted.
*
* When using ifnet TLS, unencrypted TLS records are
* sent down the stack to the NIC.
*/
if (tls->mode == TCP_TLS_MODE_SW) {
m->m_flags |= M_NOTREADY;
if (__predict_false(tls_len == 0)) {
/* TLS 1.0 empty fragment. */
m->m_epg_nrdy = 1;
} else
m->m_epg_nrdy = m->m_epg_npgs;
*enq_cnt += m->m_epg_nrdy;
}
}
}
bool
ktls_permit_empty_frames(struct ktls_session *tls)
{
return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
}
void
ktls_check_rx(struct sockbuf *sb)
{
struct tls_record_layer hdr;
struct ktls_wq *wq;
struct socket *so;
bool running;
SOCKBUF_LOCK_ASSERT(sb);
KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
__func__, sb));
so = __containerof(sb, struct socket, so_rcv);
if (sb->sb_flags & SB_TLS_RX_RUNNING)
return;
/* Is there enough queued for a TLS header? */
if (sb->sb_tlscc < sizeof(hdr)) {
if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
so->so_error = EMSGSIZE;
return;
}
m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
/* Is the entire record queued? */
if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
so->so_error = EMSGSIZE;
return;
}
sb->sb_flags |= SB_TLS_RX_RUNNING;
soref(so);
wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
mtx_lock(&wq->mtx);
STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
running = wq->running;
mtx_unlock(&wq->mtx);
if (!running)
wakeup(wq);
counter_u64_add(ktls_cnt_rx_queued, 1);
}
static struct mbuf *
ktls_detach_record(struct sockbuf *sb, int len)
{
struct mbuf *m, *n, *top;
int remain;
SOCKBUF_LOCK_ASSERT(sb);
MPASS(len <= sb->sb_tlscc);
/*
* If TLS chain is the exact size of the record,
* just grab the whole record.
*/
top = sb->sb_mtls;
if (sb->sb_tlscc == len) {
sb->sb_mtls = NULL;
sb->sb_mtlstail = NULL;
goto out;
}
/*
* While it would be nice to use m_split() here, we need
* to know exactly what m_split() allocates to update the
* accounting, so do it inline instead.
*/
remain = len;
for (m = top; remain > m->m_len; m = m->m_next)
remain -= m->m_len;
/* Easy case: don't have to split 'm'. */
if (remain == m->m_len) {
sb->sb_mtls = m->m_next;
if (sb->sb_mtls == NULL)
sb->sb_mtlstail = NULL;
m->m_next = NULL;
goto out;
}
/*
* Need to allocate an mbuf to hold the remainder of 'm'. Try
* with M_NOWAIT first.
*/
n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
/*
* Use M_WAITOK with socket buffer unlocked. If
* 'sb_mtls' changes while the lock is dropped, return
* NULL to force the caller to retry.
*/
SOCKBUF_UNLOCK(sb);
n = m_get(M_WAITOK, MT_DATA);
SOCKBUF_LOCK(sb);
if (sb->sb_mtls != top) {
m_free(n);
return (NULL);
}
}
n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
/* Store remainder in 'n'. */
n->m_len = m->m_len - remain;
if (m->m_flags & M_EXT) {
n->m_data = m->m_data + remain;
mb_dupcl(n, m);
} else {
bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
}
/* Trim 'm' and update accounting. */
m->m_len -= n->m_len;
sb->sb_tlscc -= n->m_len;
sb->sb_ccc -= n->m_len;
/* Account for 'n'. */
sballoc_ktls_rx(sb, n);
/* Insert 'n' into the TLS chain. */
sb->sb_mtls = n;
n->m_next = m->m_next;
if (sb->sb_mtlstail == m)
sb->sb_mtlstail = n;
/* Detach the record from the TLS chain. */
m->m_next = NULL;
out:
MPASS(m_length(top, NULL) == len);
for (m = top; m != NULL; m = m->m_next)
sbfree_ktls_rx(sb, m);
sb->sb_tlsdcc = len;
sb->sb_ccc += len;
SBCHECK(sb);
return (top);
}
/*
* Determine the length of the trailing zero padding and find the real
* record type in the byte before the padding.
