aboutsummaryrefslogtreecommitdiff
path: root/sys/riscv/riscv/machdep.c
blob: ae4c040dc47967caa9629c5b41d0b5e0463122dd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/*-
 * Copyright (c) 2014 Andrew Turner
 * Copyright (c) 2015-2017 Ruslan Bukin <br@bsdpad.com>
 * All rights reserved.
 *
 * Portions of this software were developed by SRI International and the
 * University of Cambridge Computer Laboratory under DARPA/AFRL contract
 * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
 *
 * Portions of this software were developed by the University of Cambridge
 * Computer Laboratory as part of the CTSRD Project, with support from the
 * UK Higher Education Innovation Fund (HEIF).
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "opt_platform.h"

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/msgbuf.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>

#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>

#include <machine/riscvreg.h>
#include <machine/cpu.h>
#include <machine/kdb.h>
#include <machine/machdep.h>
#include <machine/pcb.h>
#include <machine/reg.h>
#include <machine/trap.h>
#include <machine/vmparam.h>
#include <machine/intr.h>
#include <machine/sbi.h>

#include <machine/asm.h>

#ifdef FPE
#include <machine/fpe.h>
#endif

#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#endif

struct pcpu __pcpu[MAXCPU];

static struct trapframe proc0_tf;

vm_paddr_t phys_avail[PHYS_AVAIL_SIZE + 2];
vm_paddr_t dump_avail[PHYS_AVAIL_SIZE + 2];

int early_boot = 1;
int cold = 1;
long realmem = 0;
long Maxmem = 0;

#define	DTB_SIZE_MAX	(1024 * 1024)

#define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
vm_paddr_t physmap[PHYSMAP_SIZE];
u_int physmap_idx;

struct kva_md_info kmi;

int64_t dcache_line_size;	/* The minimum D cache line size */
int64_t icache_line_size;	/* The minimum I cache line size */
int64_t idcache_line_size;	/* The minimum cache line size */

extern int *end;
extern int *initstack_end;

uintptr_t mcall_trap(uintptr_t mcause, uintptr_t* regs);

uintptr_t
mcall_trap(uintptr_t mcause, uintptr_t* regs)
{

	return (0);
}

static void
cpu_startup(void *dummy)
{

	identify_cpu();

	vm_ksubmap_init(&kmi);
	bufinit();
	vm_pager_bufferinit();
}

SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);

int
cpu_idle_wakeup(int cpu)
{

	return (0);
}

int
fill_regs(struct thread *td, struct reg *regs)
{
	struct trapframe *frame;

	frame = td->td_frame;
	regs->sepc = frame->tf_sepc;
	regs->sstatus = frame->tf_sstatus;
	regs->ra = frame->tf_ra;
	regs->sp = frame->tf_sp;
	regs->gp = frame->tf_gp;
	regs->tp = frame->tf_tp;

	memcpy(regs->t, frame->tf_t, sizeof(regs->t));
	memcpy(regs->s, frame->tf_s, sizeof(regs->s));
	memcpy(regs->a, frame->tf_a, sizeof(regs->a));

	return (0);
}

int
set_regs(struct thread *td, struct reg *regs)
{
	struct trapframe *frame;

	frame = td->td_frame;
	frame->tf_sepc = regs->sepc;
	frame->tf_ra = regs->ra;
	frame->tf_sp = regs->sp;
	frame->tf_gp = regs->gp;
	frame->tf_tp = regs->tp;

	memcpy(frame->tf_t, regs->t, sizeof(frame->tf_t));
	memcpy(frame->tf_s, regs->s, sizeof(frame->tf_s));
	memcpy(frame->tf_a, regs->a, sizeof(frame->tf_a));

	return (0);
}

int
fill_fpregs(struct thread *td, struct fpreg *regs)
{
#ifdef FPE
	struct pcb *pcb;

	pcb = td->td_pcb;

	if ((pcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
		/*
		 * If we have just been running FPE instructions we will
		 * need to save the state to memcpy it below.
		 */
		if (td == curthread)
			fpe_state_save(td);

