aboutsummaryrefslogtreecommitdiff
path: root/sys/powerpc/ofw/ofw_machdep.c
blob: 805d19cc2b42641c0849ef181f686f5f36044fe4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/*-
 * SPDX-License-Identifier: BSD-4-Clause
 *
 * Copyright (C) 1996 Wolfgang Solfrank.
 * Copyright (C) 1996 TooLs GmbH.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by TooLs GmbH.
 * 4. The name of TooLs GmbH may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_platform.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <sys/endian.h>

#include <net/ethernet.h>

#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_subr.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>

#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/ofw_machdep.h>
#include <machine/trap.h>

#include <contrib/libfdt/libfdt.h>

#ifdef POWERNV
#include <powerpc/powernv/opal.h>
#endif

static void	*fdt;
int		ofw_real_mode;

#ifdef AIM
extern register_t ofmsr[5];
extern void	*openfirmware_entry;
char		save_trap_init[0x2f00];          /* EXC_LAST */
char		save_trap_of[0x2f00];            /* EXC_LAST */

int		ofwcall(void *);
static int	openfirmware(void *args);

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wfortify-source"

__inline void
ofw_save_trap_vec(char *save_trap_vec)
{
	if (!ofw_real_mode || !hw_direct_map)
                return;

	bcopy((void *)PHYS_TO_DMAP(EXC_RST), save_trap_vec, EXC_LAST - EXC_RST);
}

static __inline void
ofw_restore_trap_vec(char *restore_trap_vec)
{
	if (!ofw_real_mode || !hw_direct_map)
                return;

	bcopy(restore_trap_vec, (void *)PHYS_TO_DMAP(EXC_RST),
	    EXC_LAST - EXC_RST);
	__syncicache((void *)PHYS_TO_DMAP(EXC_RSVD), EXC_LAST - EXC_RSVD);
}

#pragma clang diagnostic pop

/*
 * Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
 */
register_t	ofw_sprg0_save;

static __inline void
ofw_sprg_prepare(void)
{
	if (ofw_real_mode)
		return;

	/*
	 * Assume that interrupt are disabled at this point, or
	 * SPRG1-3 could be trashed
	 */
#ifdef __powerpc64__
	__asm __volatile("mtsprg1 %0\n\t"
	    		 "mtsprg2 %1\n\t"
			 "mtsprg3 %2\n\t"
			 :
			 : "r"(ofmsr[2]),
			 "r"(ofmsr[3]),
			 "r"(ofmsr[4]));
#else
	__asm __volatile("mfsprg0 %0\n\t"
			 "mtsprg0 %1\n\t"
	    		 "mtsprg1 %2\n\t"
	    		 "mtsprg2 %3\n\t"
			 "mtsprg3 %4\n\t"
			 : "=&r"(ofw_sprg0_save)
			 : "r"(ofmsr[1]),
			 "r"(ofmsr[2]),
			 "r"(ofmsr[3]),
			 "r"(ofmsr[4]));
#endif
}

static __inline void
ofw_sprg_restore(void)
{
	if (ofw_real_mode)
		return;

	/*
	 * Note that SPRG1-3 contents are irrelevant. They are scratch
	 * registers used in the early portion of trap handling when
	 * interrupts are disabled.
	 *
	 * PCPU data cannot be used until this routine is called !
	 */
#ifndef __powerpc64__
	__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
#endif
}
#endif

static int
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
{
	cell_t address_cells, size_cells;
	cell_t OFmem[4 * PHYS_AVAIL_SZ];
	int sz, i, j;
	phandle_t phandle;

	sz = 0;

	/*
	 * Get #address-cells from root node, defaulting to 1 if it cannot
	 * be found.
	 */
	phandle = OF_finddevice("/");
	if (OF_getencprop(phandle, "#address-cells", &address_cells, 
	    sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
		address_cells = 1;
	if (OF_getencprop(phandle, "#size-cells", &size_cells, 
	    sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
		size_cells = 1;