*
* Walking the mbuf chain backwards is clumsy, so another option would
* be to scan forwards remembering the last non-zero byte before the
* trailer. However, it would be expensive to scan the entire record.
* Instead, find the last non-zero byte of each mbuf in the chain
* keeping track of the relative offset of that nonzero byte.
*
* trail_len is the size of the MAC/tag on input and is set to the
* size of the full trailer including padding and the record type on
* return.
*/
static int
tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
int *trailer_len, uint8_t *record_typep)
{
char *cp;
u_int digest_start, last_offset, m_len, offset;
uint8_t record_type;
digest_start = tls_len - *trailer_len;
last_offset = 0;
offset = 0;
for (; m != NULL && offset < digest_start;
offset += m->m_len, m = m->m_next) {
/* Don't look for padding in the tag. */
m_len = min(digest_start - offset, m->m_len);
cp = mtod(m, char *);
/* Find last non-zero byte in this mbuf. */
while (m_len > 0 && cp[m_len - 1] == 0)
m_len--;
if (m_len > 0) {
record_type = cp[m_len - 1];
last_offset = offset + m_len;
}
}
if (last_offset < tls->params.tls_hlen)
return (EBADMSG);
*record_typep = record_type;
*trailer_len = tls_len - last_offset + 1;
return (0);
}
/*
* Check if a mbuf chain is fully decrypted at the given offset and
* length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
* decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
* and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
* is encrypted.
*/
ktls_mbuf_crypto_st_t
ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
{
int m_flags_ored = 0;
int m_flags_anded = -1;
for (; mb != NULL; mb = mb->m_next) {
if (offset < mb->m_len)
break;
offset -= mb->m_len;
}
offset += len;
for (; mb != NULL; mb = mb->m_next) {
m_flags_ored |= mb->m_flags;
m_flags_anded &= mb->m_flags;
if (offset <= mb->m_len)
break;
offset -= mb->m_len;
}
MPASS(mb != NULL || offset == 0);
if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
return (KTLS_MBUF_CRYPTO_ST_MIXED);
else
return ((m_flags_ored & M_DECRYPTED) ?
KTLS_MBUF_CRYPTO_ST_DECRYPTED :
KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
}
/*
* ktls_resync_ifnet - get HW TLS RX back on track after packet loss
*/
static int
ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
{
union if_snd_tag_modify_params params;
struct m_snd_tag *mst;
struct inpcb *inp;
struct tcpcb *tp;
mst = so->so_rcv.sb_tls_info->snd_tag;
if (__predict_false(mst == NULL))
return (EINVAL);
inp = sotoinpcb(so);
if (__predict_false(inp == NULL))
return (EINVAL);
INP_RLOCK(inp);
if (inp->inp_flags & INP_DROPPED) {
INP_RUNLOCK(inp);
return (ECONNRESET);
}
tp = intotcpcb(inp);
MPASS(tp != NULL);
/* Get the TCP sequence number of the next valid TLS header. */
SOCKBUF_LOCK(&so->so_rcv);
params.tls_rx.tls_hdr_tcp_sn =
tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
params.tls_rx.tls_rec_length = tls_len;
params.tls_rx.tls_seq_number = tls_rcd_num;
SOCKBUF_UNLOCK(&so->so_rcv);
INP_RUNLOCK(inp);
MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
return (mst->sw->snd_tag_modify(mst, ¶ms));
}
static void
ktls_drop(struct socket *so, int error)
{
struct epoch_tracker et;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
NET_EPOCH_ENTER(et);
INP_WLOCK(inp);
if (!(inp->inp_flags & INP_DROPPED)) {
tp = intotcpcb(inp);
CURVNET_SET(inp->inp_vnet);
tp = tcp_drop(tp, error);
CURVNET_RESTORE();
if (tp != NULL)
INP_WUNLOCK(inp);
} else {
so->so_error = error;
SOCK_RECVBUF_LOCK(so);
sorwakeup_locked(so);
INP_WUNLOCK(inp);
}
NET_EPOCH_EXIT(et);
}
static void
ktls_decrypt(struct socket *so)
{
char tls_header[MBUF_PEXT_HDR_LEN];