		memcpy(regs->fp_x, pcb->pcb_x, sizeof(regs->fp_x));
		regs->fp_fcsr = pcb->pcb_fcsr;
	} else
#endif
		memset(regs, 0, sizeof(*regs));

	return (0);
}

int
set_fpregs(struct thread *td, struct fpreg *regs)
{
#ifdef FPE
	struct trapframe *frame;
	struct pcb *pcb;

	frame = td->td_frame;
	pcb = td->td_pcb;

	memcpy(pcb->pcb_x, regs->fp_x, sizeof(regs->fp_x));
	pcb->pcb_fcsr = regs->fp_fcsr;
	pcb->pcb_fpflags |= PCB_FP_STARTED;
	frame->tf_sstatus &= ~SSTATUS_FS_MASK;
	frame->tf_sstatus |= SSTATUS_FS_CLEAN;
#endif

	return (0);
}

int
fill_dbregs(struct thread *td, struct dbreg *regs)
{

	panic("fill_dbregs");
}

int
set_dbregs(struct thread *td, struct dbreg *regs)
{

	panic("set_dbregs");
}

int
ptrace_set_pc(struct thread *td, u_long addr)
{

	td->td_frame->tf_sepc = addr;
	return (0);
}

int
ptrace_single_step(struct thread *td)
{

	/* TODO; */
	return (EOPNOTSUPP);
}

int
ptrace_clear_single_step(struct thread *td)
{

	/* TODO; */
	return (EOPNOTSUPP);
}

void
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
{
	struct trapframe *tf;
	struct pcb *pcb;

	tf = td->td_frame;
	pcb = td->td_pcb;

	memset(tf, 0, sizeof(struct trapframe));

	tf->tf_a[0] = stack;
	tf->tf_sp = STACKALIGN(stack);
	tf->tf_ra = imgp->entry_addr;
	tf->tf_sepc = imgp->entry_addr;

	pcb->pcb_fpflags &= ~PCB_FP_STARTED;
}

/* Sanity check these are the same size, they will be memcpy'd to and fro */
CTASSERT(sizeof(((struct trapframe *)0)->tf_a) ==
    sizeof((struct gpregs *)0)->gp_a);
CTASSERT(sizeof(((struct trapframe *)0)->tf_s) ==
    sizeof((struct gpregs *)0)->gp_s);
CTASSERT(sizeof(((struct trapframe *)0)->tf_t) ==
    sizeof((struct gpregs *)0)->gp_t);
CTASSERT(sizeof(((struct trapframe *)0)->tf_a) ==
    sizeof((struct reg *)0)->a);
CTASSERT(sizeof(((struct trapframe *)0)->tf_s) ==
    sizeof((struct reg *)0)->s);
CTASSERT(sizeof(((struct trapframe *)0)->tf_t) ==
    sizeof((struct reg *)0)->t);

/* Support for FDT configurations only. */
CTASSERT(FDT);

int
get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
{
	struct trapframe *tf = td->td_frame;

	memcpy(mcp->mc_gpregs.gp_t, tf->tf_t, sizeof(mcp->mc_gpregs.gp_t));
	memcpy(mcp->mc_gpregs.gp_s, tf->tf_s, sizeof(mcp->mc_gpregs.gp_s));
	memcpy(mcp->mc_gpregs.gp_a, tf->tf_a, sizeof(mcp->mc_gpregs.gp_a));

	if (clear_ret & GET_MC_CLEAR_RET) {
		mcp->mc_gpregs.gp_a[0] = 0;
		mcp->mc_gpregs.gp_t[0] = 0; /* clear syscall error */
	}

	mcp->mc_gpregs.gp_ra = tf->tf_ra;
	mcp->mc_gpregs.gp_sp = tf->tf_sp;
	mcp->mc_gpregs.gp_gp = tf->tf_gp;
	mcp->mc_gpregs.gp_tp = tf->tf_tp;
	mcp->mc_gpregs.gp_sepc = tf->tf_sepc;
	mcp->mc_gpregs.gp_sstatus = tf->tf_sstatus;

	return (0);
}

int
set_mcontext(struct thread *td, mcontext_t *mcp)
{
	struct trapframe *tf;

