aboutsummaryrefslogtreecommitdiff
path: root/sys/netinet/tcp_hpts.c
blob: 644811b44a1982f9ef985088acef4be657b10b0a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
/*-
 * Copyright (c) 2016-2018 Netflix, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_rss.h"

/**
 * Some notes about usage.
 *
 * The tcp_hpts system is designed to provide a high precision timer
 * system for tcp. Its main purpose is to provide a mechanism for
 * pacing packets out onto the wire. It can be used in two ways
 * by a given TCP stack (and those two methods can be used simultaneously).
 *
 * First, and probably the main thing its used by Rack and BBR, it can
 * be used to call tcp_output() of a transport stack at some time in the future.
 * The normal way this is done is that tcp_output() of the stack schedules
 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
 * slot is the time from now that the stack wants to be called but it
 * must be converted to tcp_hpts's notion of slot. This is done with
 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
 * call from the tcp_output() routine might look like:
 *
 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
 *
 * The above would schedule tcp_ouput() to be called in 550 useconds.
 * Note that if using this mechanism the stack will want to add near
 * its top a check to prevent unwanted calls (from user land or the
 * arrival of incoming ack's). So it would add something like:
 *
 * if (tcp_in_hpts(inp))
 *    return;
 *
 * to prevent output processing until the time alotted has gone by.
 * Of course this is a bare bones example and the stack will probably
 * have more consideration then just the above.
 *
 * In order to run input queued segments from the HPTS context the
 * tcp stack must define an input function for
 * tfb_do_queued_segments(). This function understands
 * how to dequeue a array of packets that were input and
 * knows how to call the correct processing routine.
 *
 * Locking in this is important as well so most likely the
 * stack will need to define the tfb_do_segment_nounlock()
 * splitting tfb_do_segment() into two parts. The main processing
 * part that does not unlock the INP and returns a value of 1 or 0.
 * It returns 0 if all is well and the lock was not released. It
 * returns 1 if we had to destroy the TCB (a reset received etc).
 * The remains of tfb_do_segment() then become just a simple call
 * to the tfb_do_segment_nounlock() function and check the return
 * code and possibly unlock.
 *
 * The stack must also set the flag on the INP that it supports this
 * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
 * this flag as well and will queue packets when it is set.
 * There are other flags as well INP_MBUF_QUEUE_READY and
 * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
 * that we are in the pacer for output so there is no
 * need to wake up the hpts system to get immediate
 * input. The second tells the LRO code that its okay
 * if a SACK arrives you can still defer input and let
 * the current hpts timer run (this is usually set when
 * a rack timer is up so we know SACK's are happening
 * on the connection already and don't want to wakeup yet).
 *
 * There is a common functions within the rack_bbr_common code
 * version i.e. ctf_do_queued_segments(). This function
 * knows how to take the input queue of packets from
 * tp->t_in_pkts and process them digging out
 * all the arguments, calling any bpf tap and
 * calling into tfb_do_segment_nounlock(). The common
 * function (ctf_do_queued_segments())  requires that
 * you have defined the tfb_do_segment_nounlock() as
 * described above.
 */

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/hhook.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>		/* for proc0 declaration */
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/refcount.h>
#include <sys/sched.h>
#include <sys/queue.h>
#include <sys/smp.h>
#include <sys/counter.h>
#include <sys/time.h>
#include <sys/kthread.h>
#include <sys/kern_prefetch.h>

#include <vm/uma.h>
#include <vm/vm.h>

#include <net/route.h>
#include <net/vnet.h>

#ifdef RSS
#include <net/netisr.h>
#include <net/rss_config.h>
#endif

#define TCPSTATES		/* for logging */

#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h>	/* required for icmp_var.h */
#include <netinet/icmp_var.h>	/* for ICMP_BANDLIM */
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/cc/cc.h>
#include <netinet/tcp_hpts.h>
#include <netinet/tcp_log_buf.h>

#ifdef tcp_offload
#include <netinet/tcp_offload.h>
#endif

/*
 * The hpts uses a 102400 wheel. The wheel
 * defines the time in 10 usec increments (102400 x 10).
 * This gives a range of 10usec - 1024ms to place
 * an entry within. If the user requests more than
 * 1.024 second, a remaineder is attached and the hpts
 * when seeing the remainder will re-insert the
 * inpcb forward in time from where it is until
 * the remainder is zero.
 */

#define NUM_OF_HPTSI_SLOTS 102400

/* Each hpts has its own p_mtx which is used for locking */
#define	HPTS_MTX_ASSERT(hpts)	mtx_assert(&(hpts)->p_mtx, MA_OWNED)
#define	HPTS_LOCK(hpts)		mtx_lock(&(hpts)->p_mtx)
#define	HPTS_UNLOCK(hpts)	mtx_unlock(&(hpts)->p_mtx)
struct tcp_hpts_entry {
	/* Cache line 0x00 */
	struct mtx p_mtx;	/* Mutex for hpts */
	struct timeval p_mysleep;	/* Our min sleep time */
	uint64_t syscall_cnt;
	uint64_t sleeping;	/* What the actual sleep was (if sleeping) */
	uint16_t p_hpts_active; /* Flag that says hpts is awake  */
	uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
	uint32_t p_curtick;	/* Tick in 10 us the hpts is going to */
	uint32_t p_runningslot; /* Current tick we are at if we are running */
	uint32_t p_prev_slot;	/* Previous slot we were on */
	uint32_t p_cur_slot;	/* Current slot in wheel hpts is draining */
	uint32_t p_nxt_slot;	/* The next slot outside the current range of
				 * slots that the hpts is running on. */
	int32_t p_on_queue_cnt;	/* Count on queue in this hpts */
	uint32_t p_lasttick;	/* Last tick before the current one */
	uint8_t p_direct_wake :1, /* boolean */
		p_on_min_sleep:1, /* boolean */
		p_hpts_wake_scheduled:1, /* boolean */
		p_avail:5;
	uint8_t p_fill[3];	  /* Fill to 32 bits */
	/* Cache line 0x40 */
	struct hptsh {
		TAILQ_HEAD(, inpcb)	head;
		uint32_t		count;
		uint32_t		gencnt;
	} *p_hptss;			/* Hptsi wheel */
	uint32_t p_hpts_sleep_time;	/* Current sleep interval having a max
					 * of 255ms */
	uint32_t overidden_sleep;	/* what was overrided by min-sleep for logging */
	uint32_t saved_lasttick;	/* for logging */
	uint32_t saved_curtick;		/* for logging */
	uint32_t saved_curslot;		/* for logging */
	uint32_t saved_prev_slot;       /* for logging */
	uint32_t p_delayed_by;	/* How much were we delayed by */
	/* Cache line 0x80 */
	struct sysctl_ctx_list hpts_ctx;
	struct sysctl_oid *hpts_root;
	struct intr_event *ie;
	void *ie_cookie;
	uint16_t p_num;		/* The hpts number one per cpu */
	uint16_t p_cpu;		/* The hpts CPU */
	/* There is extra space in here */
	/* Cache line 0x100 */
	struct callout co __aligned(CACHE_LINE_SIZE);
}               __aligned(CACHE_LINE_SIZE);

static struct tcp_hptsi {
	struct cpu_group **grps;
	struct tcp_hpts_entry **rp_ent;	/* Array of hptss */
	uint32_t *cts_last_ran;
	uint32_t grp_cnt;
	uint32_t rp_num_hptss;	/* Number of hpts threads */
} tcp_pace;

MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
#ifdef RSS
static int tcp_bind_threads = 1;
#else
static int tcp_bind_threads = 2;
#endif
static int tcp_use_irq_cpu = 0;
static uint32_t *cts_last_ran;
static int hpts_does_tp_logging = 0;

static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
static void tcp_hpts_thread(void *ctx);
static void tcp_init_hptsi(void *st);

int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;


SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
    "TCP Hpts controls");
SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
    "TCP Hpts statistics");

#define	timersub(tvp, uvp, vvp)						\
	do {								\
		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
		if ((vvp)->tv_usec < 0) {				\
			(vvp)->tv_sec--;				\
			(vvp)->tv_usec += 1000000;			\
		}							\
	} while (0)

static int32_t tcp_hpts_precision = 120;

static struct hpts_domain_info {
	int count;
	int cpu[MAXCPU];
} hpts_domains[MAXMEMDOM];

enum {
	IHPTS_NONE = 0,
	IHPTS_ONQUEUE,
	IHPTS_MOVING,
};

counter_u64_t hpts_hopelessly_behind;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
    &hpts_hopelessly_behind,
    "Number of times hpts could not catch up and was behind hopelessly");

counter_u64_t hpts_loops;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
    &hpts_loops, "Number of times hpts had to loop to catch up");

counter_u64_t back_tosleep;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
    &back_tosleep, "Number of times hpts found no tcbs");

counter_u64_t combined_wheel_wrap;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
    &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");

counter_u64_t wheel_wrap;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
    &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");

counter_u64_t hpts_direct_call;
SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
    &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");

counter_u64_t hpts_wake_timeout;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
    &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");

counter_u64_t hpts_direct_awakening;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
    &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");

counter_u64_t hpts_back_tosleep;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
    &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");

counter_u64_t cpu_uses_flowid;
counter_u64_t cpu_uses_random;

SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
    &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
    &cpu_uses_random, "Number of times when setting cpuid we used the a random value");

TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
    &tcp_bind_threads, 2,
    "Thread Binding tunable");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
    &tcp_use_irq_cpu, 0,
    "Use of irq CPU  tunable");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
    &tcp_hpts_precision, 120,
    "Value for PRE() precision of callout");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
    &conn_cnt_thresh, 0,
    "How many connections (below) make us use the callout based mechanism");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
    &hpts_does_tp_logging, 0,
    "Do we add to any tp that has logging on pacer logs");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
    &dynamic_min_sleep, 250,
    "What is the dynamic minsleep value?");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
    &dynamic_max_sleep, 5000,
    "What is the dynamic maxsleep value?");

static int32_t max_pacer_loops = 10;
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
    &max_pacer_loops, 10,
    "What is the maximum number of times the pacer will loop trying to catch up");

#define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)

static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;

static int
sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
{
	int error;
	uint32_t new;

	new = hpts_sleep_max;
	error = sysctl_handle_int(oidp, &new, 0, req);
	if (error == 0 && req->newptr) {
		if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
		     (new > HPTS_MAX_SLEEP_ALLOWED))
			error = EINVAL;
		else
			hpts_sleep_max = new;
	}
	return (error);
}

static int
sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
{
	int error;
	uint32_t new;

	new = tcp_min_hptsi_time;
	error = sysctl_handle_int(oidp, &new, 0, req);
	if (error == 0 && req->newptr) {
		if (new < LOWEST_SLEEP_ALLOWED)
			error = EINVAL;
		else
			tcp_min_hptsi_time = new;
	}
	return (error);
}

SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
    CTLTYPE_UINT | CTLFLAG_RW,
    &hpts_sleep_max, 0,
    &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
    "Maximum time hpts will sleep in slots");

SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
    CTLTYPE_UINT | CTLFLAG_RW,
    &tcp_min_hptsi_time, 0,
    &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
    "The minimum time the hpts must sleep before processing more slots");

static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
static int tcp_hpts_no_wake_over_thresh = 1;

SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
    &ticks_indicate_more_sleep, 0,
    "If we only process this many or less on a timeout, we need longer sleep on the next callout");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
    &ticks_indicate_less_sleep, 0,
    "If we process this many or more on a timeout, we need less sleep on the next callout");
SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
    &tcp_hpts_no_wake_over_thresh, 0,
    "When we are over the threshold on the pacer do we prohibit wakeups?");

static void
tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
	     int slots_to_run, int idx, int from_callout)
{
	union tcp_log_stackspecific log;
	/*
	 * Unused logs are
	 * 64 bit - delRate, rttProp, bw_inuse
	 * 16 bit - cwnd_gain
	 *  8 bit - bbr_state, bbr_substate, inhpts;
	 */
	memset(&log.u_bbr, 0, sizeof(log.u_bbr));
	log.u_bbr.flex1 = hpts->p_nxt_slot;
	log.u_bbr.flex2 = hpts->p_cur_slot;
	log.u_bbr.flex3 = hpts->p_prev_slot;
	log.u_bbr.flex4 = idx;
	log.u_bbr.flex5 = hpts->p_curtick;
	log.u_bbr.flex6 = hpts->p_on_queue_cnt;
	log.u_bbr.flex7 = hpts->p_cpu;
	log.u_bbr.flex8 = (uint8_t)from_callout;
	log.u_bbr.inflight = slots_to_run;
	log.u_bbr.applimited = hpts->overidden_sleep;
	log.u_bbr.delivered = hpts->saved_curtick;
	log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
	log.u_bbr.epoch = hpts->saved_curslot;
	log.u_bbr.lt_epoch = hpts->saved_prev_slot;
	log.u_bbr.pkts_out = hpts->p_delayed_by;
	log.u_bbr.lost = hpts->p_hpts_sleep_time;
	log.u_bbr.pacing_gain = hpts->p_cpu;
	log.u_bbr.pkt_epoch = hpts->p_runningslot;
	log.u_bbr.use_lt_bw = 1;
	TCP_LOG_EVENTP(tp, NULL,
		       &tptosocket(tp)->so_rcv,
		       &tptosocket(tp)->so_snd,
		       BBR_LOG_HPTSDIAG, 0,
		       0, &log, false, tv);
}

static void
tcp_wakehpts(struct tcp_hpts_entry *hpts)
{
	HPTS_MTX_ASSERT(hpts);

	if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
		hpts->p_direct_wake = 0;
		return;
	}
	if (hpts->p_hpts_wake_scheduled == 0) {
		hpts->p_hpts_wake_scheduled = 1;
		swi_sched(hpts->ie_cookie, 0);
	}
}

static void
hpts_timeout_swi(void *arg)
{
	struct tcp_hpts_entry *hpts;

	hpts = (struct tcp_hpts_entry *)arg;
	swi_sched(hpts->ie_cookie, 0);
}

static void
inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
{
	struct hptsh *hptsh;

	INP_WLOCK_ASSERT(inp);
	HPTS_MTX_ASSERT(hpts);
	MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
	MPASS(!(inp->inp_flags & INP_DROPPED));

	hptsh = &hpts->p_hptss[inp->inp_hptsslot];

	if (inp->inp_in_hpts == IHPTS_NONE) {
		inp->inp_in_hpts = IHPTS_ONQUEUE;
		in_pcbref(inp);
	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
		inp->inp_in_hpts = IHPTS_ONQUEUE;
	} else
		MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
	inp->inp_hpts_gencnt = hptsh->gencnt;

	TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
	hptsh->count++;
	hpts->p_on_queue_cnt++;
}

static struct tcp_hpts_entry *
tcp_hpts_lock(struct inpcb *inp)
{
	struct tcp_hpts_entry *hpts;

	INP_LOCK_ASSERT(inp);

	hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
	HPTS_LOCK(hpts);

	return (hpts);
}

static void
inp_hpts_release(struct inpcb *inp)
{
	bool released __diagused;

	inp->inp_in_hpts = IHPTS_NONE;
	released = in_pcbrele_wlocked(inp);
	MPASS(released == false);
}