struct ktls_session *tls;
struct sockbuf *sb;
struct tls_record_layer *hdr;
struct tls_get_record tgr;
struct mbuf *control, *data, *m;
ktls_mbuf_crypto_st_t state;
uint64_t seqno;
int error, remain, tls_len, trail_len;
bool tls13;
uint8_t vminor, record_type;
hdr = (struct tls_record_layer *)tls_header;
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
("%s: socket %p not running", __func__, so));
tls = sb->sb_tls_info;
MPASS(tls != NULL);
tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
if (tls13)
vminor = TLS_MINOR_VER_TWO;
else
vminor = tls->params.tls_vminor;
for (;;) {
/* Is there enough queued for a TLS header? */
if (sb->sb_tlscc < tls->params.tls_hlen)
break;
m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
if (hdr->tls_vmajor != tls->params.tls_vmajor ||
hdr->tls_vminor != vminor)
error = EINVAL;
else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
error = EINVAL;
else if (tls_len < tls->params.tls_hlen || tls_len >
tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
tls->params.tls_tlen)
error = EMSGSIZE;
else
error = 0;
if (__predict_false(error != 0)) {
/*
* We have a corrupted record and are likely
* out of sync. The connection isn't
* recoverable at this point, so abort it.
*/
SOCKBUF_UNLOCK(sb);
counter_u64_add(ktls_offload_corrupted_records, 1);
ktls_drop(so, error);
goto deref;
}
/* Is the entire record queued? */
if (sb->sb_tlscc < tls_len)
break;
/*
* Split out the portion of the mbuf chain containing
* this TLS record.
*/
data = ktls_detach_record(sb, tls_len);
if (data == NULL)
continue;
MPASS(sb->sb_tlsdcc == tls_len);
seqno = sb->sb_tls_seqno;
sb->sb_tls_seqno++;
SBCHECK(sb);
SOCKBUF_UNLOCK(sb);
/* get crypto state for this TLS record */
state = ktls_mbuf_crypto_state(data, 0, tls_len);
switch (state) {
case KTLS_MBUF_CRYPTO_ST_MIXED:
error = ktls_ocf_recrypt(tls, hdr, data, seqno);
if (error)
break;
/* FALLTHROUGH */
case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
error = ktls_ocf_decrypt(tls, hdr, data, seqno,
&trail_len);
if (__predict_true(error == 0)) {
if (tls13) {
error = tls13_find_record_type(tls, data,
tls_len, &trail_len, &record_type);
} else {
record_type = hdr->tls_type;
}
}
break;
case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
/*
* NIC TLS is only supported for AEAD
* ciphersuites which used a fixed sized
* trailer.
*/
if (tls13) {
trail_len = tls->params.tls_tlen - 1;
error = tls13_find_record_type(tls, data,
tls_len, &trail_len, &record_type);
} else {
trail_len = tls->params.tls_tlen;
error = 0;
record_type = hdr->tls_type;
}
break;
default:
error = EINVAL;
break;
}
if (error) {
counter_u64_add(ktls_offload_failed_crypto, 1);
SOCKBUF_LOCK(sb);
if (sb->sb_tlsdcc == 0) {
/*
* sbcut/drop/flush discarded these
* mbufs.
*/
m_freem(data);
break;
}
/*
* Drop this TLS record's data, but keep
* decrypting subsequent records.
*/
sb->sb_ccc -= tls_len;
sb->sb_tlsdcc = 0;
if (error != EMSGSIZE)
error = EBADMSG;
CURVNET_SET(so->so_vnet);
so->so_error = error;
sorwakeup_locked(so);
CURVNET_RESTORE();
m_freem(data);
SOCKBUF_LOCK(sb);
continue;
}
/* Allocate the control mbuf. */
memset(&tgr, 0, sizeof(tgr));
tgr.tls_type = record_type;
tgr.tls_vmajor = hdr->tls_vmajor;
tgr.tls_vminor = hdr->tls_vminor;
tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
trail_len);
control = sbcreatecontrol(&tgr, sizeof(tgr),
TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
SOCKBUF_LOCK(sb);
if (sb->sb_tlsdcc == 0) {
/* sbcut/drop/flush discarded these mbufs. */
MPASS(sb->sb_tlscc == 0);
m_freem(data);
m_freem(control);
break;
}
/*
* Clear the 'dcc' accounting in preparation for
* adding the decrypted record.
