aboutsummaryrefslogtreecommitdiff
path: root/sys/vm/vm_phys.c
blob: 108297caac491925a7815bbdec2acf8773d63768 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
/*-
 * SPDX-License-Identifier: BSD-2-Clause
 *
 * Copyright (c) 2002-2006 Rice University
 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by Alan L. Cox,
 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 *	Physical memory system implementation
 *
 * Any external functions defined by this module are only to be used by the
 * virtual memory system.
 */

#include <sys/cdefs.h>
#include "opt_ddb.h"
#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domainset.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/tree.h>
#include <sys/vmmeter.h>

#include <ddb/ddb.h>

#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>

_Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
    "Too many physsegs.");
_Static_assert(sizeof(long long) >= sizeof(vm_paddr_t),
    "vm_paddr_t too big for ffsll, flsll.");

#ifdef NUMA
struct mem_affinity __read_mostly *mem_affinity;
int __read_mostly *mem_locality;
#endif

int __read_mostly vm_ndomains = 1;
domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);

struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
int __read_mostly vm_phys_nsegs;
static struct vm_phys_seg vm_phys_early_segs[8];
static int vm_phys_early_nsegs;

struct vm_phys_fictitious_seg;
static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
    struct vm_phys_fictitious_seg *);

RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
    RB_INITIALIZER(&vm_phys_fictitious_tree);

struct vm_phys_fictitious_seg {
	RB_ENTRY(vm_phys_fictitious_seg) node;
	/* Memory region data */
	vm_paddr_t	start;
	vm_paddr_t	end;
	vm_page_t	first_page;
};

RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
    vm_phys_fictitious_cmp);

static struct rwlock_padalign vm_phys_fictitious_reg_lock;
MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");

static struct vm_freelist __aligned(CACHE_LINE_SIZE)
    vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
    [VM_NFREEORDER_MAX];

static int __read_mostly vm_nfreelists;

/*
 * These "avail lists" are globals used to communicate boot-time physical
 * memory layout to other parts of the kernel.  Each physically contiguous
 * region of memory is defined by a start address at an even index and an
 * end address at the following odd index.  Each list is terminated by a
 * pair of zero entries.
 *
 * dump_avail tells the dump code what regions to include in a crash dump, and
 * phys_avail is all of the remaining physical memory that is available for
 * the vm system.
 *
 * Initially dump_avail and phys_avail are identical.  Boot time memory
 * allocations remove extents from phys_avail that may still be included
 * in dumps.
 */
vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];

/*
 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
 */
static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];

CTASSERT(VM_FREELIST_DEFAULT == 0);

#ifdef VM_FREELIST_DMA32
#define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
#endif

/*
 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
 * the ordering of the free list boundaries.
 */
#if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
#endif

static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_free,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_vm_phys_free, "A",
    "Phys Free Info");

static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_segs,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_vm_phys_segs, "A",
    "Phys Seg Info");

#ifdef NUMA
static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_locality,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_vm_phys_locality, "A",
    "Phys Locality Info");
#endif

SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
    &vm_ndomains, 0, "Number of physical memory domains available.");

static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
    int order, int tail);

/*
 * Red-black tree helpers for vm fictitious range management.
 */
static inline int
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
    struct vm_phys_fictitious_seg *range)
{

	KASSERT(range->start != 0 && range->end != 0,
	    ("Invalid range passed on search for vm_fictitious page"));
	if (p->start >= range->end)
		return (1);
	if (p->start < range->start)
		return (-1);

	return (0);
}

static int
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
    struct vm_phys_fictitious_seg *p2)
{

	/* Check if this is a search for a page */
	if (p1->end == 0)
		return (vm_phys_fictitious_in_range(p1, p2));

	KASSERT(p2->end != 0,
    ("Invalid range passed as second parameter to vm fictitious comparison"));

	/* Searching to add a new range */
	if (p1->end <= p2->start)
		return (-1);
	if (p1->start >= p2->end)
		return (1);

	panic("Trying to add overlapping vm fictitious ranges:\n"
	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
}

int
vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
{
#ifdef NUMA
	domainset_t mask;
	int i;

	if (vm_ndomains == 1 || mem_affinity == NULL)
		return (0);

	DOMAINSET_ZERO(&mask);
	/*
	 * Check for any memory that overlaps low, high.
	 */
	for (i = 0; mem_affinity[i].end != 0; i++)
		if (mem_affinity[i].start <= high &&
		    mem_affinity[i].end >= low)
			DOMAINSET_SET(mem_affinity[i].domain, &mask);
	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
		return (prefer);
	if (DOMAINSET_EMPTY(&mask))
		panic("vm_phys_domain_match:  Impossible constraint");
	return (DOMAINSET_FFS(&mask) - 1);
#else
	return (0);
#endif
}

/*
 * Outputs the state of the physical memory allocator, specifically,
 * the amount of physical memory in each free list.
 */
static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	struct vm_freelist *fl;
	int dom, error, flind, oind, pind;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
	for (dom = 0; dom < vm_ndomains; dom++) {
		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
		for (flind = 0; flind < vm_nfreelists; flind++) {
			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
			    "\n  ORDER (SIZE)  |  NUMBER"
			    "\n              ", flind);
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				sbuf_printf(&sbuf, "  |  POOL %d", pind);
			sbuf_printf(&sbuf, "\n--            ");
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				sbuf_printf(&sbuf, "-- --      ");
			sbuf_printf(&sbuf, "--\n");
			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
				    1 << (PAGE_SHIFT - 10 + oind));
				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[dom][flind][pind];
					sbuf_printf(&sbuf, "  |  %6d",
					    fl[oind].lcnt);
				}
				sbuf_printf(&sbuf, "\n");
			}
		}
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

/*
 * Outputs the set of physical memory segments.
 */
static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	struct vm_phys_seg *seg;
	int error, segind;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
		seg = &vm_phys_segs[segind];
		sbuf_printf(&sbuf, "start:     %#jx\n",
		    (uintmax_t)seg->start);
		sbuf_printf(&sbuf, "end:       %#jx\n",
		    (uintmax_t)seg->end);
		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