/*
 * Called normally with the INP_LOCKED but it
 * does not matter, the hpts lock is the key
 * but the lock order allows us to hold the
 * INP lock and then get the hpts lock.
 */
void
tcp_hpts_remove(struct inpcb *inp)
{
	struct tcp_hpts_entry *hpts;
	struct hptsh *hptsh;

	INP_WLOCK_ASSERT(inp);

	hpts = tcp_hpts_lock(inp);
	if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
		hptsh = &hpts->p_hptss[inp->inp_hptsslot];
		inp->inp_hpts_request = 0;
		if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
			TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
			MPASS(hptsh->count > 0);
			hptsh->count--;
			MPASS(hpts->p_on_queue_cnt > 0);
			hpts->p_on_queue_cnt--;
			inp_hpts_release(inp);
		} else {
			/*
			 * tcp_hptsi() now owns the TAILQ head of this inp.
			 * Can't TAILQ_REMOVE, just mark it.
			 */
#ifdef INVARIANTS
			struct inpcb *tmp;

			TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
				MPASS(tmp != inp);
#endif
			inp->inp_in_hpts = IHPTS_MOVING;
			inp->inp_hptsslot = -1;
		}
	} else if (inp->inp_in_hpts == IHPTS_MOVING) {
		/*
		 * Handle a special race condition:
		 * tcp_hptsi() moves inpcb to detached tailq
		 * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
		 * tcp_hpts_insert() sets slot to a meaningful value
		 * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
		 * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
		 */
		inp->inp_hptsslot = -1;
	}
	HPTS_UNLOCK(hpts);
}

bool
tcp_in_hpts(struct inpcb *inp)
{

	return (inp->inp_in_hpts == IHPTS_ONQUEUE);
}

static inline int
hpts_slot(uint32_t wheel_slot, uint32_t plus)
{
	/*
	 * Given a slot on the wheel, what slot
	 * is that plus ticks out?
	 */
	KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
	return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
}

static inline int
tick_to_wheel(uint32_t cts_in_wticks)
{
	/*
	 * Given a timestamp in ticks (so by
	 * default to get it to a real time one
	 * would multiply by 10.. i.e the number
	 * of ticks in a slot) map it to our limited
	 * space wheel.
	 */
	return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
}

static inline int
hpts_slots_diff(int prev_slot, int slot_now)
{
	/*
	 * Given two slots that are someplace
	 * on our wheel. How far are they apart?
	 */
	if (slot_now > prev_slot)
		return (slot_now - prev_slot);
	else if (slot_now == prev_slot)
		/*
		 * Special case, same means we can go all of our
		 * wheel less one slot.
		 */
		return (NUM_OF_HPTSI_SLOTS - 1);
	else
		return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
}

/*
 * Given a slot on the wheel that is the current time
 * mapped to the wheel (wheel_slot), what is the maximum
 * distance forward that can be obtained without
 * wrapping past either prev_slot or running_slot
 * depending on the htps state? Also if passed
 * a uint32_t *, fill it with the slot location.
 *
 * Note if you do not give this function the current
 * time (that you think it is) mapped to the wheel slot
 * then the results will not be what you expect and
 * could lead to invalid inserts.
 */
static inline int32_t
max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
{
	uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;

	if ((hpts->p_hpts_active == 1) &&
	    (hpts->p_wheel_complete == 0)) {
		end_slot = hpts->p_runningslot;
		/* Back up one tick */
		if (end_slot == 0)
			end_slot = NUM_OF_HPTSI_SLOTS - 1;
		else
			end_slot--;
		if (target_slot)
			*target_slot = end_slot;
	} else {
		/*
		 * For the case where we are
		 * not active, or we have
		 * completed the pass over
		 * the wheel, we can use the
		 * prev tick and subtract one from it. This puts us
		 * as far out as possible on the wheel.
		 */
		end_slot = hpts->p_prev_slot;
		if (end_slot == 0)
			end_slot = NUM_OF_HPTSI_SLOTS - 1;
		else
			end_slot--;
		if (target_slot)
			*target_slot = end_slot;
		/*
		 * Now we have close to the full wheel left minus the
		 * time it has been since the pacer went to sleep. Note
		 * that wheel_tick, passed in, should be the current time
		 * from the perspective of the caller, mapped to the wheel.
		 */
		if (hpts->p_prev_slot != wheel_slot)
			dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
		else
			dis_to_travel = 1;
		/*
		 * dis_to_travel in this case is the space from when the
		 * pacer stopped (p_prev_slot) and where our wheel_slot
		 * is now. To know how many slots we can put it in we
		 * subtract from the wheel size. We would not want
		 * to place something after p_prev_slot or it will
		 * get ran too soon.
		 */
		return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
	}
	/*
	 * So how many slots are open between p_runningslot -> p_cur_slot
	 * that is what is currently un-available for insertion. Special
	 * case when we are at the last slot, this gets 1, so that
	 * the answer to how many slots are available is all but 1.
	 */
	if (hpts->p_runningslot == hpts->p_cur_slot)
		dis_to_travel = 1;
	else
		dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
	/*
	 * How long has the pacer been running?
	 */
	if (hpts->p_cur_slot != wheel_slot) {
		/* The pacer is a bit late */
		pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
	} else {
		/* The pacer is right on time, now == pacers start time */
		pacer_to_now = 0;
	}
	/*
	 * To get the number left we can insert into we simply
	 * subtract the distance the pacer has to run from how
	 * many slots there are.
	 */
	avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
	/*
	 * Now how many of those we will eat due to the pacer's
	 * time (p_cur_slot) of start being behind the
	 * real time (wheel_slot)?
	 */
	if (avail_on_wheel <= pacer_to_now) {
		/*
		 * Wheel wrap, we can't fit on the wheel, that
		 * is unusual the system must be way overloaded!
		 * Insert into the assured slot, and return special
		 * "0".
		 */
		counter_u64_add(combined_wheel_wrap, 1);
		*target_slot = hpts->p_nxt_slot;
		return (0);
	} else {
		/*
		 * We know how many slots are open
		 * on the wheel (the reverse of what
		 * is left to run. Take away the time
		 * the pacer started to now (wheel_slot)
		 * and that tells you how many slots are
		 * open that can be inserted into that won't
		 * be touched by the pacer until later.
		 */
		return (avail_on_wheel - pacer_to_now);
	}
}


#ifdef INVARIANTS
static void
check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
{
	/*
	 * Sanity checks for the pacer with invariants
	 * on insert.
	 */
	KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
		("hpts:%p inp:%p slot:%d > max",
		 hpts, inp, inp_hptsslot));
	if ((hpts->p_hpts_active) &&
	    (hpts->p_wheel_complete == 0)) {
		/*
		 * If the pacer is processing a arc
		 * of the wheel, we need to make
		 * sure we are not inserting within
		 * that arc.
		 */
		int distance, yet_to_run;

		distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
		if (hpts->p_runningslot != hpts->p_cur_slot)
			yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
		else
			yet_to_run = 0;	/* processing last slot */
		KASSERT(yet_to_run <= distance,
			("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
			 hpts, inp, inp_hptsslot,
			 distance, yet_to_run,
			 hpts->p_runningslot, hpts->p_cur_slot));
	}
}
#endif

uint32_t
tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
{
	struct tcp_hpts_entry *hpts;
	struct timeval tv;
	uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
	int32_t wheel_slot, maxslots;
	bool need_wakeup = false;

	INP_WLOCK_ASSERT(inp);
	MPASS(!tcp_in_hpts(inp));
	MPASS(!(inp->inp_flags & INP_DROPPED));