	/*
	 * Get memory.
	 */
	if (node == -1 || (sz = OF_getencprop(node, prop,
	    OFmem, sizeof(OFmem))) <= 0)
		panic("Physical memory map not found");

	i = 0;
	j = 0;
	while (i < sz/sizeof(cell_t)) {
		output[j].mr_start = OFmem[i++];
		if (address_cells == 2) {
			output[j].mr_start <<= 32;
			output[j].mr_start += OFmem[i++];
		}
			
		output[j].mr_size = OFmem[i++];
		if (size_cells == 2) {
			output[j].mr_size <<= 32;
			output[j].mr_size += OFmem[i++];
		}

		if (output[j].mr_start > BUS_SPACE_MAXADDR)
			continue;

		/*
		 * Constrain memory to that which we can access.
		 * 32-bit AIM can only reference 32 bits of address currently,
		 * but Book-E can access 36 bits.
		 */
		if (((uint64_t)output[j].mr_start +
		    (uint64_t)output[j].mr_size - 1) >
		    BUS_SPACE_MAXADDR) {
			output[j].mr_size = BUS_SPACE_MAXADDR -
			    output[j].mr_start + 1;
		}

		j++;
	}

	return (j);
}

static int
parse_numa_ofw_memory(phandle_t node, const char *prop,
    struct numa_mem_region *output)
{
	cell_t address_cells, size_cells;
	cell_t OFmem[4 * PHYS_AVAIL_SZ];
	int sz, i, j;
	phandle_t phandle;

	sz = 0;

	/*
	 * Get #address-cells from root node, defaulting to 1 if it cannot
	 * be found.
	 */
	phandle = OF_finddevice("/");
	if (OF_getencprop(phandle, "#address-cells", &address_cells,
	    sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
		address_cells = 1;
	if (OF_getencprop(phandle, "#size-cells", &size_cells,
	    sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
		size_cells = 1;

	/*
	 * Get memory.
	 */
	if (node == -1 || (sz = OF_getencprop(node, prop,
	    OFmem, sizeof(OFmem))) <= 0)
		panic("Physical memory map not found");

	i = 0;
	j = 0;
	while (i < sz/sizeof(cell_t)) {
		output[j].mr_start = OFmem[i++];
		if (address_cells == 2) {
			output[j].mr_start <<= 32;
			output[j].mr_start += OFmem[i++];
		}
		output[j].mr_size = OFmem[i++];
		if (size_cells == 2) {
			output[j].mr_size <<= 32;
			output[j].mr_size += OFmem[i++];
		}
		j++;
	}

	return (j);
}

#ifdef FDT
static int
excise_reserved_regions(struct mem_region *avail, int asz,
			struct mem_region *exclude, int esz)
{
	int i, j, k;

	for (i = 0; i < asz; i++) {
		for (j = 0; j < esz; j++) {
			/*
			 * Case 1: Exclusion region encloses complete
			 * available entry. Drop it and move on.
			 */
			if (exclude[j].mr_start <= avail[i].mr_start &&
			    exclude[j].mr_start + exclude[j].mr_size >=
			    avail[i].mr_start + avail[i].mr_size) {
				for (k = i+1; k < asz; k++)
					avail[k-1] = avail[k];
				asz--;
				i--; /* Repeat some entries */
				continue;
			}

			/*
			 * Case 2: Exclusion region starts in available entry.
			 * Trim it to where the entry begins and append
			 * a new available entry with the region after
			 * the excluded region, if any.
			 */
			if (exclude[j].mr_start >= avail[i].mr_start &&
			    exclude[j].mr_start < avail[i].mr_start +
			    avail[i].mr_size) {
				if (exclude[j].mr_start + exclude[j].mr_size <
				    avail[i].mr_start + avail[i].mr_size) {
					avail[asz].mr_start =
					    exclude[j].mr_start + exclude[j].mr_size;
					avail[asz].mr_size = avail[i].mr_start +
					     avail[i].mr_size -
					     avail[asz].mr_start;
					asz++;
				}