	tf = td->td_frame;

	memcpy(tf->tf_t, mcp->mc_gpregs.gp_t, sizeof(tf->tf_t));
	memcpy(tf->tf_s, mcp->mc_gpregs.gp_s, sizeof(tf->tf_s));
	memcpy(tf->tf_a, mcp->mc_gpregs.gp_a, sizeof(tf->tf_a));

	tf->tf_ra = mcp->mc_gpregs.gp_ra;
	tf->tf_sp = mcp->mc_gpregs.gp_sp;
	tf->tf_gp = mcp->mc_gpregs.gp_gp;
	tf->tf_sepc = mcp->mc_gpregs.gp_sepc;
	tf->tf_sstatus = mcp->mc_gpregs.gp_sstatus;

	return (0);
}

static void
get_fpcontext(struct thread *td, mcontext_t *mcp)
{
#ifdef FPE
	struct pcb *curpcb;

	critical_enter();

	curpcb = curthread->td_pcb;

	KASSERT(td->td_pcb == curpcb, ("Invalid fpe pcb"));

	if ((curpcb->pcb_fpflags & PCB_FP_STARTED) != 0) {
		/*
		 * If we have just been running FPE instructions we will
		 * need to save the state to memcpy it below.
		 */
		fpe_state_save(td);

		KASSERT((curpcb->pcb_fpflags & ~PCB_FP_USERMASK) == 0,
		    ("Non-userspace FPE flags set in get_fpcontext"));
		memcpy(mcp->mc_fpregs.fp_x, curpcb->pcb_x,
		    sizeof(mcp->mc_fpregs));
		mcp->mc_fpregs.fp_fcsr = curpcb->pcb_fcsr;
		mcp->mc_fpregs.fp_flags = curpcb->pcb_fpflags;
		mcp->mc_flags |= _MC_FP_VALID;
	}

	critical_exit();
#endif
}

static void
set_fpcontext(struct thread *td, mcontext_t *mcp)
{
#ifdef FPE
	struct pcb *curpcb;

	critical_enter();

	if ((mcp->mc_flags & _MC_FP_VALID) != 0) {
		curpcb = curthread->td_pcb;
		/* FPE usage is enabled, override registers. */
		memcpy(curpcb->pcb_x, mcp->mc_fpregs.fp_x,
		    sizeof(mcp->mc_fpregs));
		curpcb->pcb_fcsr = mcp->mc_fpregs.fp_fcsr;
		curpcb->pcb_fpflags = mcp->mc_fpregs.fp_flags & PCB_FP_USERMASK;
	}

	critical_exit();
#endif
}

void
cpu_idle(int busy)
{

	spinlock_enter();
	if (!busy)
		cpu_idleclock();
	if (!sched_runnable())
		__asm __volatile(
		    "fence \n"
		    "wfi   \n");
	if (!busy)
		cpu_activeclock();
	spinlock_exit();
}

void
cpu_halt(void)
{

	intr_disable();
	for (;;)
		__asm __volatile("wfi");
}

/*
 * Flush the D-cache for non-DMA I/O so that the I-cache can
 * be made coherent later.
 */
void
cpu_flush_dcache(void *ptr, size_t len)
{

	/* TBD */
}

/* Get current clock frequency for the given CPU ID. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{

	panic("cpu_est_clockrate");
}

void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
}

void
spinlock_enter(void)
{
	struct thread *td;

	td = curthread;
	if (td->td_md.md_spinlock_count == 0) {
		td->td_md.md_spinlock_count = 1;
		td->td_md.md_saved_sstatus_ie = intr_disable();
	} else
		td->td_md.md_spinlock_count++;
	critical_enter();
}

void
spinlock_exit(void)
{
	struct thread *td;
	register_t sstatus_ie;

	td = curthread;
	critical_exit();
	sstatus_ie = td->td_md.md_saved_sstatus_ie;
	td->td_md.md_spinlock_count--;
	if (td->td_md.md_spinlock_count == 0)
		intr_restore(sstatus_ie);
}