	/*
	 * We now return the next-slot the hpts will be on, beyond its
	 * current run (if up) or where it was when it stopped if it is
	 * sleeping.
	 */
	hpts = tcp_hpts_lock(inp);
	microuptime(&tv);
	if (diag) {
		memset(diag, 0, sizeof(struct hpts_diag));
		diag->p_hpts_active = hpts->p_hpts_active;
		diag->p_prev_slot = hpts->p_prev_slot;
		diag->p_runningslot = hpts->p_runningslot;
		diag->p_nxt_slot = hpts->p_nxt_slot;
		diag->p_cur_slot = hpts->p_cur_slot;
		diag->p_curtick = hpts->p_curtick;
		diag->p_lasttick = hpts->p_lasttick;
		diag->slot_req = slot;
		diag->p_on_min_sleep = hpts->p_on_min_sleep;
		diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
	}
	if (slot == 0) {
		/* Ok we need to set it on the hpts in the current slot */
		inp->inp_hpts_request = 0;
		if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
			/*
			 * A sleeping hpts we want in next slot to run
			 * note that in this state p_prev_slot == p_cur_slot
			 */
			inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
			if ((hpts->p_on_min_sleep == 0) &&
			    (hpts->p_hpts_active == 0))
				need_wakeup = true;
		} else
			inp->inp_hptsslot = hpts->p_runningslot;
		if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
			inp_hpts_insert(inp, hpts);
		if (need_wakeup) {
			/*
			 * Activate the hpts if it is sleeping and its
			 * timeout is not 1.
			 */
			hpts->p_direct_wake = 1;
			tcp_wakehpts(hpts);
		}
		slot_on = hpts->p_nxt_slot;
		HPTS_UNLOCK(hpts);

		return (slot_on);
	}
	/* Get the current time relative to the wheel */
	wheel_cts = tcp_tv_to_hptstick(&tv);
	/* Map it onto the wheel */
	wheel_slot = tick_to_wheel(wheel_cts);
	/* Now what's the max we can place it at? */
	maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
	if (diag) {
		diag->wheel_slot = wheel_slot;
		diag->maxslots = maxslots;
		diag->wheel_cts = wheel_cts;
	}
	if (maxslots == 0) {
		/* The pacer is in a wheel wrap behind, yikes! */
		if (slot > 1) {
			/*
			 * Reduce by 1 to prevent a forever loop in
			 * case something else is wrong. Note this
			 * probably does not hurt because the pacer
			 * if its true is so far behind we will be
			 * > 1second late calling anyway.
			 */
			slot--;
		}
		inp->inp_hptsslot = last_slot;
		inp->inp_hpts_request = slot;
	} else 	if (maxslots >= slot) {
		/* It all fits on the wheel */
		inp->inp_hpts_request = 0;
		inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
	} else {
		/* It does not fit */
		inp->inp_hpts_request = slot - maxslots;
		inp->inp_hptsslot = last_slot;
	}
	if (diag) {
		diag->slot_remaining = inp->inp_hpts_request;
		diag->inp_hptsslot = inp->inp_hptsslot;
	}
#ifdef INVARIANTS
	check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
#endif
	if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
		inp_hpts_insert(inp, hpts);
	if ((hpts->p_hpts_active == 0) &&
	    (inp->inp_hpts_request == 0) &&
	    (hpts->p_on_min_sleep == 0)) {
		/*
		 * The hpts is sleeping and NOT on a minimum
		 * sleep time, we need to figure out where
		 * it will wake up at and if we need to reschedule
		 * its time-out.
		 */
		uint32_t have_slept, yet_to_sleep;

		/* Now do we need to restart the hpts's timer? */
		have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
		if (have_slept < hpts->p_hpts_sleep_time)
			yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
		else {
			/* We are over-due */
			yet_to_sleep = 0;
			need_wakeup = 1;
		}
		if (diag) {
			diag->have_slept = have_slept;
			diag->yet_to_sleep = yet_to_sleep;
		}
		if (yet_to_sleep &&
		    (yet_to_sleep > slot)) {
			/*
			 * We need to reschedule the hpts's time-out.
			 */
			hpts->p_hpts_sleep_time = slot;
			need_new_to = slot * HPTS_TICKS_PER_SLOT;
		}
	}
	/*
	 * Now how far is the hpts sleeping to? if active is 1, its
	 * up and ticking we do nothing, otherwise we may need to
	 * reschedule its callout if need_new_to is set from above.
	 */
	if (need_wakeup) {
		hpts->p_direct_wake = 1;
		tcp_wakehpts(hpts);
		if (diag) {
			diag->need_new_to = 0;
			diag->co_ret = 0xffff0000;
		}
	} else if (need_new_to) {
		int32_t co_ret;
		struct timeval tv;
		sbintime_t sb;

		tv.tv_sec = 0;
		tv.tv_usec = 0;
		while (need_new_to > HPTS_USEC_IN_SEC) {
			tv.tv_sec++;
			need_new_to -= HPTS_USEC_IN_SEC;
		}
		tv.tv_usec = need_new_to;
		sb = tvtosbt(tv);
		co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
					      hpts_timeout_swi, hpts, hpts->p_cpu,
					      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
		if (diag) {
			diag->need_new_to = need_new_to;
			diag->co_ret = co_ret;
		}
	}
	slot_on = hpts->p_nxt_slot;
	HPTS_UNLOCK(hpts);

	return (slot_on);
}

uint16_t
hpts_random_cpu(struct inpcb *inp){
	/*
	 * No flow type set distribute the load randomly.
	 */
	uint16_t cpuid;
	uint32_t ran;

	/*
	 * Shortcut if it is already set. XXXGL: does it happen?
	 */
	if (inp->inp_hpts_cpu_set) {
		return (inp->inp_hpts_cpu);
	}
	/* Nothing set use a random number */
	ran = arc4random();
	cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
	return (cpuid);
}

static uint16_t
hpts_cpuid(struct inpcb *inp, int *failed)
{
	u_int cpuid;
#ifdef NUMA
	struct hpts_domain_info *di;
#endif

	*failed = 0;
	if (inp->inp_hpts_cpu_set) {
		return (inp->inp_hpts_cpu);
	}
	/*
	 * If we are using the irq cpu set by LRO or
	 * the driver then it overrides all other domains.
	 */
	if (tcp_use_irq_cpu) {
		if (inp->inp_irq_cpu_set == 0) {
			*failed = 1;
			return(0);
		}
		return(inp->inp_irq_cpu);
	}
	/* If one is set the other must be the same */
#ifdef RSS
	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
	if (cpuid == NETISR_CPUID_NONE)
		return (hpts_random_cpu(inp));
	else
		return (cpuid);
#endif
	/*
	 * We don't have a flowid -> cpuid mapping, so cheat and just map
	 * unknown cpuids to curcpu.  Not the best, but apparently better
	 * than defaulting to swi 0.
	 */
	if (inp->inp_flowtype == M_HASHTYPE_NONE) {
		counter_u64_add(cpu_uses_random, 1);
		return (hpts_random_cpu(inp));
	}
	/*
	 * Hash to a thread based on the flowid.  If we are using numa,
	 * then restrict the hash to the numa domain where the inp lives.
	 */