/*
 * Return affinity, or -1 if there's no affinity information.
 */
int
vm_phys_mem_affinity(int f, int t)
{

#ifdef NUMA
	if (mem_locality == NULL)
		return (-1);
	if (f >= vm_ndomains || t >= vm_ndomains)
		return (-1);
	return (mem_locality[f * vm_ndomains + t]);
#else
	return (-1);
#endif
}

#ifdef NUMA
/*
 * Outputs the VM locality table.
 */
static int
sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	int error, i, j;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);

	sbuf_printf(&sbuf, "\n");

	for (i = 0; i < vm_ndomains; i++) {
		sbuf_printf(&sbuf, "%d: ", i);
		for (j = 0; j < vm_ndomains; j++) {
			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
		}
		sbuf_printf(&sbuf, "\n");
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}
#endif

static void
vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
{

	m->order = order;
	if (tail)
		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
	else
		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
	fl[order].lcnt++;
}

static void
vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
{

	TAILQ_REMOVE(&fl[order].pl, m, listq);
	fl[order].lcnt--;
	m->order = VM_NFREEORDER;
}

/*
 * Create a physical memory segment.
 */
static void
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
{
	struct vm_phys_seg *seg;

	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("vm_phys_create_seg: invalid domain provided"));
	seg = &vm_phys_segs[vm_phys_nsegs++];
	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
		*seg = *(seg - 1);
		seg--;
	}
	seg->start = start;
	seg->end = end;
	seg->domain = domain;
}

static void
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
{
#ifdef NUMA
	int i;

	if (mem_affinity == NULL) {
		_vm_phys_create_seg(start, end, 0);
		return;
	}

	for (i = 0;; i++) {
		if (mem_affinity[i].end == 0)
			panic("Reached end of affinity info");
		if (mem_affinity[i].end <= start)
			continue;
		if (mem_affinity[i].start > start)
			panic("No affinity info for start %jx",
			    (uintmax_t)start);
		if (mem_affinity[i].end >= end) {
			_vm_phys_create_seg(start, end,
			    mem_affinity[i].domain);
			break;
		}
		_vm_phys_create_seg(start, mem_affinity[i].end,
		    mem_affinity[i].domain);
		start = mem_affinity[i].end;
	}
#else
	_vm_phys_create_seg(start, end, 0);
#endif
}

/*
 * Add a physical memory segment.
 */
void
vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
{
	vm_paddr_t paddr;

	KASSERT((start & PAGE_MASK) == 0,
	    ("vm_phys_define_seg: start is not page aligned"));
	KASSERT((end & PAGE_MASK) == 0,
	    ("vm_phys_define_seg: end is not page aligned"));

	/*
	 * Split the physical memory segment if it spans two or more free
	 * list boundaries.
	 */
	paddr = start;
#ifdef	VM_FREELIST_LOWMEM
	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
		paddr = VM_LOWMEM_BOUNDARY;
	}
#endif
#ifdef	VM_FREELIST_DMA32
	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
		paddr = VM_DMA32_BOUNDARY;
	}
#endif
	vm_phys_create_seg(paddr, end);
}

/*
 * Initialize the physical memory allocator.
 *
 * Requires that vm_page_array is initialized!
 */
void
vm_phys_init(void)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
#if defined(VM_DMA32_NPAGES_THRESHOLD) || defined(VM_PHYSSEG_SPARSE)
	u_long npages;
#endif
	int dom, flind, freelist, oind, pind, segind;

	/*
	 * Compute the number of free lists, and generate the mapping from the
	 * manifest constants VM_FREELIST_* to the free list indices.
	 *
	 * Initially, the entries of vm_freelist_to_flind[] are set to either
	 * 0 or 1 to indicate which free lists should be created.
	 */
#ifdef	VM_DMA32_NPAGES_THRESHOLD
	npages = 0;
#endif
	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
		seg = &vm_phys_segs[segind];
#ifdef	VM_FREELIST_LOWMEM
		if (seg->end <= VM_LOWMEM_BOUNDARY)
			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
		else
#endif
#ifdef	VM_FREELIST_DMA32
		if (
#ifdef	VM_DMA32_NPAGES_THRESHOLD
		    /*
		     * Create the DMA32 free list only if the amount of
		     * physical memory above physical address 4G exceeds the
		     * given threshold.
		     */
		    npages > VM_DMA32_NPAGES_THRESHOLD &&
#endif
		    seg->end <= VM_DMA32_BOUNDARY)
			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
		else
#endif
		{
#ifdef	VM_DMA32_NPAGES_THRESHOLD
			npages += atop(seg->end - seg->start);
#endif
			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
		}
	}
	/* Change each entry into a running total of the free lists. */
	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
		vm_freelist_to_flind[freelist] +=
		    vm_freelist_to_flind[freelist - 1];
	}
	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
	/* Change each entry into a free list index. */
	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
		vm_freelist_to_flind[freelist]--;

	/*
	 * Initialize the first_page and free_queues fields of each physical
	 * memory segment.
	 */
#ifdef VM_PHYSSEG_SPARSE
	npages = 0;
#endif
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
#ifdef VM_PHYSSEG_SPARSE
		seg->first_page = &vm_page_array[npages];
		npages += atop(seg->end - seg->start);
#else
		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
#endif
#ifdef	VM_FREELIST_LOWMEM
		if (seg->end <= VM_LOWMEM_BOUNDARY) {
			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
			KASSERT(flind >= 0,
			    ("vm_phys_init: LOWMEM flind < 0"));
		} else
#endif
#ifdef	VM_FREELIST_DMA32
		if (seg->end <= VM_DMA32_BOUNDARY) {
			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
			KASSERT(flind >= 0,
			    ("vm_phys_init: DMA32 flind < 0"));
		} else
#endif
		{
			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
			KASSERT(flind >= 0,
			    ("vm_phys_init: DEFAULT flind < 0"));
		}
		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
	}