*/
sb->sb_ccc -= tls_len;
sb->sb_tlsdcc = 0;
SBCHECK(sb);
/* If there is no payload, drop all of the data. */
if (tgr.tls_length == htobe16(0)) {
m_freem(data);
data = NULL;
} else {
/* Trim header. */
remain = tls->params.tls_hlen;
while (remain > 0) {
if (data->m_len > remain) {
data->m_data += remain;
data->m_len -= remain;
break;
}
remain -= data->m_len;
data = m_free(data);
}
/* Trim trailer and clear M_NOTREADY. */
remain = be16toh(tgr.tls_length);
m = data;
for (m = data; remain > m->m_len; m = m->m_next) {
m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
remain -= m->m_len;
}
m->m_len = remain;
m_freem(m->m_next);
m->m_next = NULL;
m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
/* Set EOR on the final mbuf. */
m->m_flags |= M_EOR;
}
sbappendcontrol_locked(sb, data, control, 0);
if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
sb->sb_flags |= SB_TLS_RX_RESYNC;
SOCKBUF_UNLOCK(sb);
ktls_resync_ifnet(so, tls_len, seqno);
SOCKBUF_LOCK(sb);
} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
sb->sb_flags &= ~SB_TLS_RX_RESYNC;
SOCKBUF_UNLOCK(sb);
ktls_resync_ifnet(so, 0, seqno);
SOCKBUF_LOCK(sb);
}
}
sb->sb_flags &= ~SB_TLS_RX_RUNNING;
if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
so->so_error = EMSGSIZE;
sorwakeup_locked(so);
deref:
SOCKBUF_UNLOCK_ASSERT(sb);
CURVNET_SET(so->so_vnet);
sorele(so);
CURVNET_RESTORE();
}
void
ktls_enqueue_to_free(struct mbuf *m)
{
struct ktls_wq *wq;
bool running;
/* Mark it for freeing. */
m->m_epg_flags |= EPG_FLAG_2FREE;
wq = &ktls_wq[m->m_epg_tls->wq_index];
mtx_lock(&wq->mtx);
STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
running = wq->running;
mtx_unlock(&wq->mtx);
if (!running)
wakeup(wq);
}
static void *
ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
{
void *buf;
int domain, running;
if (m->m_epg_npgs <= 2)
return (NULL);
if (ktls_buffer_zone == NULL)
return (NULL);
if ((u_int)(ticks - wq->lastallocfail) < hz) {
/*
* Rate-limit allocation attempts after a failure.
* ktls_buffer_import() will acquire a per-domain mutex to check
* the free page queues and may fail consistently if memory is
* fragmented.
*/
return (NULL);
}
buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
if (buf == NULL) {
domain = PCPU_GET(domain);
wq->lastallocfail = ticks;
/*
* Note that this check is "racy", but the races are
* harmless, and are either a spurious wakeup if
* multiple threads fail allocations before the alloc
* thread wakes, or waiting an extra second in case we
* see an old value of running == true.
*/
if (!VM_DOMAIN_EMPTY(domain)) {
running = atomic_load_int(&ktls_domains[domain].alloc_td.running);
if (!running)
wakeup(&ktls_domains[domain].alloc_td);
}
}
return (buf);
}
static int
ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
{
vm_page_t pg;
int error, i, len, off;
KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
("%p not unready & nomap mbuf\n", m));
KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
("page count %d larger than maximum frame length %d", m->m_epg_npgs,
ktls_maxlen));
/* Anonymous mbufs are encrypted in place. */
if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
/*
* For file-backed mbufs (from sendfile), anonymous wired
* pages are allocated and used as the encryption destination.