#ifdef NUMA
	if ((vm_ndomains == 1) ||
	    (inp->inp_numa_domain == M_NODOM)) {
#endif
		cpuid = inp->inp_flowid % mp_ncpus;
#ifdef NUMA
	} else {
		/* Hash into the cpu's that use that domain */
		di = &hpts_domains[inp->inp_numa_domain];
		cpuid = di->cpu[inp->inp_flowid % di->count];
	}
#endif
	counter_u64_add(cpu_uses_flowid, 1);
	return (cpuid);
}

static void
tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
{
	uint32_t t = 0, i;

	if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
		/*
		 * Find next slot that is occupied and use that to
		 * be the sleep time.
		 */
		for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
			if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
				break;
			}
			t = (t + 1) % NUM_OF_HPTSI_SLOTS;
		}
		KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
		hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
	} else {
		/* No one on the wheel sleep for all but 400 slots or sleep max  */
		hpts->p_hpts_sleep_time = hpts_sleep_max;
	}
}

static int32_t
tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
{
	struct tcpcb *tp;
	struct inpcb *inp;
	struct timeval tv;
	int32_t slots_to_run, i, error;
	int32_t loop_cnt = 0;
	int32_t did_prefetch = 0;
	int32_t prefetch_ninp = 0;
	int32_t prefetch_tp = 0;
	int32_t wrap_loop_cnt = 0;
	int32_t slot_pos_of_endpoint = 0;
	int32_t orig_exit_slot;
	int8_t completed_measure = 0, seen_endpoint = 0;

	HPTS_MTX_ASSERT(hpts);
	NET_EPOCH_ASSERT();
	/* record previous info for any logging */
	hpts->saved_lasttick = hpts->p_lasttick;
	hpts->saved_curtick = hpts->p_curtick;
	hpts->saved_curslot = hpts->p_cur_slot;
	hpts->saved_prev_slot = hpts->p_prev_slot;

	hpts->p_lasttick = hpts->p_curtick;
	hpts->p_curtick = tcp_gethptstick(&tv);
	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
	orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
	if ((hpts->p_on_queue_cnt == 0) ||
	    (hpts->p_lasttick == hpts->p_curtick)) {
		/*
		 * No time has yet passed,
		 * or nothing to do.
		 */
		hpts->p_prev_slot = hpts->p_cur_slot;
		hpts->p_lasttick = hpts->p_curtick;
		goto no_run;
	}
again:
	hpts->p_wheel_complete = 0;
	HPTS_MTX_ASSERT(hpts);
	slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
	if (((hpts->p_curtick - hpts->p_lasttick) >
	     ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
	    (hpts->p_on_queue_cnt != 0)) {
		/*
		 * Wheel wrap is occuring, basically we
		 * are behind and the distance between
		 * run's has spread so much it has exceeded
		 * the time on the wheel (1.024 seconds). This
		 * is ugly and should NOT be happening. We
		 * need to run the entire wheel. We last processed
		 * p_prev_slot, so that needs to be the last slot
		 * we run. The next slot after that should be our
		 * reserved first slot for new, and then starts
		 * the running position. Now the problem is the
		 * reserved "not to yet" place does not exist
		 * and there may be inp's in there that need
		 * running. We can merge those into the
		 * first slot at the head.
		 */
		wrap_loop_cnt++;
		hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
		/*
		 * Adjust p_cur_slot to be where we are starting from
		 * hopefully we will catch up (fat chance if something
		 * is broken this bad :( )
		 */
		hpts->p_cur_slot = hpts->p_prev_slot;
		/*
		 * The next slot has guys to run too, and that would
		 * be where we would normally start, lets move them into
		 * the next slot (p_prev_slot + 2) so that we will
		 * run them, the extra 10usecs of late (by being
		 * put behind) does not really matter in this situation.
		 */
		TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
		    inp_hpts) {
			MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
			MPASS(inp->inp_hpts_gencnt ==
			    hpts->p_hptss[hpts->p_nxt_slot].gencnt);
			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);

			/*
			 * Update gencnt and nextslot accordingly to match
			 * the new location. This is safe since it takes both
			 * the INP lock and the pacer mutex to change the
			 * inp_hptsslot and inp_hpts_gencnt.
			 */
			inp->inp_hpts_gencnt =
			    hpts->p_hptss[hpts->p_runningslot].gencnt;
			inp->inp_hptsslot = hpts->p_runningslot;
		}
		TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
		    &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
		hpts->p_hptss[hpts->p_runningslot].count +=
		    hpts->p_hptss[hpts->p_nxt_slot].count;
		hpts->p_hptss[hpts->p_nxt_slot].count = 0;
		hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
		slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
		counter_u64_add(wheel_wrap, 1);
	} else {
		/*
		 * Nxt slot is always one after p_runningslot though
		 * its not used usually unless we are doing wheel wrap.
		 */
		hpts->p_nxt_slot = hpts->p_prev_slot;
		hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
	}
	if (hpts->p_on_queue_cnt == 0) {
		goto no_one;
	}
	for (i = 0; i < slots_to_run; i++) {
		struct inpcb *inp, *ninp;
		TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
		struct hptsh *hptsh;
		uint32_t runningslot;

		/*
		 * Calculate our delay, if there are no extra ticks there
		 * was not any (i.e. if slots_to_run == 1, no delay).
		 */
		hpts->p_delayed_by = (slots_to_run - (i + 1)) *
		    HPTS_TICKS_PER_SLOT;

		runningslot = hpts->p_runningslot;
		hptsh = &hpts->p_hptss[runningslot];
		TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
		hpts->p_on_queue_cnt -= hptsh->count;
		hptsh->count = 0;
		hptsh->gencnt++;

		HPTS_UNLOCK(hpts);

		TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
			bool set_cpu;

			if (ninp != NULL) {
				/* We prefetch the next inp if possible */
				kern_prefetch(ninp, &prefetch_ninp);
				prefetch_ninp = 1;
			}

			/* For debugging */
			if (seen_endpoint == 0) {
				seen_endpoint = 1;
				orig_exit_slot = slot_pos_of_endpoint =
				    runningslot;
			} else if (completed_measure == 0) {
				/* Record the new position */
				orig_exit_slot = runningslot;
			}

			INP_WLOCK(inp);
			if (inp->inp_hpts_cpu_set == 0) {
				set_cpu = true;
			} else {
				set_cpu = false;
			}

			if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
				if (inp->inp_hptsslot == -1) {
					inp->inp_in_hpts = IHPTS_NONE;
					if (in_pcbrele_wlocked(inp) == false)
						INP_WUNLOCK(inp);
				} else {
					HPTS_LOCK(hpts);
					inp_hpts_insert(inp, hpts);
					HPTS_UNLOCK(hpts);
					INP_WUNLOCK(inp);
				}
				continue;
			}

			MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
			MPASS(!(inp->inp_flags & INP_DROPPED));
			KASSERT(runningslot == inp->inp_hptsslot,
				("Hpts:%p inp:%p slot mis-aligned %u vs %u",
				 hpts, inp, runningslot, inp->inp_hptsslot));

			if (inp->inp_hpts_request) {
				/*
				 * This guy is deferred out further in time
				 * then our wheel had available on it.
				 * Push him back on the wheel or run it
				 * depending.
				 */
				uint32_t maxslots, last_slot, remaining_slots;

				remaining_slots = slots_to_run - (i + 1);
				if (inp->inp_hpts_request > remaining_slots) {
					HPTS_LOCK(hpts);
					/*
					 * How far out can we go?
					 */
					maxslots = max_slots_available(hpts,
					    hpts->p_cur_slot, &last_slot);
					if (maxslots >= inp->inp_hpts_request) {
						/* We can place it finally to
						 * be processed.  */
						inp->inp_hptsslot = hpts_slot(
						    hpts->p_runningslot,
						    inp->inp_hpts_request);
						inp->inp_hpts_request = 0;
					} else {
						/* Work off some more time */
						inp->inp_hptsslot = last_slot;
						inp->inp_hpts_request -=
						    maxslots;
					}
					inp_hpts_insert(inp, hpts);
					HPTS_UNLOCK(hpts);
					INP_WUNLOCK(inp);
					continue;
				}
				inp->inp_hpts_request = 0;
				/* Fall through we will so do it now */
			}