	/*
	 * Coalesce physical memory segments that are contiguous and share the
	 * same per-domain free queues.
	 */
	prev_seg = vm_phys_segs;
	seg = &vm_phys_segs[1];
	end_seg = &vm_phys_segs[vm_phys_nsegs];
	while (seg < end_seg) {
		if (prev_seg->end == seg->start &&
		    prev_seg->free_queues == seg->free_queues) {
			prev_seg->end = seg->end;
			KASSERT(prev_seg->domain == seg->domain,
			    ("vm_phys_init: free queues cannot span domains"));
			vm_phys_nsegs--;
			end_seg--;
			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
				*tmp_seg = *(tmp_seg + 1);
		} else {
			prev_seg = seg;
			seg++;
		}
	}

	/*
	 * Initialize the free queues.
	 */
	for (dom = 0; dom < vm_ndomains; dom++) {
		for (flind = 0; flind < vm_nfreelists; flind++) {
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[dom][flind][pind];
				for (oind = 0; oind < VM_NFREEORDER; oind++)
					TAILQ_INIT(&fl[oind].pl);
			}
		}
	}

	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
}

/*
 * Register info about the NUMA topology of the system.
 *
 * Invoked by platform-dependent code prior to vm_phys_init().
 */
void
vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
    int *locality)
{
#ifdef NUMA
	int d, i;

	/*
	 * For now the only override value that we support is 1, which
	 * effectively disables NUMA-awareness in the allocators.
	 */
	d = 0;
	TUNABLE_INT_FETCH("vm.numa.disabled", &d);
	if (d)
		ndomains = 1;

	if (ndomains > 1) {
		vm_ndomains = ndomains;
		mem_affinity = affinity;
		mem_locality = locality;
	}

	for (i = 0; i < vm_ndomains; i++)
		DOMAINSET_SET(i, &all_domains);
#else
	(void)ndomains;
	(void)affinity;
	(void)locality;
#endif
}

/*
 * Split a contiguous, power of two-sized set of physical pages.
 *
 * When this function is called by a page allocation function, the caller
 * should request insertion at the head unless the order [order, oind) queues
 * are known to be empty.  The objective being to reduce the likelihood of
 * long-term fragmentation by promoting contemporaneous allocation and
 * (hopefully) deallocation.
 */
static __inline void
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
    int tail)
{
	vm_page_t m_buddy;

	while (oind > order) {
		oind--;
		m_buddy = &m[1 << oind];
		KASSERT(m_buddy->order == VM_NFREEORDER,
		    ("vm_phys_split_pages: page %p has unexpected order %d",
		    m_buddy, m_buddy->order));
		vm_freelist_add(fl, m_buddy, oind, tail);
        }
}

/*
 * Add the physical pages [m, m + npages) at the beginning of a power-of-two
 * aligned and sized set to the specified free list.
 *
 * When this function is called by a page allocation function, the caller
 * should request insertion at the head unless the lower-order queues are
 * known to be empty.  The objective being to reduce the likelihood of long-
 * term fragmentation by promoting contemporaneous allocation and (hopefully)
 * deallocation.
 *
 * The physical page m's buddy must not be free.
 */
static void
vm_phys_enq_beg(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
{
        int order;

	KASSERT(npages == 0 ||
	    (VM_PAGE_TO_PHYS(m) &
	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
	    ("%s: page %p and npages %u are misaligned",
	    __func__, m, npages));
        while (npages > 0) {
		KASSERT(m->order == VM_NFREEORDER,
		    ("%s: page %p has unexpected order %d",
		    __func__, m, m->order));
                order = fls(npages) - 1;
		KASSERT(order < VM_NFREEORDER,
		    ("%s: order %d is out of range", __func__, order));
                vm_freelist_add(fl, m, order, tail);
		m += 1 << order;
                npages -= 1 << order;
        }
}

/*
 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
 * and sized set to the specified free list.
 *
 * When this function is called by a page allocation function, the caller
 * should request insertion at the head unless the lower-order queues are
 * known to be empty.  The objective being to reduce the likelihood of long-
 * term fragmentation by promoting contemporaneous allocation and (hopefully)
 * deallocation.
 *
 * If npages is zero, this function does nothing and ignores the physical page
 * parameter m.  Otherwise, the physical page m's buddy must not be free.
 */
static vm_page_t
vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
{
	int order;

	KASSERT(npages == 0 ||
	    ((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
	    m, npages));
	while (npages > 0) {
		KASSERT(m->order == VM_NFREEORDER,
		    ("vm_phys_enq_range: page %p has unexpected order %d",
		    m, m->order));
		order = ffs(npages) - 1;
		KASSERT(order < VM_NFREEORDER,
		    ("vm_phys_enq_range: order %d is out of range", order));
		vm_freelist_add(fl, m, order, tail);
		m += 1 << order;
		npages -= 1 << order;
	}
	return (m);
}

/*
 * Set the pool for a contiguous, power of two-sized set of physical pages. 
 */
static void
vm_phys_set_pool(int pool, vm_page_t m, int order)
{
	vm_page_t m_tmp;

	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
		m_tmp->pool = pool;
}

/*
 * Tries to allocate the specified number of pages from the specified pool
 * within the specified domain.  Returns the actual number of allocated pages
 * and a pointer to each page through the array ma[].
 *
 * The returned pages may not be physically contiguous.  However, in contrast
 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
 * calling this function once to allocate the desired number of pages will
 * avoid wasted time in vm_phys_split_pages().
 *
 * The free page queues for the specified domain must be locked.
 */
int
vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
{
	struct vm_freelist *alt, *fl;
	vm_page_t m;
	int avail, end, flind, freelist, i, oind, pind;