*/
if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
m->m_epg_1st_off;
state->dst_iov[0].iov_base = (char *)state->cbuf +
m->m_epg_1st_off;
state->dst_iov[0].iov_len = len;
state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
i = 1;
} else {
off = m->m_epg_1st_off;
for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
len = m_epg_pagelen(m, i, off);
state->parray[i] = VM_PAGE_TO_PHYS(pg);
state->dst_iov[i].iov_base =
(char *)PHYS_TO_DMAP(state->parray[i]) + off;
state->dst_iov[i].iov_len = len;
}
}
KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
state->dst_iov[i].iov_base = m->m_epg_trail;
state->dst_iov[i].iov_len = m->m_epg_trllen;
error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
if (__predict_false(error != 0)) {
/* Free the anonymous pages. */
if (state->cbuf != NULL)
uma_zfree(ktls_buffer_zone, state->cbuf);
else {
for (i = 0; i < m->m_epg_npgs; i++) {
pg = PHYS_TO_VM_PAGE(state->parray[i]);
(void)vm_page_unwire_noq(pg);
vm_page_free(pg);
}
}
}
return (error);
}
/* Number of TLS records in a batch passed to ktls_enqueue(). */
static u_int
ktls_batched_records(struct mbuf *m)
{
int page_count, records;
records = 0;
page_count = m->m_epg_enc_cnt;
while (page_count > 0) {
records++;
page_count -= m->m_epg_nrdy;
m = m->m_next;
}
KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
return (records);
}
void
ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
{
struct ktls_session *tls;
struct ktls_wq *wq;
int queued;
bool running;
KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
(M_EXTPG | M_NOTREADY)),
("ktls_enqueue: %p not unready & nomap mbuf\n", m));
KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
m->m_epg_enc_cnt = page_count;
/*
* Save a pointer to the socket. The caller is responsible
* for taking an additional reference via soref().
*/
m->m_epg_so = so;
queued = 1;
tls = m->m_epg_tls;
wq = &ktls_wq[tls->wq_index];
mtx_lock(&wq->mtx);
if (__predict_false(tls->sequential_records)) {
/*
* For TLS 1.0, records must be encrypted
* sequentially. For a given connection, all records
* queued to the associated work queue are processed
* sequentially. However, sendfile(2) might complete
* I/O requests spanning multiple TLS records out of
* order. Here we ensure TLS records are enqueued to
* the work queue in FIFO order.
*
* tls->next_seqno holds the sequence number of the
* next TLS record that should be enqueued to the work
* queue. If this next record is not tls->next_seqno,
* it must be a future record, so insert it, sorted by
* TLS sequence number, into tls->pending_records and
* return.
*
* If this TLS record matches tls->next_seqno, place
* it in the work queue and then check
* tls->pending_records to see if any
* previously-queued records are now ready for
* encryption.
*/
if (m->m_epg_seqno != tls->next_seqno) {
struct mbuf *n, *p;
p = NULL;
STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
if (n->m_epg_seqno > m->m_epg_seqno)
break;
p = n;
}
if (n == NULL)
STAILQ_INSERT_TAIL(&tls->pending_records, m,
m_epg_stailq);
else if (p == NULL)
STAILQ_INSERT_HEAD(&tls->pending_records, m,
m_epg_stailq);
else
STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
m_epg_stailq);
mtx_unlock(&wq->mtx);
counter_u64_add(ktls_cnt_tx_pending, 1);
return;
}
tls->next_seqno += ktls_batched_records(m);
STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
while (!STAILQ_EMPTY(&tls->pending_records)) {
struct mbuf *n;
n = STAILQ_FIRST(&tls->pending_records);
if (n->m_epg_seqno != tls->next_seqno)
break;
queued++;
STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
tls->next_seqno += ktls_batched_records(n);
STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
}
counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
} else
STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
running = wq->running;
mtx_unlock(&wq->mtx);
if (!running)
wakeup(wq);
counter_u64_add(ktls_cnt_tx_queued, queued);
}
/*
* Once a file-backed mbuf (from sendfile) has been encrypted, free
* the pages from the file and replace them with the anonymous pages
* allocated in ktls_encrypt_record().