			inp_hpts_release(inp);
			tp = intotcpcb(inp);
			MPASS(tp);
			if (set_cpu) {
				/*
				 * Setup so the next time we will move to
				 * the right CPU. This should be a rare
				 * event. It will sometimes happens when we
				 * are the client side (usually not the
				 * server). Somehow tcp_output() gets called
				 * before the tcp_do_segment() sets the
				 * intial state. This means the r_cpu and
				 * r_hpts_cpu is 0. We get on the hpts, and
				 * then tcp_input() gets called setting up
				 * the r_cpu to the correct value. The hpts
				 * goes off and sees the mis-match. We
				 * simply correct it here and the CPU will
				 * switch to the new hpts nextime the tcb
				 * gets added to the hpts (not this one)
				 * :-)
				 */
				tcp_set_hpts(inp);
			}
			CURVNET_SET(inp->inp_vnet);
			/* Lets do any logging that we might want to */
			if (hpts_does_tp_logging && tcp_bblogging_on(tp)) {
				tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
			}

			if (tp->t_fb_ptr != NULL) {
				kern_prefetch(tp->t_fb_ptr, &did_prefetch);
				did_prefetch = 1;
			}
			if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
				error = (*tp->t_fb->tfb_do_queued_segments)(tp, 0);
				if (error) {
					/* The input killed the connection */
					goto skip_pacing;
				}
			}
			inp->inp_hpts_calls = 1;
			error = tcp_output(tp);
			if (error < 0)
				goto skip_pacing;
			inp->inp_hpts_calls = 0;
			if (ninp) {
				/*
				 * If we have a nxt inp, see if we can
				 * prefetch it. Note this may seem
				 * "risky" since we have no locks (other
				 * than the previous inp) and there no
				 * assurance that ninp was not pulled while
				 * we were processing inp and freed. If this
				 * occurred it could mean that either:
				 *
				 * a) Its NULL (which is fine we won't go
				 * here) <or> b) Its valid (which is cool we
				 * will prefetch it) <or> c) The inp got
				 * freed back to the slab which was
				 * reallocated. Then the piece of memory was
				 * re-used and something else (not an
				 * address) is in inp_ppcb. If that occurs
				 * we don't crash, but take a TLB shootdown
				 * performance hit (same as if it was NULL
				 * and we tried to pre-fetch it).
				 *
				 * Considering that the likelyhood of <c> is
				 * quite rare we will take a risk on doing
				 * this. If performance drops after testing
				 * we can always take this out. NB: the
				 * kern_prefetch on amd64 actually has
				 * protection against a bad address now via
				 * the DMAP_() tests. This will prevent the
				 * TLB hit, and instead if <c> occurs just
				 * cause us to load cache with a useless
				 * address (to us).
				 *
				 * XXXGL: with tcpcb == inpcb, I'm unsure this
				 * prefetch is still correct and useful.
				 */
				kern_prefetch(ninp, &prefetch_tp);
				prefetch_tp = 1;
			}
			INP_WUNLOCK(inp);
		skip_pacing:
			CURVNET_RESTORE();
		}
		if (seen_endpoint) {
			/*
			 * We now have a accurate distance between
			 * slot_pos_of_endpoint <-> orig_exit_slot
			 * to tell us how late we were, orig_exit_slot
			 * is where we calculated the end of our cycle to
			 * be when we first entered.
			 */
			completed_measure = 1;
		}
		HPTS_LOCK(hpts);
		hpts->p_runningslot++;
		if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
			hpts->p_runningslot = 0;
		}
	}
no_one:
	HPTS_MTX_ASSERT(hpts);
	hpts->p_delayed_by = 0;
	/*
	 * Check to see if we took an excess amount of time and need to run
	 * more ticks (if we did not hit eno-bufs).
	 */
	hpts->p_prev_slot = hpts->p_cur_slot;
	hpts->p_lasttick = hpts->p_curtick;
	if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
		/*
		 * Something is serious slow we have
		 * looped through processing the wheel
		 * and by the time we cleared the
		 * needs to run max_pacer_loops time
		 * we still needed to run. That means
		 * the system is hopelessly behind and
		 * can never catch up :(
		 *
		 * We will just lie to this thread
		 * and let it thing p_curtick is
		 * correct. When it next awakens
		 * it will find itself further behind.
		 */
		if (from_callout)
			counter_u64_add(hpts_hopelessly_behind, 1);
		goto no_run;
	}
	hpts->p_curtick = tcp_gethptstick(&tv);
	hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
	if (seen_endpoint == 0) {
		/* We saw no endpoint but we may be looping */
		orig_exit_slot = hpts->p_cur_slot;
	}
	if ((wrap_loop_cnt < 2) &&
	    (hpts->p_lasttick != hpts->p_curtick)) {
		counter_u64_add(hpts_loops, 1);
		loop_cnt++;
		goto again;
	}
no_run:
	cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
	/*
	 * Set flag to tell that we are done for
	 * any slot input that happens during
	 * input.
	 */
	hpts->p_wheel_complete = 1;
	/*
	 * Now did we spend too long running input and need to run more ticks?
	 * Note that if wrap_loop_cnt < 2 then we should have the conditions
	 * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
	 * is greater than 2, then the condtion most likely are *not* true.
	 * Also if we are called not from the callout, we don't run the wheel
	 * multiple times so the slots may not align either.
	 */
	KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
		 (wrap_loop_cnt >= 2) || (from_callout == 0)),
		("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
		 hpts->p_prev_slot, hpts->p_cur_slot));
	KASSERT(((hpts->p_lasttick == hpts->p_curtick)
		 || (wrap_loop_cnt >= 2) || (from_callout == 0)),
		("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
		 hpts->p_lasttick, hpts->p_curtick));
	if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
		hpts->p_curtick = tcp_gethptstick(&tv);
		counter_u64_add(hpts_loops, 1);
		hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
		goto again;
	}

	if (from_callout){
		tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
	}
	if (seen_endpoint)
		return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
	else
		return (0);
}

void
__tcp_set_hpts(struct inpcb *inp, int32_t line)
{
	struct tcp_hpts_entry *hpts;
	int failed;

	INP_WLOCK_ASSERT(inp);
	hpts = tcp_hpts_lock(inp);
	if ((inp->inp_in_hpts == 0) &&
	    (inp->inp_hpts_cpu_set == 0)) {
		inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
		if (failed == 0)
			inp->inp_hpts_cpu_set = 1;
	}
	mtx_unlock(&hpts->p_mtx);
}

static void
__tcp_run_hpts(struct tcp_hpts_entry *hpts)
{
	int ticks_ran;

	if (hpts->p_hpts_active) {
		/* Already active */
		return;
	}
	if (mtx_trylock(&hpts->p_mtx) == 0) {
		/* Someone else got the lock */
		return;
	}
	if (hpts->p_hpts_active)
		goto out_with_mtx;
	hpts->syscall_cnt++;
	counter_u64_add(hpts_direct_call, 1);
	hpts->p_hpts_active = 1;
	ticks_ran = tcp_hptsi(hpts, 0);
	/* We may want to adjust the sleep values here */
	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
		if (ticks_ran > ticks_indicate_less_sleep) {
			struct timeval tv;
			sbintime_t sb;