	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
	KASSERT(pool < VM_NFREEPOOL,
	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
	vm_domain_free_assert_locked(VM_DOMAIN(domain));
	i = 0;
	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
		flind = vm_freelist_to_flind[freelist];
		if (flind < 0)
			continue;
		fl = vm_phys_free_queues[domain][flind][pool];
		for (oind = 0; oind < VM_NFREEORDER; oind++) {
			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
				vm_freelist_rem(fl, m, oind);
				avail = i + (1 << oind);
				end = imin(npages, avail);
				while (i < end)
					ma[i++] = m++;
				if (i == npages) {
					/*
					 * Return excess pages to fl.  Its order
					 * [0, oind) queues are empty.
					 */
					vm_phys_enq_range(m, avail - i, fl, 1);
					return (npages);
				}
			}
		}
		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				alt = vm_phys_free_queues[domain][flind][pind];
				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
				    NULL) {
					vm_freelist_rem(alt, m, oind);
					vm_phys_set_pool(pool, m, oind);
					avail = i + (1 << oind);
					end = imin(npages, avail);
					while (i < end)
						ma[i++] = m++;
					if (i == npages) {
						/*
						 * Return excess pages to fl.
						 * Its order [0, oind) queues
						 * are empty.
						 */
						vm_phys_enq_range(m, avail - i,
						    fl, 1);
						return (npages);
					}
				}
			}
		}
	}
	return (i);
}

/*
 * Allocate a contiguous, power of two-sized set of physical pages
 * from the free lists.
 *
 * The free page queues must be locked.
 */
vm_page_t
vm_phys_alloc_pages(int domain, int pool, int order)
{
	vm_page_t m;
	int freelist;

	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
		if (m != NULL)
			return (m);
	}
	return (NULL);
}

/*
 * Allocate a contiguous, power of two-sized set of physical pages from the
 * specified free list.  The free list must be specified using one of the
 * manifest constants VM_FREELIST_*.
 *
 * The free page queues must be locked.
 */
vm_page_t
vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
{
	struct vm_freelist *alt, *fl;
	vm_page_t m;
	int oind, pind, flind;

	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
	    domain));
	KASSERT(freelist < VM_NFREELIST,
	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
	    freelist));
	KASSERT(pool < VM_NFREEPOOL,
	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
	KASSERT(order < VM_NFREEORDER,
	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));

	flind = vm_freelist_to_flind[freelist];
	/* Check if freelist is present */
	if (flind < 0)
		return (NULL);

	vm_domain_free_assert_locked(VM_DOMAIN(domain));
	fl = &vm_phys_free_queues[domain][flind][pool][0];
	for (oind = order; oind < VM_NFREEORDER; oind++) {
		m = TAILQ_FIRST(&fl[oind].pl);
		if (m != NULL) {
			vm_freelist_rem(fl, m, oind);
			/* The order [order, oind) queues are empty. */
			vm_phys_split_pages(m, oind, fl, order, 1);
			return (m);
		}
	}

	/*
	 * The given pool was empty.  Find the largest
	 * contiguous, power-of-two-sized set of pages in any
	 * pool.  Transfer these pages to the given pool, and
	 * use them to satisfy the allocation.
	 */
	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
			alt = &vm_phys_free_queues[domain][flind][pind][0];
			m = TAILQ_FIRST(&alt[oind].pl);
			if (m != NULL) {
				vm_freelist_rem(alt, m, oind);
				vm_phys_set_pool(pool, m, oind);
				/* The order [order, oind) queues are empty. */
				vm_phys_split_pages(m, oind, fl, order, 1);
				return (m);
			}
		}
	}
	return (NULL);
}

/*
 * Find the vm_page corresponding to the given physical address.
 */
vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
{
	struct vm_phys_seg *seg;

	if ((seg = vm_phys_paddr_to_seg(pa)) != NULL)
		return (&seg->first_page[atop(pa - seg->start)]);
	return (NULL);
}

vm_page_t
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
{
	struct vm_phys_fictitious_seg tmp, *seg;
	vm_page_t m;

	m = NULL;
	tmp.start = pa;
	tmp.end = 0;

	rw_rlock(&vm_phys_fictitious_reg_lock);
	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
	rw_runlock(&vm_phys_fictitious_reg_lock);
	if (seg == NULL)
		return (NULL);

	m = &seg->first_page[atop(pa - seg->start)];
	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));

	return (m);
}

static inline void
vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
    long page_count, vm_memattr_t memattr)
{
	long i;

	bzero(range, page_count * sizeof(*range));
	for (i = 0; i < page_count; i++) {
		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
		range[i].oflags &= ~VPO_UNMANAGED;
		range[i].busy_lock = VPB_UNBUSIED;
	}
}

int
vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
    vm_memattr_t memattr)
{
	struct vm_phys_fictitious_seg *seg;
	vm_page_t fp;
	long page_count;
#ifdef VM_PHYSSEG_DENSE
	long pi, pe;
	long dpage_count;
#endif

	KASSERT(start < end,
	    ("Start of segment isn't less than end (start: %jx end: %jx)",
	    (uintmax_t)start, (uintmax_t)end));

	page_count = (end - start) / PAGE_SIZE;

#ifdef VM_PHYSSEG_DENSE
	pi = atop(start);
	pe = atop(end);
	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
		fp = &vm_page_array[pi - first_page];
		if ((pe - first_page) > vm_page_array_size) {
			/*
			 * We have a segment that starts inside
			 * of vm_page_array, but ends outside of it.
			 *
			 * Use vm_page_array pages for those that are
			 * inside of the vm_page_array range, and
			 * allocate the remaining ones.
			 */
			dpage_count = vm_page_array_size - (pi - first_page);
			vm_phys_fictitious_init_range(fp, start, dpage_count,
			    memattr);
			page_count -= dpage_count;
			start += ptoa(dpage_count);
			goto alloc;
		}
		/*
		 * We can allocate the full range from vm_page_array,
		 * so there's no need to register the range in the tree.
		 */
		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
		return (0);
	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
		/*
		 * We have a segment that ends inside of vm_page_array,
		 * but starts outside of it.
		 */
		fp = &vm_page_array[0];
		dpage_count = pe - first_page;
		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
		    memattr);
		end -= ptoa(dpage_count);
		page_count -= dpage_count;
		goto alloc;
	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
		/*
		 * Trying to register a fictitious range that expands before
		 * and after vm_page_array.
		 */
		return (EINVAL);
	} else {
alloc:
#endif
		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
		    M_WAITOK);
#ifdef VM_PHYSSEG_DENSE
	}
#endif
	vm_phys_fictitious_init_range(fp, start, page_count, memattr);