*/
static void
ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
{
int i;
MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
/* Free the old pages. */
m->m_ext.ext_free(m);
/* Replace them with the new pages. */
if (state->cbuf != NULL) {
for (i = 0; i < m->m_epg_npgs; i++)
m->m_epg_pa[i] = state->parray[0] + ptoa(i);
/* Contig pages should go back to the cache. */
m->m_ext.ext_free = ktls_free_mext_contig;
} else {
for (i = 0; i < m->m_epg_npgs; i++)
m->m_epg_pa[i] = state->parray[i];
/* Use the basic free routine. */
m->m_ext.ext_free = mb_free_mext_pgs;
}
/* Pages are now writable. */
m->m_epg_flags |= EPG_FLAG_ANON;
}
static __noinline void
ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
{
struct ktls_ocf_encrypt_state state;
struct ktls_session *tls;
struct socket *so;
struct mbuf *m;
int error, npages, total_pages;
so = top->m_epg_so;
tls = top->m_epg_tls;
KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
#ifdef INVARIANTS
top->m_epg_so = NULL;
#endif
total_pages = top->m_epg_enc_cnt;
npages = 0;
/*
* Encrypt the TLS records in the chain of mbufs starting with
* 'top'. 'total_pages' gives us a total count of pages and is
* used to know when we have finished encrypting the TLS
* records originally queued with 'top'.
*
* NB: These mbufs are queued in the socket buffer and
* 'm_next' is traversing the mbufs in the socket buffer. The
* socket buffer lock is not held while traversing this chain.
* Since the mbufs are all marked M_NOTREADY their 'm_next'
* pointers should be stable. However, the 'm_next' of the
* last mbuf encrypted is not necessarily NULL. It can point
* to other mbufs appended while 'top' was on the TLS work
* queue.
*
* Each mbuf holds an entire TLS record.
*/
error = 0;
for (m = top; npages != total_pages; m = m->m_next) {
KASSERT(m->m_epg_tls == tls,
("different TLS sessions in a single mbuf chain: %p vs %p",
tls, m->m_epg_tls));
KASSERT(npages + m->m_epg_npgs <= total_pages,
("page count mismatch: top %p, total_pages %d, m %p", top,
total_pages, m));
error = ktls_encrypt_record(wq, m, tls, &state);
if (error) {
counter_u64_add(ktls_offload_failed_crypto, 1);
break;
}
if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
ktls_finish_nonanon(m, &state);
npages += m->m_epg_nrdy;
/*
* Drop a reference to the session now that it is no
* longer needed. Existing code depends on encrypted
* records having no associated session vs
* yet-to-be-encrypted records having an associated
* session.
*/
m->m_epg_tls = NULL;
ktls_free(tls);
}
CURVNET_SET(so->so_vnet);
if (error == 0) {
(void)so->so_proto->pr_ready(so, top, npages);
} else {
ktls_drop(so, EIO);
mb_free_notready(top, total_pages);
}
sorele(so);
CURVNET_RESTORE();
}
void
ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
{
struct ktls_session *tls;
struct socket *so;
struct mbuf *m;
int npages;
m = state->m;
if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
ktls_finish_nonanon(m, state);
so = state->so;
free(state, M_KTLS);
/*
* Drop a reference to the session now that it is no longer
* needed. Existing code depends on encrypted records having
* no associated session vs yet-to-be-encrypted records having
* an associated session.
*/
tls = m->m_epg_tls;
m->m_epg_tls = NULL;
ktls_free(tls);
if (error != 0)
counter_u64_add(ktls_offload_failed_crypto, 1);
CURVNET_SET(so->so_vnet);
npages = m->m_epg_nrdy;
if (error == 0) {
(void)so->so_proto->pr_ready(so, m, npages);
} else {
ktls_drop(so, EIO);
mb_free_notready(m, npages);
}
sorele(so);
CURVNET_RESTORE();
}
/*
* Similar to ktls_encrypt, but used with asynchronous OCF backends
* (coprocessors) where encryption does not use host CPU resources and
* it can be beneficial to queue more requests than CPUs.