			hpts->p_mysleep.tv_usec /= 2;
			if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
				hpts->p_mysleep.tv_usec = dynamic_min_sleep;
			/* Reschedule with new to value */
			tcp_hpts_set_max_sleep(hpts, 0);
			tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
			/* Validate its in the right ranges */
			if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
				hpts->overidden_sleep = tv.tv_usec;
				tv.tv_usec = hpts->p_mysleep.tv_usec;
			} else if (tv.tv_usec > dynamic_max_sleep) {
				/* Lets not let sleep get above this value */
				hpts->overidden_sleep = tv.tv_usec;
				tv.tv_usec = dynamic_max_sleep;
			}
			/*
			 * In this mode the timer is a backstop to
			 * all the userret/lro_flushes so we use
			 * the dynamic value and set the on_min_sleep
			 * flag so we will not be awoken.
			 */
			sb = tvtosbt(tv);
			/* Store off to make visible the actual sleep time */
			hpts->sleeping = tv.tv_usec;
			callout_reset_sbt_on(&hpts->co, sb, 0,
					     hpts_timeout_swi, hpts, hpts->p_cpu,
					     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
		} else if (ticks_ran < ticks_indicate_more_sleep) {
			/* For the further sleep, don't reschedule  hpts */
			hpts->p_mysleep.tv_usec *= 2;
			if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
				hpts->p_mysleep.tv_usec = dynamic_max_sleep;
		}
		hpts->p_on_min_sleep = 1;
	}
	hpts->p_hpts_active = 0;
out_with_mtx:
	HPTS_MTX_ASSERT(hpts);
	mtx_unlock(&hpts->p_mtx);
}

static struct tcp_hpts_entry *
tcp_choose_hpts_to_run(void)
{
	int i, oldest_idx, start, end;
	uint32_t cts, time_since_ran, calc;

	cts = tcp_get_usecs(NULL);
	time_since_ran = 0;
	/* Default is all one group */
	start = 0;
	end = tcp_pace.rp_num_hptss;
	/*
	 * If we have more than one L3 group figure out which one
	 * this CPU is in.
	 */
	if (tcp_pace.grp_cnt > 1) {
		for (i = 0; i < tcp_pace.grp_cnt; i++) {
			if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
				start = tcp_pace.grps[i]->cg_first;
				end = (tcp_pace.grps[i]->cg_last + 1);
				break;
			}
		}
	}
	oldest_idx = -1;
	for (i = start; i < end; i++) {
		if (TSTMP_GT(cts, cts_last_ran[i]))
			calc = cts - cts_last_ran[i];
		else
			calc = 0;
		if (calc > time_since_ran) {
			oldest_idx = i;
			time_since_ran = calc;
		}
	}
	if (oldest_idx >= 0)
		return(tcp_pace.rp_ent[oldest_idx]);
	else
		return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
}


void
tcp_run_hpts(void)
{
	static struct tcp_hpts_entry *hpts;
	struct epoch_tracker et;

	NET_EPOCH_ENTER(et);
	hpts = tcp_choose_hpts_to_run();
	__tcp_run_hpts(hpts);
	NET_EPOCH_EXIT(et);
}


static void
tcp_hpts_thread(void *ctx)
{
	struct tcp_hpts_entry *hpts;
	struct epoch_tracker et;
	struct timeval tv;
	sbintime_t sb;
	int ticks_ran;

	hpts = (struct tcp_hpts_entry *)ctx;
	mtx_lock(&hpts->p_mtx);
	if (hpts->p_direct_wake) {
		/* Signaled by input or output with low occupancy count. */
		callout_stop(&hpts->co);
		counter_u64_add(hpts_direct_awakening, 1);
	} else {
		/* Timed out, the normal case. */
		counter_u64_add(hpts_wake_timeout, 1);
		if (callout_pending(&hpts->co) ||
		    !callout_active(&hpts->co)) {
			mtx_unlock(&hpts->p_mtx);
			return;
		}
	}
	callout_deactivate(&hpts->co);
	hpts->p_hpts_wake_scheduled = 0;
	NET_EPOCH_ENTER(et);
	if (hpts->p_hpts_active) {
		/*
		 * We are active already. This means that a syscall
		 * trap or LRO is running in behalf of hpts. In that case
		 * we need to double our timeout since there seems to be
		 * enough activity in the system that we don't need to
		 * run as often (if we were not directly woken).
		 */
		if (hpts->p_direct_wake == 0) {
			counter_u64_add(hpts_back_tosleep, 1);
			if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
				hpts->p_mysleep.tv_usec *= 2;
				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
				tv.tv_usec = hpts->p_mysleep.tv_usec;
				hpts->p_on_min_sleep = 1;
			} else {
				/*
				 * Here we have low count on the wheel, but
				 * somehow we still collided with one of the
				 * connections. Lets go back to sleep for a
				 * min sleep time, but clear the flag so we
				 * can be awoken by insert.
				 */
				hpts->p_on_min_sleep = 0;
				tv.tv_usec = tcp_min_hptsi_time;
			}
		} else {
			/*
			 * Directly woken most likely to reset the
			 * callout time.
			 */
			tv.tv_sec = 0;
			tv.tv_usec = hpts->p_mysleep.tv_usec;
		}
		goto back_to_sleep;
	}
	hpts->sleeping = 0;
	hpts->p_hpts_active = 1;
	ticks_ran = tcp_hptsi(hpts, 1);
	tv.tv_sec = 0;
	tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
	if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
		if(hpts->p_direct_wake == 0) {
			/*
			 * Only adjust sleep time if we were
			 * called from the callout i.e. direct_wake == 0.
			 */
			if (ticks_ran < ticks_indicate_more_sleep) {
				hpts->p_mysleep.tv_usec *= 2;
				if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
					hpts->p_mysleep.tv_usec = dynamic_max_sleep;
			} else if (ticks_ran > ticks_indicate_less_sleep) {
				hpts->p_mysleep.tv_usec /= 2;
				if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
					hpts->p_mysleep.tv_usec = dynamic_min_sleep;
			}
		}
		if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
			hpts->overidden_sleep = tv.tv_usec;
			tv.tv_usec = hpts->p_mysleep.tv_usec;
		} else if (tv.tv_usec > dynamic_max_sleep) {
			/* Lets not let sleep get above this value */
			hpts->overidden_sleep = tv.tv_usec;
			tv.tv_usec = dynamic_max_sleep;
		}
		/*
		 * In this mode the timer is a backstop to
		 * all the userret/lro_flushes so we use
		 * the dynamic value and set the on_min_sleep
		 * flag so we will not be awoken.
		 */
		hpts->p_on_min_sleep = 1;
	} else if (hpts->p_on_queue_cnt == 0)  {
		/*
		 * No one on the wheel, please wake us up
		 * if you insert on the wheel.
		 */
		hpts->p_on_min_sleep = 0;
		hpts->overidden_sleep = 0;
	} else {
		/*
		 * We hit here when we have a low number of
		 * clients on the wheel (our else clause).
		 * We may need to go on min sleep, if we set
		 * the flag we will not be awoken if someone
		 * is inserted ahead of us. Clearing the flag
		 * means we can be awoken. This is "old mode"
		 * where the timer is what runs hpts mainly.
		 */
		if (tv.tv_usec < tcp_min_hptsi_time) {
			/*
			 * Yes on min sleep, which means
			 * we cannot be awoken.
			 */
			hpts->overidden_sleep = tv.tv_usec;
			tv.tv_usec = tcp_min_hptsi_time;
			hpts->p_on_min_sleep = 1;
		} else {
			/* Clear the min sleep flag */
			hpts->overidden_sleep = 0;
			hpts->p_on_min_sleep = 0;
		}
	}
	HPTS_MTX_ASSERT(hpts);
	hpts->p_hpts_active = 0;
back_to_sleep:
	hpts->p_direct_wake = 0;
	sb = tvtosbt(tv);
	/* Store off to make visible the actual sleep time */
	hpts->sleeping = tv.tv_usec;
	callout_reset_sbt_on(&hpts->co, sb, 0,
			     hpts_timeout_swi, hpts, hpts->p_cpu,
			     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
	NET_EPOCH_EXIT(et);
	mtx_unlock(&hpts->p_mtx);
}