				avail[i].mr_size = exclude[j].mr_start -
				    avail[i].mr_start;
			}

			/*
			 * Case 3: Exclusion region ends in available entry.
			 * Move start point to where the exclusion zone ends.
			 * The case of a contained exclusion zone has already
			 * been caught in case 2.
			 */
			if (exclude[j].mr_start + exclude[j].mr_size >=
			    avail[i].mr_start && exclude[j].mr_start +
			    exclude[j].mr_size < avail[i].mr_start +
			    avail[i].mr_size) {
				avail[i].mr_size += avail[i].mr_start;
				avail[i].mr_start =
				    exclude[j].mr_start + exclude[j].mr_size;
				avail[i].mr_size -= avail[i].mr_start;
			}
		}
	}

	return (asz);
}

static int
excise_initrd_region(struct mem_region *avail, int asz)
{
	phandle_t chosen;
	uint64_t start, end;
	ssize_t size;
	struct mem_region initrdmap[1];
	pcell_t cell[2];

	chosen = OF_finddevice("/chosen");

	size = OF_getencprop(chosen, "linux,initrd-start", cell, sizeof(cell));
	if (size < 0)
		return (asz);
	else if (size == 4)
		start = cell[0];
	else if (size == 8)
		start = (uint64_t)cell[0] << 32 | cell[1];
	else {
		/* Invalid value length */
		printf("WARNING: linux,initrd-start must be either 4 or 8 bytes long\n");
		return (asz);
	}

	size = OF_getencprop(chosen, "linux,initrd-end", cell, sizeof(cell));
	if (size < 0)
		return (asz);
	else if (size == 4)
		end = cell[0];
	else if (size == 8)
		end = (uint64_t)cell[0] << 32 | cell[1];
	else {
		/* Invalid value length */
		printf("WARNING: linux,initrd-end must be either 4 or 8 bytes long\n");
		return (asz);
	}

	if (end <= start)
		return (asz);

	initrdmap[0].mr_start = start;
	initrdmap[0].mr_size = end - start;

	asz = excise_reserved_regions(avail, asz, initrdmap, 1);

	return (asz);
}

#ifdef POWERNV
static int
excise_msi_region(struct mem_region *avail, int asz)
{
        uint64_t start, end;
        struct mem_region initrdmap[1];

	/*
	 * This range of physical addresses is used to implement optimized
	 * 32 bit MSI interrupts on POWER9. Exclude it to avoid accidentally
	 * using it for DMA, as this will cause an immediate PHB fence.
	 * While we could theoretically turn off this behavior in the ETU,
	 * doing so would break 32-bit MSI, so just reserve the range in 
	 * the physical map instead.
	 * See section 4.4.2.8 of the PHB4 specification.
	 */
	start	= 0x00000000ffff0000ul;
	end	= 0x00000000fffffffful;

	initrdmap[0].mr_start = start;
	initrdmap[0].mr_size = end - start;

	asz = excise_reserved_regions(avail, asz, initrdmap, 1);

	return (asz);
}
#endif

static int
excise_fdt_reserved(struct mem_region *avail, int asz)
{
	struct mem_region fdtmap[32];
	ssize_t fdtmapsize;
	phandle_t chosen;
	int j, fdtentries;

	chosen = OF_finddevice("/chosen");
	fdtmapsize = OF_getprop(chosen, "fdtmemreserv", fdtmap, sizeof(fdtmap));

	for (j = 0; j < fdtmapsize/sizeof(fdtmap[0]); j++) {
		fdtmap[j].mr_start = be64toh(fdtmap[j].mr_start) & ~PAGE_MASK;
		fdtmap[j].mr_size = round_page(be64toh(fdtmap[j].mr_size));
	}