#ifndef	_SYS_SYSPROTO_H_
struct sigreturn_args {
	ucontext_t *ucp;
};
#endif

int
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
{
	uint64_t sstatus;
	ucontext_t uc;
	int error;

	if (uap == NULL)
		return (EFAULT);
	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
		return (EFAULT);

	/*
	 * Make sure the processor mode has not been tampered with and
	 * interrupts have not been disabled.
	 * Supervisor interrupts in user mode are always enabled.
	 */
	sstatus = uc.uc_mcontext.mc_gpregs.gp_sstatus;
	if ((sstatus & SSTATUS_SPP) != 0)
		return (EINVAL);

	error = set_mcontext(td, &uc.uc_mcontext);
	if (error != 0)
		return (error);

	set_fpcontext(td, &uc.uc_mcontext);

	/* Restore signal mask. */
	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);

	return (EJUSTRETURN);
}

/*
 * Construct a PCB from a trapframe. This is called from kdb_trap() where
 * we want to start a backtrace from the function that caused us to enter
 * the debugger. We have the context in the trapframe, but base the trace
 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
 * enough for a backtrace.
 */
void
makectx(struct trapframe *tf, struct pcb *pcb)
{

	memcpy(pcb->pcb_t, tf->tf_t, sizeof(tf->tf_t));
	memcpy(pcb->pcb_s, tf->tf_s, sizeof(tf->tf_s));
	memcpy(pcb->pcb_a, tf->tf_a, sizeof(tf->tf_a));

	pcb->pcb_ra = tf->tf_ra;
	pcb->pcb_sp = tf->tf_sp;
	pcb->pcb_gp = tf->tf_gp;
	pcb->pcb_tp = tf->tf_tp;
	pcb->pcb_sepc = tf->tf_sepc;
}

void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
	struct sigframe *fp, frame;
	struct sysentvec *sysent;
	struct trapframe *tf;
	struct sigacts *psp;
	struct thread *td;
	struct proc *p;
	int onstack;
	int sig;

	td = curthread;
	p = td->td_proc;
	PROC_LOCK_ASSERT(p, MA_OWNED);

	sig = ksi->ksi_signo;
	psp = p->p_sigacts;
	mtx_assert(&psp->ps_mtx, MA_OWNED);

	tf = td->td_frame;
	onstack = sigonstack(tf->tf_sp);

	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
	    catcher, sig);

	/* Allocate and validate space for the signal handler context. */
	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !onstack &&
	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
		    td->td_sigstk.ss_size);
	} else {
		fp = (struct sigframe *)td->td_frame->tf_sp;
	}

	/* Make room, keeping the stack aligned */
	fp--;
	fp = (struct sigframe *)STACKALIGN(fp);

	/* Fill in the frame to copy out */
	bzero(&frame, sizeof(frame));
	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
	get_fpcontext(td, &frame.sf_uc.uc_mcontext);
	frame.sf_si = ksi->ksi_info;
	frame.sf_uc.uc_sigmask = *mask;
	frame.sf_uc.uc_stack = td->td_sigstk;
	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) != 0 ?
	    (onstack ? SS_ONSTACK : 0) : SS_DISABLE;
	mtx_unlock(&psp->ps_mtx);
	PROC_UNLOCK(td->td_proc);

	/* Copy the sigframe out to the user's stack. */
	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
		/* Process has trashed its stack. Kill it. */
		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
		PROC_LOCK(p);
		sigexit(td, SIGILL);
	}

	tf->tf_a[0] = sig;
	tf->tf_a[1] = (register_t)&fp->sf_si;
	tf->tf_a[2] = (register_t)&fp->sf_uc;

	tf->tf_sepc = (register_t)catcher;
	tf->tf_sp = (register_t)fp;

	sysent = p->p_sysent;
	if (sysent->sv_sigcode_base != 0)
		tf->tf_ra = (register_t)sysent->sv_sigcode_base;
	else
		tf->tf_ra = (register_t)(sysent->sv_psstrings -
		    *(sysent->sv_szsigcode));

	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_sepc,
	    tf->tf_sp);