	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
	seg->start = start;
	seg->end = end;
	seg->first_page = fp;

	rw_wlock(&vm_phys_fictitious_reg_lock);
	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
	rw_wunlock(&vm_phys_fictitious_reg_lock);

	return (0);
}

void
vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
{
	struct vm_phys_fictitious_seg *seg, tmp;
#ifdef VM_PHYSSEG_DENSE
	long pi, pe;
#endif

	KASSERT(start < end,
	    ("Start of segment isn't less than end (start: %jx end: %jx)",
	    (uintmax_t)start, (uintmax_t)end));

#ifdef VM_PHYSSEG_DENSE
	pi = atop(start);
	pe = atop(end);
	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
		if ((pe - first_page) <= vm_page_array_size) {
			/*
			 * This segment was allocated using vm_page_array
			 * only, there's nothing to do since those pages
			 * were never added to the tree.
			 */
			return;
		}
		/*
		 * We have a segment that starts inside
		 * of vm_page_array, but ends outside of it.
		 *
		 * Calculate how many pages were added to the
		 * tree and free them.
		 */
		start = ptoa(first_page + vm_page_array_size);
	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
		/*
		 * We have a segment that ends inside of vm_page_array,
		 * but starts outside of it.
		 */
		end = ptoa(first_page);
	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
		/* Since it's not possible to register such a range, panic. */
		panic(
		    "Unregistering not registered fictitious range [%#jx:%#jx]",
		    (uintmax_t)start, (uintmax_t)end);
	}
#endif
	tmp.start = start;
	tmp.end = 0;

	rw_wlock(&vm_phys_fictitious_reg_lock);
	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
	if (seg->start != start || seg->end != end) {
		rw_wunlock(&vm_phys_fictitious_reg_lock);
		panic(
		    "Unregistering not registered fictitious range [%#jx:%#jx]",
		    (uintmax_t)start, (uintmax_t)end);
	}
	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
	rw_wunlock(&vm_phys_fictitious_reg_lock);
	free(seg->first_page, M_FICT_PAGES);
	free(seg, M_FICT_PAGES);
}

/*
 * Free a contiguous, power of two-sized set of physical pages.
 *
 * The free page queues must be locked.
 */
void
vm_phys_free_pages(vm_page_t m, int order)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_paddr_t pa;
	vm_page_t m_buddy;

	KASSERT(m->order == VM_NFREEORDER,
	    ("vm_phys_free_pages: page %p has unexpected order %d",
	    m, m->order));
	KASSERT(m->pool < VM_NFREEPOOL,
	    ("vm_phys_free_pages: page %p has unexpected pool %d",
	    m, m->pool));
	KASSERT(order < VM_NFREEORDER,
	    ("vm_phys_free_pages: order %d is out of range", order));
	seg = &vm_phys_segs[m->segind];
	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
	if (order < VM_NFREEORDER - 1) {
		pa = VM_PAGE_TO_PHYS(m);
		do {
			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
			if (pa < seg->start || pa >= seg->end)
				break;
			m_buddy = &seg->first_page[atop(pa - seg->start)];
			if (m_buddy->order != order)
				break;
			fl = (*seg->free_queues)[m_buddy->pool];
			vm_freelist_rem(fl, m_buddy, order);
			if (m_buddy->pool != m->pool)
				vm_phys_set_pool(m->pool, m_buddy, order);
			order++;
			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
			m = &seg->first_page[atop(pa - seg->start)];
		} while (order < VM_NFREEORDER - 1);
	}
	fl = (*seg->free_queues)[m->pool];
	vm_freelist_add(fl, m, order, 1);
}

/*
 * Return the largest possible order of a set of pages starting at m.
 */
static int
max_order(vm_page_t m)
{

	/*
	 * Unsigned "min" is used here so that "order" is assigned
	 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
	 * or the low-order bits of its physical address are zero
	 * because the size of a physical address exceeds the size of
	 * a long.
	 */
	return (min(ffsll(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
	    VM_NFREEORDER - 1));
}

/*
 * Free a contiguous, arbitrarily sized set of physical pages, without
 * merging across set boundaries.
 *
 * The free page queues must be locked.
 */
void
vm_phys_enqueue_contig(vm_page_t m, u_long npages)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_page_t m_end;
	vm_paddr_t diff, lo;
	int order;

	/*
	 * Avoid unnecessary coalescing by freeing the pages in the largest
	 * possible power-of-two-sized subsets.
	 */
	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
	seg = &vm_phys_segs[m->segind];
	fl = (*seg->free_queues)[m->pool];
	m_end = m + npages;
	/* Free blocks of increasing size. */
	lo = VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT;
	if (m < m_end &&
	    (diff = lo ^ (lo + npages - 1)) != 0) {
		order = min(flsll(diff) - 1, VM_NFREEORDER - 1);
		m = vm_phys_enq_range(m, roundup2(lo, 1 << order) - lo, fl, 1);
	}

	/* Free blocks of maximum size. */
	order = VM_NFREEORDER - 1;
	while (m + (1 << order) <= m_end) {
		KASSERT(seg == &vm_phys_segs[m->segind],
		    ("%s: page range [%p,%p) spans multiple segments",
		    __func__, m_end - npages, m));
		vm_freelist_add(fl, m, order, 1);
		m += 1 << order;
	}
	/* Free blocks of diminishing size. */
	vm_phys_enq_beg(m, m_end - m, fl, 1);
}

/*
 * Free a contiguous, arbitrarily sized set of physical pages.
 *
 * The free page queues must be locked.
 */
void
vm_phys_free_contig(vm_page_t m, u_long npages)
{
	int order_start, order_end;
	vm_page_t m_start, m_end;

	vm_domain_free_assert_locked(vm_pagequeue_domain(m));

	m_start = m;
	order_start = max_order(m_start);
	if (order_start < VM_NFREEORDER - 1)
		m_start += 1 << order_start;
	m_end = m + npages;
	order_end = max_order(m_end);
	if (order_end < VM_NFREEORDER - 1)
		m_end -= 1 << order_end;
	/*
	 * Avoid unnecessary coalescing by freeing the pages at the start and
	 * end of the range last.
	 */
	if (m_start < m_end)
		vm_phys_enqueue_contig(m_start, m_end - m_start);
	if (order_start < VM_NFREEORDER - 1)
		vm_phys_free_pages(m, order_start);
	if (order_end < VM_NFREEORDER - 1)
		vm_phys_free_pages(m_end, order_end);
}