	KASSERT(j*sizeof(fdtmap[0]) < sizeof(fdtmap),
	    ("Exceeded number of FDT reservations"));
	/* Add a virtual entry for the FDT itself */
	if (fdt != NULL) {
		fdtmap[j].mr_start = (vm_offset_t)fdt & ~PAGE_MASK;
		fdtmap[j].mr_size = round_page(fdt_totalsize(fdt));
		fdtmapsize += sizeof(fdtmap[0]);
	}

	fdtentries = fdtmapsize/sizeof(fdtmap[0]);
	asz = excise_reserved_regions(avail, asz, fdtmap, fdtentries);

	return (asz);
}
#endif

/*
 * This is called during powerpc_init, before the system is really initialized.
 * It shall provide the total and the available regions of RAM.
 * The available regions need not take the kernel into account.
 */
void
ofw_numa_mem_regions(struct numa_mem_region *memp, int *memsz)
{
	phandle_t phandle;
	int count, msz;
	char name[31];
	struct numa_mem_region *curmemp;

	msz = 0;
	/*
	 * Get memory from all the /memory nodes.
	 */
	for (phandle = OF_child(OF_peer(0)); phandle != 0;
	    phandle = OF_peer(phandle)) {
		if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
			continue;
		if (strncmp(name, "memory@", strlen("memory@")) != 0)
			continue;

		count = parse_numa_ofw_memory(phandle, "reg", &memp[msz]);
		if (count == 0)
			continue;
		curmemp = &memp[msz];
		MPASS(count == 1);
		curmemp->mr_domain = platform_node_numa_domain(phandle);
		if (bootverbose)
			printf("%s %#jx-%#jx domain(%ju)\n",
			    name, (uintmax_t)curmemp->mr_start,
			    (uintmax_t)curmemp->mr_start + curmemp->mr_size,
			    (uintmax_t)curmemp->mr_domain);
		msz += count;
	}
	*memsz = msz;
}
/*
 * This is called during powerpc_init, before the system is really initialized.
 * It shall provide the total and the available regions of RAM.
 * The available regions need not take the kernel into account.
 */
void
ofw_mem_regions(struct mem_region *memp, int *memsz,
		struct mem_region *availp, int *availsz)
{
	phandle_t phandle;
	int asz, msz;
	int res;
	char name[31];

	asz = msz = 0;

	/*
	 * Get memory from all the /memory nodes.
	 */
	for (phandle = OF_child(OF_peer(0)); phandle != 0;
	    phandle = OF_peer(phandle)) {
		if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
			continue;
		if (strncmp(name, "memory", sizeof(name)) != 0 &&
		    strncmp(name, "memory@", strlen("memory@")) != 0)
			continue;

		res = parse_ofw_memory(phandle, "reg", &memp[msz]);
		msz += res;

		/*
		 * On POWER9 Systems we might have both linux,usable-memory and
		 * reg properties.  'reg' denotes all available memory, but we
		 * must use 'linux,usable-memory', a subset, as some memory
		 * regions are reserved for NVLink.
		 */
		if (OF_getproplen(phandle, "linux,usable-memory") >= 0)
			res = parse_ofw_memory(phandle, "linux,usable-memory",
			    &availp[asz]);
		else if (OF_getproplen(phandle, "available") >= 0)
			res = parse_ofw_memory(phandle, "available",
			    &availp[asz]);
		else
			res = parse_ofw_memory(phandle, "reg", &availp[asz]);
		asz += res;
	}

#ifdef FDT
	phandle = OF_finddevice("/chosen");
	if (OF_hasprop(phandle, "fdtmemreserv"))
		asz = excise_fdt_reserved(availp, asz);

	/* If the kernel is being loaded through kexec, initrd region is listed
	 * in /chosen but the region is not marked as reserved, so, we might exclude
	 * it here.
	 */
	if (OF_hasprop(phandle, "linux,initrd-start"))
		asz = excise_initrd_region(availp, asz);
#endif

#ifdef POWERNV
	if (opal_check() == 0)
		asz = excise_msi_region(availp, asz);
#endif