	PROC_LOCK(p);
	mtx_lock(&psp->ps_mtx);
}

static void
init_proc0(vm_offset_t kstack)
{
	struct pcpu *pcpup;

	pcpup = &__pcpu[0];

	proc_linkup0(&proc0, &thread0);
	thread0.td_kstack = kstack;
	thread0.td_pcb = (struct pcb *)(thread0.td_kstack) - 1;
	thread0.td_pcb->pcb_fpflags = 0;
	thread0.td_frame = &proc0_tf;
	pcpup->pc_curpcb = thread0.td_pcb;
}

static int
add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
    u_int *physmap_idxp)
{
	u_int i, insert_idx, _physmap_idx;

	_physmap_idx = *physmap_idxp;

	if (length == 0)
		return (1);

	/*
	 * Find insertion point while checking for overlap.  Start off by
	 * assuming the new entry will be added to the end.
	 */
	insert_idx = _physmap_idx;
	for (i = 0; i <= _physmap_idx; i += 2) {
		if (base < physmap[i + 1]) {
			if (base + length <= physmap[i]) {
				insert_idx = i;
				break;
			}
			if (boothowto & RB_VERBOSE)
				printf(
		    "Overlapping memory regions, ignoring second region\n");
			return (1);
		}
	}

	/* See if we can prepend to the next entry. */
	if (insert_idx <= _physmap_idx &&
	    base + length == physmap[insert_idx]) {
		physmap[insert_idx] = base;
		return (1);
	}

	/* See if we can append to the previous entry. */
	if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
		physmap[insert_idx - 1] += length;
		return (1);
	}

	_physmap_idx += 2;
	*physmap_idxp = _physmap_idx;
	if (_physmap_idx == PHYSMAP_SIZE) {
		printf(
		"Too many segments in the physical address map, giving up\n");
		return (0);
	}

	/*
	 * Move the last 'N' entries down to make room for the new
	 * entry if needed.
	 */
	for (i = _physmap_idx; i > insert_idx; i -= 2) {
		physmap[i] = physmap[i - 2];
		physmap[i + 1] = physmap[i - 1];
	}

	/* Insert the new entry. */
	physmap[insert_idx] = base;
	physmap[insert_idx + 1] = base + length;

	printf("physmap[%d] = 0x%016lx\n", insert_idx, base);
	printf("physmap[%d] = 0x%016lx\n", insert_idx + 1, base + length);
	return (1);
}

#ifdef FDT
static void
try_load_dtb(caddr_t kmdp, vm_offset_t dtbp)
{

#if defined(FDT_DTB_STATIC)
	dtbp = (vm_offset_t)&fdt_static_dtb;
#endif

	if (dtbp == (vm_offset_t)NULL) {
		printf("ERROR loading DTB\n");
		return;
	}

	if (OF_install(OFW_FDT, 0) == FALSE)
		panic("Cannot install FDT");

	if (OF_init((void *)dtbp) != 0)
		panic("OF_init failed with the found device tree");
}
#endif

static void
cache_setup(void)
{

	/* TODO */

	dcache_line_size = 0;
	icache_line_size = 0;
	idcache_line_size = 0;
}

/*
 * Fake up a boot descriptor table.
 * RISCVTODO: This needs to be done via loader (when it's available).
 */
vm_offset_t
fake_preload_metadata(struct riscv_bootparams *rvbp __unused)
{
	static uint32_t fake_preload[35];
#ifdef DDB
	vm_offset_t zstart = 0, zend = 0;
#endif
	vm_offset_t lastaddr;
	int i;

	i = 0;