/*
 * Identify the first address range within segment segind or greater
 * that matches the domain, lies within the low/high range, and has
 * enough pages.  Return -1 if there is none.
 */
int
vm_phys_find_range(vm_page_t bounds[], int segind, int domain,
    u_long npages, vm_paddr_t low, vm_paddr_t high)
{
	vm_paddr_t pa_end, pa_start;
	struct vm_phys_seg *end_seg, *seg;

	KASSERT(npages > 0, ("npages is zero"));
	KASSERT(domain >= 0 && domain < vm_ndomains, ("domain out of range"));
	end_seg = &vm_phys_segs[vm_phys_nsegs];
	for (seg = &vm_phys_segs[segind]; seg < end_seg; seg++) {
		if (seg->domain != domain)
			continue;
		if (seg->start >= high)
			return (-1);
		pa_start = MAX(low, seg->start);
		pa_end = MIN(high, seg->end);
		if (pa_end - pa_start < ptoa(npages))
			continue;
		bounds[0] = &seg->first_page[atop(pa_start - seg->start)];
		bounds[1] = &seg->first_page[atop(pa_end - seg->start)];
		return (seg - vm_phys_segs);
	}
	return (-1);
}

/*
 * Search for the given physical page "m" in the free lists.  If the search
 * succeeds, remove "m" from the free lists and return true.  Otherwise, return
 * false, indicating that "m" is not in the free lists.
 *
 * The free page queues must be locked.
 */
bool
vm_phys_unfree_page(vm_page_t m)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_paddr_t pa, pa_half;
	vm_page_t m_set, m_tmp;
	int order;

	/*
	 * First, find the contiguous, power of two-sized set of free
	 * physical pages containing the given physical page "m" and
	 * assign it to "m_set".
	 */
	seg = &vm_phys_segs[m->segind];
	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
	    order < VM_NFREEORDER - 1; ) {
		order++;
		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
		if (pa >= seg->start)
			m_set = &seg->first_page[atop(pa - seg->start)];
		else
			return (false);
	}
	if (m_set->order < order)
		return (false);
	if (m_set->order == VM_NFREEORDER)
		return (false);
	KASSERT(m_set->order < VM_NFREEORDER,
	    ("vm_phys_unfree_page: page %p has unexpected order %d",
	    m_set, m_set->order));

	/*
	 * Next, remove "m_set" from the free lists.  Finally, extract
	 * "m" from "m_set" using an iterative algorithm: While "m_set"
	 * is larger than a page, shrink "m_set" by returning the half
	 * of "m_set" that does not contain "m" to the free lists.
	 */
	fl = (*seg->free_queues)[m_set->pool];
	order = m_set->order;
	vm_freelist_rem(fl, m_set, order);
	while (order > 0) {
		order--;
		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
		if (m->phys_addr < pa_half)
			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
		else {
			m_tmp = m_set;
			m_set = &seg->first_page[atop(pa_half - seg->start)];
		}
		vm_freelist_add(fl, m_tmp, order, 0);
	}
	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
	return (true);
}

/*
 * Find a run of contiguous physical pages from the specified page list.
 */
static vm_page_t
vm_phys_find_freelist_contig(struct vm_freelist *fl, int oind, u_long npages,
    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
{
	struct vm_phys_seg *seg;
	vm_paddr_t frag, lbound, pa, page_size, pa_end, pa_pre, size;
	vm_page_t m, m_listed, m_ret;
	int order;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	/* Search for a run satisfying the specified conditions. */
	page_size = PAGE_SIZE;
	size = npages << PAGE_SHIFT;
	frag = (npages & ~(~0UL << oind)) << PAGE_SHIFT;
	TAILQ_FOREACH(m_listed, &fl[oind].pl, listq) {
		/*
		 * Determine if the address range starting at pa is
		 * too low.
		 */
		pa = VM_PAGE_TO_PHYS(m_listed);
		if (pa < low)
			continue;

		/*
		 * If this is not the first free oind-block in this range, bail
		 * out. We have seen the first free block already, or will see
		 * it before failing to find an appropriate range.
		 */
		seg = &vm_phys_segs[m_listed->segind];
		lbound = low > seg->start ? low : seg->start;
		pa_pre = pa - (page_size << oind);
		m = &seg->first_page[atop(pa_pre - seg->start)];
		if (pa != 0 && pa_pre >= lbound && m->order == oind)
			continue;

		if (!vm_addr_align_ok(pa, alignment))
			/* Advance to satisfy alignment condition. */
			pa = roundup2(pa, alignment);
		else if (frag != 0 && lbound + frag <= pa) {
			/*
			 * Back up to the first aligned free block in this
			 * range, without moving below lbound.
			 */
			pa_end = pa;
			for (order = oind - 1; order >= 0; order--) {
				pa_pre = pa_end - (page_size << order);
				if (!vm_addr_align_ok(pa_pre, alignment))
					break;
				m = &seg->first_page[atop(pa_pre - seg->start)];
				if (pa_pre >= lbound && m->order == order)
					pa_end = pa_pre;
			}
			/*
			 * If the extra small blocks are enough to complete the
			 * fragment, use them.  Otherwise, look to allocate the
			 * fragment at the other end.
			 */
			if (pa_end + frag <= pa)
				pa = pa_end;
		}

		/* Advance as necessary to satisfy boundary conditions. */
		if (!vm_addr_bound_ok(pa, size, boundary))
			pa = roundup2(pa + 1, boundary);
		pa_end = pa + size;

		/*
		 * Determine if the address range is valid (without overflow in
		 * pa_end calculation), and fits within the segment.
		 */
		if (pa_end < pa || seg->end < pa_end)
			continue;

		m_ret = &seg->first_page[atop(pa - seg->start)];