	*memsz = msz;
	*availsz = asz;
}

void
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
{
#ifdef AIM
	ofmsr[0] = mfmsr();
	#ifdef __powerpc64__
	ofmsr[0] &= ~PSL_SF;
	#ifdef __LITTLE_ENDIAN__
	/* Assume OFW is BE. */
	ofmsr[0] &= ~PSL_LE;
	#endif
	#else
	__asm __volatile("mfsprg0 %0" : "=&r"(ofmsr[1]));
	#endif
	__asm __volatile("mfsprg1 %0" : "=&r"(ofmsr[2]));
	__asm __volatile("mfsprg2 %0" : "=&r"(ofmsr[3]));
	__asm __volatile("mfsprg3 %0" : "=&r"(ofmsr[4]));
	openfirmware_entry = openfirm;

	if (ofmsr[0] & PSL_DR)
		ofw_real_mode = 0;
	else
		ofw_real_mode = 1;

	ofw_save_trap_vec(save_trap_init);
#else
	ofw_real_mode = 1;
#endif

	fdt = fdt_ptr;
}

boolean_t
OF_bootstrap()
{
	boolean_t status = FALSE;
	int err = 0;

#ifdef AIM
	if (openfirmware_entry != NULL) {
		if (ofw_real_mode) {
			status = OF_install(OFW_STD_REAL, 0);
		} else {
			#ifdef __powerpc64__
			status = OF_install(OFW_STD_32BIT, 0);
			#else
			status = OF_install(OFW_STD_DIRECT, 0);
			#endif
		}

		if (status != TRUE)
			return status;

		err = OF_init(openfirmware);
	} else
#endif
	if (fdt != NULL) {
#ifdef FDT
#ifdef AIM
		bus_space_tag_t fdt_bt;
		vm_offset_t tmp_fdt_ptr;
		vm_size_t fdt_size;
		uintptr_t fdt_va;
#endif

		status = OF_install(OFW_FDT, 0);
		if (status != TRUE)
			return status;

#ifdef AIM /* AIM-only for now -- Book-E does this remapping in early init */
		/* Get the FDT size for mapping if we can */
		tmp_fdt_ptr = pmap_early_io_map((vm_paddr_t)fdt, PAGE_SIZE);
		if (fdt_check_header((void *)tmp_fdt_ptr) != 0) {
			pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);
			return FALSE;
		}
		fdt_size = fdt_totalsize((void *)tmp_fdt_ptr);
		pmap_early_io_unmap(tmp_fdt_ptr, PAGE_SIZE);

		/*
		 * Map this for real. Use bus_space_map() to take advantage
		 * of its auto-remapping function once the kernel is loaded.
		 * This is a dirty hack, but what we have.
		 */
#ifdef __LITTLE_ENDIAN__
		fdt_bt = &bs_le_tag;
#else
		fdt_bt = &bs_be_tag;
#endif
		bus_space_map(fdt_bt, (vm_paddr_t)fdt, fdt_size, 0, &fdt_va);
		 
		err = OF_init((void *)fdt_va);
#else
		err = OF_init(fdt);
#endif
#endif
	} 

	#ifdef FDT_DTB_STATIC
	/*
	 * Check for a statically included blob already in the kernel and
	 * needing no mapping.
	 */
	else {
		status = OF_install(OFW_FDT, 0);
		if (status != TRUE)
			return status;
		err = OF_init(&fdt_static_dtb);
	}
	#endif

	if (err != 0) {
		OF_install(NULL, 0);
		status = FALSE;
	}

	return (status);
}

#ifdef AIM
void
ofw_quiesce(void)
{
	struct {
		cell_t name;
		cell_t nargs;
		cell_t nreturns;
	} args;

	KASSERT(!pmap_bootstrapped, ("Cannot call ofw_quiesce after VM is up"));

	args.name = (cell_t)(uintptr_t)"quiesce";
	args.nargs = 0;
	args.nreturns = 0;
	openfirmware(&args);
}

static int
openfirmware_core(void *args)
{
	int		result;
	register_t	oldmsr;

	if (openfirmware_entry == NULL)
		return (-1);