	fake_preload[i++] = MODINFO_NAME;
	fake_preload[i++] = strlen("kernel") + 1;
	strcpy((char*)&fake_preload[i++], "kernel");
	i += 1;
	fake_preload[i++] = MODINFO_TYPE;
	fake_preload[i++] = strlen("elf64 kernel") + 1;
	strcpy((char*)&fake_preload[i++], "elf64 kernel");
	i += 3;
	fake_preload[i++] = MODINFO_ADDR;
	fake_preload[i++] = sizeof(vm_offset_t);
	*(vm_offset_t *)&fake_preload[i++] =
	    (vm_offset_t)(KERNBASE + KERNENTRY);
	i += 1;
	fake_preload[i++] = MODINFO_SIZE;
	fake_preload[i++] = sizeof(vm_offset_t);
	fake_preload[i++] = (vm_offset_t)&end -
	    (vm_offset_t)(KERNBASE + KERNENTRY);
	i += 1;
#ifdef DDB
#if 0
	/* RISCVTODO */
	if (*(uint32_t *)KERNVIRTADDR == MAGIC_TRAMP_NUMBER) {
		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_SSYM;
		fake_preload[i++] = sizeof(vm_offset_t);
		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 4);
		fake_preload[i++] = MODINFO_METADATA|MODINFOMD_ESYM;
		fake_preload[i++] = sizeof(vm_offset_t);
		fake_preload[i++] = *(uint32_t *)(KERNVIRTADDR + 8);
		lastaddr = *(uint32_t *)(KERNVIRTADDR + 8);
		zend = lastaddr;
		zstart = *(uint32_t *)(KERNVIRTADDR + 4);
		db_fetch_ksymtab(zstart, zend);
	} else
#endif
#endif
		lastaddr = (vm_offset_t)&end;
	fake_preload[i++] = 0;
	fake_preload[i] = 0;
	preload_metadata = (void *)fake_preload;

	return (lastaddr);
}

void
initriscv(struct riscv_bootparams *rvbp)
{
	struct mem_region mem_regions[FDT_MEM_REGIONS];
	struct pcpu *pcpup;
	vm_offset_t rstart, rend;
	vm_offset_t s, e;
	int mem_regions_sz;
	vm_offset_t lastaddr;
	vm_size_t kernlen;
	caddr_t kmdp;
	int i;

	/* Set the pcpu data, this is needed by pmap_bootstrap */
	pcpup = &__pcpu[0];
	pcpu_init(pcpup, 0, sizeof(struct pcpu));

	/* Set the pcpu pointer */
	__asm __volatile("mv gp, %0" :: "r"(pcpup));

	PCPU_SET(curthread, &thread0);

	/* Set the module data location */
	lastaddr = fake_preload_metadata(rvbp);

	/* Find the kernel address */
	kmdp = preload_search_by_type("elf kernel");
	if (kmdp == NULL)
		kmdp = preload_search_by_type("elf64 kernel");

	boothowto = RB_VERBOSE | RB_SINGLE;
	boothowto = RB_VERBOSE;

	kern_envp = NULL;

#ifdef FDT
	try_load_dtb(kmdp, rvbp->dtbp_virt);
#endif

	/* Load the physical memory ranges */
	physmap_idx = 0;

#ifdef FDT
	/* Grab physical memory regions information from device tree. */
	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, NULL) != 0)
		panic("Cannot get physical memory regions");

	s = rvbp->dtbp_phys;
	e = s + DTB_SIZE_MAX;

	for (i = 0; i < mem_regions_sz; i++) {
		rstart = mem_regions[i].mr_start;
		rend = (mem_regions[i].mr_start + mem_regions[i].mr_size);

		if ((rstart < s) && (rend > e)) {
			/* Exclude DTB region. */
			add_physmap_entry(rstart, (s - rstart), physmap, &physmap_idx);
			add_physmap_entry(e, (rend - e), physmap, &physmap_idx);
		} else {
			add_physmap_entry(mem_regions[i].mr_start,
			    mem_regions[i].mr_size, physmap, &physmap_idx);
		}
	}
#endif

	/* Do basic tuning, hz etc */
	init_param1();

	cache_setup();

	/* Bootstrap enough of pmap to enter the kernel proper */
	kernlen = (lastaddr - KERNBASE);
	pmap_bootstrap(rvbp->kern_l1pt, mem_regions[0].mr_start, kernlen);

	cninit();

	init_proc0(rvbp->kern_stack);

	msgbufinit(msgbufp, msgbufsize);
	mutex_init();
	init_param2(physmem);
	kdb_init();

	early_boot = 0;
}

#undef bzero
void
bzero(void *buf, size_t len)
{
	uint8_t *p;

	p = buf;
	while(len-- > 0)
		*p++ = 0;
}