		/*
		 * Determine whether there are enough free oind-blocks here to
		 * satisfy the allocation request.
		 */
		pa = VM_PAGE_TO_PHYS(m_listed);
		do {
			pa += page_size << oind;
			if (pa >= pa_end)
				return (m_ret);
			m = &seg->first_page[atop(pa - seg->start)];
		} while (oind == m->order);

		/*
		 * Determine if an additional series of free blocks of
		 * diminishing size can help to satisfy the allocation request.
		 */
		while (m->order < oind &&
		    pa + 2 * (page_size << m->order) > pa_end) {
			pa += page_size << m->order;
			if (pa >= pa_end)
				return (m_ret);
			m = &seg->first_page[atop(pa - seg->start)];
		}
	}
	return (NULL);
}

/*
 * Find a run of contiguous physical pages from the specified free list
 * table.
 */
static vm_page_t
vm_phys_find_queues_contig(
    struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
    u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary)
{
	struct vm_freelist *fl;
	vm_page_t m_ret;
	vm_paddr_t pa, pa_end, size;
	int oind, order, pind;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	/* Compute the queue that is the best fit for npages. */
	order = flsl(npages - 1);
	/* Search for a large enough free block. */
	size = npages << PAGE_SHIFT;
	for (oind = order; oind < VM_NFREEORDER; oind++) {
		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
			fl = (*queues)[pind];
			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
				/*
				 * Determine if the address range starting at pa
				 * is within the given range, satisfies the
				 * given alignment, and does not cross the given
				 * boundary.
				 */
				pa = VM_PAGE_TO_PHYS(m_ret);
				pa_end = pa + size;
				if (low <= pa && pa_end <= high &&
				    vm_addr_ok(pa, size, alignment, boundary))
					return (m_ret);
			}
		}
	}
	if (order < VM_NFREEORDER)
		return (NULL);
	/* Search for a long-enough sequence of small blocks. */
	oind = VM_NFREEORDER - 1;
	for (pind = 0; pind < VM_NFREEPOOL; pind++) {
		fl = (*queues)[pind];
		m_ret = vm_phys_find_freelist_contig(fl, oind, npages,
		    low, high, alignment, boundary);
		if (m_ret != NULL)
			return (m_ret);
	}
	return (NULL);
}

/*
 * Allocate a contiguous set of physical pages of the given size
 * "npages" from the free lists.  All of the physical pages must be at
 * or above the given physical address "low" and below the given
 * physical address "high".  The given value "alignment" determines the
 * alignment of the first physical page in the set.  If the given value
 * "boundary" is non-zero, then the set of physical pages cannot cross
 * any physical address boundary that is a multiple of that value.  Both
 * "alignment" and "boundary" must be a power of two.
 */
vm_page_t
vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary)
{
	vm_paddr_t pa_end, pa_start;
	struct vm_freelist *fl;
	vm_page_t m, m_run;
	struct vm_phys_seg *seg;
	struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
	int oind, segind;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	vm_domain_free_assert_locked(VM_DOMAIN(domain));
	if (low >= high)
		return (NULL);
	queues = NULL;
	m_run = NULL;
	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
		seg = &vm_phys_segs[segind];
		if (seg->start >= high || seg->domain != domain)
			continue;
		if (low >= seg->end)
			break;
		if (low <= seg->start)
			pa_start = seg->start;
		else
			pa_start = low;
		if (high < seg->end)
			pa_end = high;
		else
			pa_end = seg->end;
		if (pa_end - pa_start < ptoa(npages))
			continue;
		/*
		 * If a previous segment led to a search using
		 * the same free lists as would this segment, then
		 * we've actually already searched within this
		 * too.  So skip it.
		 */
		if (seg->free_queues == queues)
			continue;
		queues = seg->free_queues;
		m_run = vm_phys_find_queues_contig(queues, npages,
		    low, high, alignment, boundary);
		if (m_run != NULL)
			break;
	}
	if (m_run == NULL)
		return (NULL);

	/* Allocate pages from the page-range found. */
	for (m = m_run; m < &m_run[npages]; m = &m[1 << oind]) {
		fl = (*queues)[m->pool];
		oind = m->order;
		vm_freelist_rem(fl, m, oind);
		if (m->pool != VM_FREEPOOL_DEFAULT)
			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
	}
	/* Return excess pages to the free lists. */
	fl = (*queues)[VM_FREEPOOL_DEFAULT];
	vm_phys_enq_range(&m_run[npages], m - &m_run[npages], fl, 0);
	return (m_run);
}

/*
 * Return the index of the first unused slot which may be the terminating
 * entry.
 */
static int
vm_phys_avail_count(void)
{
	int i;

	for (i = 0; phys_avail[i + 1]; i += 2)
		continue;
	if (i > PHYS_AVAIL_ENTRIES)
		panic("Improperly terminated phys_avail %d entries", i);

	return (i);
}

/*
 * Assert that a phys_avail entry is valid.
 */
static void
vm_phys_avail_check(int i)
{
	if (phys_avail[i] & PAGE_MASK)
		panic("Unaligned phys_avail[%d]: %#jx", i,
		    (intmax_t)phys_avail[i]);
	if (phys_avail[i+1] & PAGE_MASK)
		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
		    (intmax_t)phys_avail[i]);
	if (phys_avail[i + 1] < phys_avail[i])
		panic("phys_avail[%d] start %#jx < end %#jx", i,
		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
}

/*
 * Return the index of an overlapping phys_avail entry or -1.
 */
#ifdef NUMA
static int
vm_phys_avail_find(vm_paddr_t pa)
{
	int i;

	for (i = 0; phys_avail[i + 1]; i += 2)
		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
			return (i);
	return (-1);
}
#endif