	/*
	 * Turn off exceptions - we really don't want to end up
	 * anywhere unexpected with PCPU set to something strange
	 * or the stack pointer wrong.
	 */
	oldmsr = intr_disable();

	ofw_sprg_prepare();

	/* Save trap vectors */
	ofw_save_trap_vec(save_trap_of);

	/* Restore initially saved trap vectors */
	ofw_restore_trap_vec(save_trap_init);

#ifndef __powerpc64__
	/*
	 * Clear battable[] translations
	 */
	if (!(cpu_features & PPC_FEATURE_64))
		__asm __volatile("mtdbatu 2, %0\n"
				 "mtdbatu 3, %0" : : "r" (0));
	isync();
#endif

	result = ofwcall(args);

	/* Restore trap vecotrs */
	ofw_restore_trap_vec(save_trap_of);

	ofw_sprg_restore();

	intr_restore(oldmsr);

	return (result);
}

#ifdef SMP
struct ofw_rv_args {
	void *args;
	int retval;
	volatile int in_progress;
};

static void
ofw_rendezvous_dispatch(void *xargs)
{
	struct ofw_rv_args *rv_args = xargs;

	/* NOTE: Interrupts are disabled here */

	if (PCPU_GET(cpuid) == 0) {
		/*
		 * Execute all OF calls on CPU 0
		 */
		rv_args->retval = openfirmware_core(rv_args->args);
		rv_args->in_progress = 0;
	} else {
		/*
		 * Spin with interrupts off on other CPUs while OF has
		 * control of the machine.
		 */
		while (rv_args->in_progress)
			cpu_spinwait();
	}
}
#endif

static int
openfirmware(void *args)
{
	int result;
	#ifdef SMP
	struct ofw_rv_args rv_args;
	#endif

	if (openfirmware_entry == NULL)
		return (-1);

	#ifdef SMP
	if (cold) {
		result = openfirmware_core(args);
	} else {
		rv_args.args = args;
		rv_args.in_progress = 1;
		smp_rendezvous(smp_no_rendezvous_barrier,
		    ofw_rendezvous_dispatch, smp_no_rendezvous_barrier,
		    &rv_args);
		result = rv_args.retval;
	}
	#else
	result = openfirmware_core(args);
	#endif

	return (result);
}

void
OF_reboot()
{
	struct {
		cell_t name;
		cell_t nargs;
		cell_t nreturns;
		cell_t arg;
	} args;

	args.name = (cell_t)(uintptr_t)"interpret";
	args.nargs = 1;
	args.nreturns = 0;
	args.arg = (cell_t)(uintptr_t)"reset-all";
	openfirmware_core(&args); /* Don't do rendezvous! */

	for (;;);	/* just in case */
}

#endif /* AIM */

void
OF_getetheraddr(device_t dev, u_char *addr)
{
	phandle_t	node;

	node = ofw_bus_get_node(dev);
	OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
}

/*
 * Return a bus handle and bus tag that corresponds to the register
 * numbered regno for the device referenced by the package handle
 * dev. This function is intended to be used by console drivers in
 * early boot only. It works by mapping the address of the device's
 * register in the address space of its parent and recursively walk
 * the device tree upward this way.
 */
int
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
    bus_space_handle_t *handle, bus_size_t *sz)
{
	bus_addr_t addr;
	bus_size_t size;
	pcell_t pci_hi;
	int flags, res;

	res = ofw_reg_to_paddr(dev, regno, &addr, &size, &pci_hi);
	if (res < 0)
		return (res);

	if (pci_hi == OFW_PADDR_NOT_PCI) {
		*tag = &bs_be_tag;
		flags = 0;
	} else {
		*tag = &bs_le_tag;
		flags = (pci_hi & OFW_PCI_PHYS_HI_PREFETCHABLE) ? 
		    BUS_SPACE_MAP_PREFETCHABLE: 0;
	}

	if (sz != NULL)
		*sz = size;

	return (bus_space_map(*tag, addr, size, flags, handle));
}