*/
static __noinline void
ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
{
struct ktls_ocf_encrypt_state *state;
struct ktls_session *tls;
struct socket *so;
struct mbuf *m, *n;
int error, mpages, npages, total_pages;
so = top->m_epg_so;
tls = top->m_epg_tls;
KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
#ifdef INVARIANTS
top->m_epg_so = NULL;
#endif
total_pages = top->m_epg_enc_cnt;
npages = 0;
error = 0;
for (m = top; npages != total_pages; m = n) {
KASSERT(m->m_epg_tls == tls,
("different TLS sessions in a single mbuf chain: %p vs %p",
tls, m->m_epg_tls));
KASSERT(npages + m->m_epg_npgs <= total_pages,
("page count mismatch: top %p, total_pages %d, m %p", top,
total_pages, m));
state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
soref(so);
state->so = so;
state->m = m;
mpages = m->m_epg_nrdy;
n = m->m_next;
error = ktls_encrypt_record(wq, m, tls, state);
if (error) {
counter_u64_add(ktls_offload_failed_crypto, 1);
free(state, M_KTLS);
CURVNET_SET(so->so_vnet);
sorele(so);
CURVNET_RESTORE();
break;
}
npages += mpages;
}
CURVNET_SET(so->so_vnet);
if (error != 0) {
ktls_drop(so, EIO);
mb_free_notready(m, total_pages - npages);
}
sorele(so);
CURVNET_RESTORE();
}
static int
ktls_bind_domain(int domain)
{
int error;
error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
if (error != 0)
return (error);
curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
return (0);
}
static void
ktls_alloc_thread(void *ctx)
{
struct ktls_domain_info *ktls_domain = ctx;
struct ktls_alloc_thread *sc = &ktls_domain->alloc_td;
void **buf;
struct sysctl_oid *oid;
char name[80];
int domain, error, i, nbufs;
domain = ktls_domain - ktls_domains;
if (bootverbose)
printf("Starting KTLS alloc thread for domain %d\n", domain);
error = ktls_bind_domain(domain);
if (error)
printf("Unable to bind KTLS alloc thread for domain %d: error %d\n",
domain, error);
snprintf(name, sizeof(name), "domain%d", domain);
oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs",
CTLFLAG_RD, &sc->allocs, 0, "buffers allocated");
SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups");
SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
CTLFLAG_RD, &sc->running, 0, "thread running");
buf = NULL;
nbufs = 0;
for (;;) {
atomic_store_int(&sc->running, 0);
tsleep(sc, PZERO | PNOLOCK, "-", 0);
atomic_store_int(&sc->running, 1);
sc->wakeups++;
if (nbufs != ktls_max_alloc) {
free(buf, M_KTLS);
nbufs = atomic_load_int(&ktls_max_alloc);
buf = malloc(sizeof(void *) * nbufs, M_KTLS,
M_WAITOK | M_ZERO);
}
/*
* Below we allocate nbufs with different allocation
* flags than we use when allocating normally during
* encryption in the ktls worker thread. We specify
* M_NORECLAIM in the worker thread. However, we omit
* that flag here and add M_WAITOK so that the VM
* system is permitted to perform expensive work to
* defragment memory. We do this here, as it does not
* matter if this thread blocks. If we block a ktls
* worker thread, we risk developing backlogs of
* buffers to be encrypted, leading to surges of
* traffic and potential NIC output drops.
*/
for (i = 0; i < nbufs; i++) {
buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK);
sc->allocs++;
}
for (i = 0; i < nbufs; i++) {
uma_zfree(ktls_buffer_zone, buf[i]);
buf[i] = NULL;
}
}
}
static void
ktls_work_thread(void *ctx)
{
struct ktls_wq *wq = ctx;
struct mbuf *m, *n;
struct socket *so, *son;
STAILQ_HEAD(, mbuf) local_m_head;
STAILQ_HEAD(, socket) local_so_head;
int cpu;
cpu = wq - ktls_wq;
if (bootverbose)
printf("Starting KTLS worker thread for CPU %d\n", cpu);
/*
* Bind to a core. If ktls_bind_threads is > 1, then
* we bind to the NUMA domain instead.