/*
 * Return the index of the largest entry.
 */
int
vm_phys_avail_largest(void)
{
	vm_paddr_t sz, largesz;
	int largest;
	int i;

	largest = 0;
	largesz = 0;
	for (i = 0; phys_avail[i + 1]; i += 2) {
		sz = vm_phys_avail_size(i);
		if (sz > largesz) {
			largesz = sz;
			largest = i;
		}
	}

	return (largest);
}

vm_paddr_t
vm_phys_avail_size(int i)
{

	return (phys_avail[i + 1] - phys_avail[i]);
}

/*
 * Split an entry at the address 'pa'.  Return zero on success or errno.
 */
static int
vm_phys_avail_split(vm_paddr_t pa, int i)
{
	int cnt;

	vm_phys_avail_check(i);
	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
		panic("vm_phys_avail_split: invalid address");
	cnt = vm_phys_avail_count();
	if (cnt >= PHYS_AVAIL_ENTRIES)
		return (ENOSPC);
	memmove(&phys_avail[i + 2], &phys_avail[i],
	    (cnt - i) * sizeof(phys_avail[0]));
	phys_avail[i + 1] = pa;
	phys_avail[i + 2] = pa;
	vm_phys_avail_check(i);
	vm_phys_avail_check(i+2);

	return (0);
}

/*
 * Check if a given physical address can be included as part of a crash dump.
 */
bool
vm_phys_is_dumpable(vm_paddr_t pa)
{
	vm_page_t m;
	int i;

	if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
		return ((m->flags & PG_NODUMP) == 0);

	for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
		if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
			return (true);
	}
	return (false);
}

void
vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
{
	struct vm_phys_seg *seg;

	if (vm_phys_early_nsegs == -1)
		panic("%s: called after initialization", __func__);
	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
		panic("%s: ran out of early segments", __func__);

	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
	seg->start = start;
	seg->end = end;
}

/*
 * This routine allocates NUMA node specific memory before the page
 * allocator is bootstrapped.
 */
vm_paddr_t
vm_phys_early_alloc(int domain, size_t alloc_size)
{
#ifdef NUMA
	int mem_index;
#endif
	int i, biggestone;
	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;

	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
	    ("%s: invalid domain index %d", __func__, domain));

	/*
	 * Search the mem_affinity array for the biggest address
	 * range in the desired domain.  This is used to constrain
	 * the phys_avail selection below.
	 */
	biggestsize = 0;
	mem_start = 0;
	mem_end = -1;
#ifdef NUMA
	mem_index = 0;
	if (mem_affinity != NULL) {
		for (i = 0;; i++) {
			size = mem_affinity[i].end - mem_affinity[i].start;
			if (size == 0)
				break;
			if (domain != -1 && mem_affinity[i].domain != domain)
				continue;
			if (size > biggestsize) {
				mem_index = i;
				biggestsize = size;
			}
		}
		mem_start = mem_affinity[mem_index].start;
		mem_end = mem_affinity[mem_index].end;
	}
#endif

	/*
	 * Now find biggest physical segment in within the desired
	 * numa domain.
	 */
	biggestsize = 0;
	biggestone = 0;
	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
		/* skip regions that are out of range */
		if (phys_avail[i+1] - alloc_size < mem_start ||
		    phys_avail[i+1] > mem_end)
			continue;
		size = vm_phys_avail_size(i);
		if (size > biggestsize) {
			biggestone = i;
			biggestsize = size;
		}
	}
	alloc_size = round_page(alloc_size);

	/*
	 * Grab single pages from the front to reduce fragmentation.
	 */
	if (alloc_size == PAGE_SIZE) {
		pa = phys_avail[biggestone];
		phys_avail[biggestone] += PAGE_SIZE;
		vm_phys_avail_check(biggestone);
		return (pa);
	}

	/*
	 * Naturally align large allocations.
	 */
	align = phys_avail[biggestone + 1] & (alloc_size - 1);
	if (alloc_size + align > biggestsize)
		panic("cannot find a large enough size\n");
	if (align != 0 &&
	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
	    biggestone) != 0)
		/* Wasting memory. */
		phys_avail[biggestone + 1] -= align;

	phys_avail[biggestone + 1] -= alloc_size;
	vm_phys_avail_check(biggestone);
	pa = phys_avail[biggestone + 1];
	return (pa);
}

void
vm_phys_early_startup(void)
{
	struct vm_phys_seg *seg;
	int i;

	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
		phys_avail[i] = round_page(phys_avail[i]);
		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
	}

	for (i = 0; i < vm_phys_early_nsegs; i++) {
		seg = &vm_phys_early_segs[i];
		vm_phys_add_seg(seg->start, seg->end);
	}
	vm_phys_early_nsegs = -1;

#ifdef NUMA
	/* Force phys_avail to be split by domain. */
	if (mem_affinity != NULL) {
		int idx;

		for (i = 0; mem_affinity[i].end != 0; i++) {
			idx = vm_phys_avail_find(mem_affinity[i].start);
			if (idx != -1 &&
			    phys_avail[idx] != mem_affinity[i].start)
				vm_phys_avail_split(mem_affinity[i].start, idx);
			idx = vm_phys_avail_find(mem_affinity[i].end);
			if (idx != -1 &&
			    phys_avail[idx] != mem_affinity[i].end)
				vm_phys_avail_split(mem_affinity[i].end, idx);
		}
	}
#endif
}

#ifdef DDB
/*
 * Show the number of physical pages in each of the free lists.
 */
DB_SHOW_COMMAND_FLAGS(freepages, db_show_freepages, DB_CMD_MEMSAFE)
{
	struct vm_freelist *fl;
	int flind, oind, pind, dom;

	for (dom = 0; dom < vm_ndomains; dom++) {
		db_printf("DOMAIN: %d\n", dom);
		for (flind = 0; flind < vm_nfreelists; flind++) {
			db_printf("FREE LIST %d:\n"
			    "\n  ORDER (SIZE)  |  NUMBER"
			    "\n              ", flind);
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				db_printf("  |  POOL %d", pind);
			db_printf("\n--            ");
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				db_printf("-- --      ");
			db_printf("--\n");
			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
				db_printf("  %2.2d (%6.6dK)", oind,
				    1 << (PAGE_SHIFT - 10 + oind));
				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[dom][flind][pind];
					db_printf("  |  %6.6d", fl[oind].lcnt);
				}
				db_printf("\n");
			}
			db_printf("\n");
		}
		db_printf("\n");
	}
}
#endif