#undef	timersub

static int32_t
hpts_count_level(struct cpu_group *cg)
{
	int32_t count_l3, i;

	count_l3 = 0;
	if (cg->cg_level == CG_SHARE_L3)
		count_l3++;
	/* Walk all the children looking for L3 */
	for (i = 0; i < cg->cg_children; i++) {
		count_l3 += hpts_count_level(&cg->cg_child[i]);
	}
	return (count_l3);
}

static void
hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
{
	int32_t idx, i;

	idx = *at;
	if (cg->cg_level == CG_SHARE_L3) {
		grps[idx] = cg;
		idx++;
		if (idx == max) {
			*at = idx;
			return;
		}
	}
	*at = idx;
	/* Walk all the children looking for L3 */
	for (i = 0; i < cg->cg_children; i++) {
		hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
	}
}

static void
tcp_init_hptsi(void *st)
{
	struct cpu_group *cpu_top;
	int32_t error __diagused;
	int32_t i, j, bound = 0, created = 0;
	size_t sz, asz;
	struct timeval tv;
	sbintime_t sb;
	struct tcp_hpts_entry *hpts;
	struct pcpu *pc;
	char unit[16];
	uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
	int count, domain;

#ifdef SMP
	cpu_top = smp_topo();
#else
	cpu_top = NULL;
#endif
	tcp_pace.rp_num_hptss = ncpus;
	hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
	hpts_loops = counter_u64_alloc(M_WAITOK);
	back_tosleep = counter_u64_alloc(M_WAITOK);
	combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
	wheel_wrap = counter_u64_alloc(M_WAITOK);
	hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
	hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
	hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
	hpts_direct_call = counter_u64_alloc(M_WAITOK);
	cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
	cpu_uses_random = counter_u64_alloc(M_WAITOK);

	sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
	tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
	sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
	cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
	tcp_pace.grp_cnt = 0;
	if (cpu_top == NULL) {
		tcp_pace.grp_cnt = 1;
	} else {
		/* Find out how many cache level 3 domains we have */
		count = 0;
		tcp_pace.grp_cnt = hpts_count_level(cpu_top);
		if (tcp_pace.grp_cnt == 0) {
			tcp_pace.grp_cnt = 1;
		}
		sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
		tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
		/* Now populate the groups */
		if (tcp_pace.grp_cnt == 1) {
			/*
			 * All we need is the top level all cpu's are in
			 * the same cache so when we use grp[0]->cg_mask
			 * with the cg_first <-> cg_last it will include
			 * all cpu's in it. The level here is probably
			 * zero which is ok.
			 */
			tcp_pace.grps[0] = cpu_top;
		} else {
			/*
			 * Here we must find all the level three cache domains
			 * and setup our pointers to them.
			 */
			count = 0;
			hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
		}
	}
	asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
		tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
		    M_TCPHPTS, M_WAITOK | M_ZERO);
		tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
		hpts = tcp_pace.rp_ent[i];
		/*
		 * Init all the hpts structures that are not specifically
		 * zero'd by the allocations. Also lets attach them to the
		 * appropriate sysctl block as well.
		 */
		mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
		    "hpts", MTX_DEF | MTX_DUPOK);
		for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
			TAILQ_INIT(&hpts->p_hptss[j].head);
			hpts->p_hptss[j].count = 0;
			hpts->p_hptss[j].gencnt = 0;
		}
		sysctl_ctx_init(&hpts->hpts_ctx);
		sprintf(unit, "%d", i);
		hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
		    SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
		    OID_AUTO,
		    unit,
		    CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
		    "");
		SYSCTL_ADD_INT(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "out_qcnt", CTLFLAG_RD,
		    &hpts->p_on_queue_cnt, 0,
		    "Count TCB's awaiting output processing");
		SYSCTL_ADD_U16(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "active", CTLFLAG_RD,
		    &hpts->p_hpts_active, 0,
		    "Is the hpts active");
		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "curslot", CTLFLAG_RD,
		    &hpts->p_cur_slot, 0,
		    "What the current running pacers goal");
		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "runtick", CTLFLAG_RD,
		    &hpts->p_runningslot, 0,
		    "What the running pacers current slot is");
		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "curtick", CTLFLAG_RD,
		    &hpts->p_curtick, 0,
		    "What the running pacers last tick mapped to the wheel was");
		SYSCTL_ADD_UINT(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "lastran", CTLFLAG_RD,
		    &cts_last_ran[i], 0,
		    "The last usec tick that this hpts ran");
		SYSCTL_ADD_LONG(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
		    &hpts->p_mysleep.tv_usec,
		    "What the running pacers is using for p_mysleep.tv_usec");
		SYSCTL_ADD_U64(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "now_sleeping", CTLFLAG_RD,
		    &hpts->sleeping, 0,
		    "What the running pacers is actually sleeping for");
		SYSCTL_ADD_U64(&hpts->hpts_ctx,
		    SYSCTL_CHILDREN(hpts->hpts_root),
		    OID_AUTO, "syscall_cnt", CTLFLAG_RD,
		    &hpts->syscall_cnt, 0,
		    "How many times we had syscalls on this hpts");

		hpts->p_hpts_sleep_time = hpts_sleep_max;
		hpts->p_num = i;
		hpts->p_curtick = tcp_gethptstick(&tv);
		cts_last_ran[i] = tcp_tv_to_usectick(&tv);
		hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
		hpts->p_cpu = 0xffff;
		hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
		callout_init(&hpts->co, 1);
	}
	/* Don't try to bind to NUMA domains if we don't have any */
	if (vm_ndomains == 1 && tcp_bind_threads == 2)
		tcp_bind_threads = 0;

	/*
	 * Now lets start ithreads to handle the hptss.
	 */
	for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
		hpts = tcp_pace.rp_ent[i];
		hpts->p_cpu = i;

		error = swi_add(&hpts->ie, "hpts",
		    tcp_hpts_thread, (void *)hpts,
		    SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
		KASSERT(error == 0,
			("Can't add hpts:%p i:%d err:%d",
			 hpts, i, error));
		created++;
		hpts->p_mysleep.tv_sec = 0;
		hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
		if (tcp_bind_threads == 1) {
			if (intr_event_bind(hpts->ie, i) == 0)
				bound++;
		} else if (tcp_bind_threads == 2) {
			/* Find the group for this CPU (i) and bind into it */
			for (j = 0; j < tcp_pace.grp_cnt; j++) {
				if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
					if (intr_event_bind_ithread_cpuset(hpts->ie,
						&tcp_pace.grps[j]->cg_mask) == 0) {
						bound++;
						pc = pcpu_find(i);
						domain = pc->pc_domain;
						count = hpts_domains[domain].count;
						hpts_domains[domain].cpu[count] = i;
						hpts_domains[domain].count++;
						break;
					}
				}
			}
		}
		tv.tv_sec = 0;
		tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
		hpts->sleeping = tv.tv_usec;
		sb = tvtosbt(tv);
		callout_reset_sbt_on(&hpts->co, sb, 0,
				     hpts_timeout_swi, hpts, hpts->p_cpu,
				     (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
	}
	/*
	 * If we somehow have an empty domain, fall back to choosing
	 * among all htps threads.
	 */
	for (i = 0; i < vm_ndomains; i++) {
		if (hpts_domains[i].count == 0) {
			tcp_bind_threads = 0;
			break;
		}
	}
	printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
	    created, bound,
	    tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
#ifdef INVARIANTS
	printf("HPTS is in INVARIANT mode!!\n");
#endif
}

SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
MODULE_VERSION(tcphpts, 1);