*/
if (ktls_bind_threads) {
int error;
if (ktls_bind_threads > 1) {
struct pcpu *pc = pcpu_find(cpu);
error = ktls_bind_domain(pc->pc_domain);
} else {
cpuset_t mask;
CPU_SETOF(cpu, &mask);
error = cpuset_setthread(curthread->td_tid, &mask);
}
if (error)
printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
cpu, error);
}
#if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
fpu_kern_thread(0);
#endif
for (;;) {
mtx_lock(&wq->mtx);
while (STAILQ_EMPTY(&wq->m_head) &&
STAILQ_EMPTY(&wq->so_head)) {
wq->running = false;
mtx_sleep(wq, &wq->mtx, 0, "-", 0);
wq->running = true;
}
STAILQ_INIT(&local_m_head);
STAILQ_CONCAT(&local_m_head, &wq->m_head);
STAILQ_INIT(&local_so_head);
STAILQ_CONCAT(&local_so_head, &wq->so_head);
mtx_unlock(&wq->mtx);
STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
if (m->m_epg_flags & EPG_FLAG_2FREE) {
ktls_free(m->m_epg_tls);
m_free_raw(m);
} else {
if (m->m_epg_tls->sync_dispatch)
ktls_encrypt(wq, m);
else
ktls_encrypt_async(wq, m);
counter_u64_add(ktls_cnt_tx_queued, -1);
}
}
STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
ktls_decrypt(so);
counter_u64_add(ktls_cnt_rx_queued, -1);
}
}
}
static void
ktls_disable_ifnet_help(void *context, int pending __unused)
{
struct ktls_session *tls;
struct inpcb *inp;
struct tcpcb *tp;
struct socket *so;
int err;
tls = context;
inp = tls->inp;
if (inp == NULL)
return;
INP_WLOCK(inp);
so = inp->inp_socket;
MPASS(so != NULL);
if (inp->inp_flags & INP_DROPPED) {
goto out;
}
if (so->so_snd.sb_tls_info != NULL)
err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
else
err = ENXIO;
if (err == 0) {
counter_u64_add(ktls_ifnet_disable_ok, 1);
/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
if ((inp->inp_flags & INP_DROPPED) == 0 &&
(tp = intotcpcb(inp)) != NULL &&
tp->t_fb->tfb_hwtls_change != NULL)
(*tp->t_fb->tfb_hwtls_change)(tp, 0);
} else {
counter_u64_add(ktls_ifnet_disable_fail, 1);
}
out:
CURVNET_SET(so->so_vnet);
sorele(so);
CURVNET_RESTORE();
INP_WUNLOCK(inp);
ktls_free(tls);
}
/*
* Called when re-transmits are becoming a substantial portion of the
* sends on this connection. When this happens, we transition the
* connection to software TLS. This is needed because most inline TLS
* NICs keep crypto state only for in-order transmits. This means
* that to handle a TCP rexmit (which is out-of-order), the NIC must
* re-DMA the entire TLS record up to and including the current
* segment. This means that when re-transmitting the last ~1448 byte
* segment of a 16KB TLS record, we could wind up re-DMA'ing an order
* of magnitude more data than we are sending. This can cause the
* PCIe link to saturate well before the network, which can cause
* output drops, and a general loss of capacity.
*/
void
ktls_disable_ifnet(void *arg)
{
struct tcpcb *tp;
struct inpcb *inp;
struct socket *so;
struct ktls_session *tls;
tp = arg;
inp = tptoinpcb(tp);
INP_WLOCK_ASSERT(inp);
so = inp->inp_socket;
SOCK_LOCK(so);
tls = so->so_snd.sb_tls_info;
if (tp->t_nic_ktls_xmit_dis == 1) {
SOCK_UNLOCK(so);
return;
}
/*
* note that t_nic_ktls_xmit_dis is never cleared; disabling
* ifnet can only be done once per connection, so we never want
* to do it again
*/
(void)ktls_hold(tls);
soref(so);
tp->t_nic_ktls_xmit_dis = 1;
SOCK_UNLOCK(so);
TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
}
|