aboutsummaryrefslogtreecommitdiff
path: root/share/man/man9/kasan.9
diff options
context:
space:
mode:
authorMark Johnston <markj@FreeBSD.org>2021-04-13 21:39:19 +0000
committerMark Johnston <markj@FreeBSD.org>2021-04-13 21:42:20 +0000
commit38da497a4dfcf1979c8c2b0e9f3fa0564035c147 (patch)
treeda415fffeecb7056023abd74f64edf2ba46d3b8e /share/man/man9/kasan.9
parent01028c736cbcdba079967c787bee1551fc8439aa (diff)
downloadsrc-38da497a4dfcf1979c8c2b0e9f3fa0564035c147.tar.gz
src-38da497a4dfcf1979c8c2b0e9f3fa0564035c147.zip
Add the KASAN runtime
KASAN enables the use of LLVM's AddressSanitizer in the kernel. This feature makes use of compiler instrumentation to validate memory accesses in the kernel and detect several types of bugs, including use-after-frees and out-of-bounds accesses. It is particularly effective when combined with test suites or syzkaller. KASAN has high CPU and memory usage overhead and so is not suited for production environments. The runtime and pmap maintain a shadow of the kernel map to store information about the validity of memory mapped at a given kernel address. The runtime implements a number of functions defined by the compiler ABI. These are prefixed by __asan. The compiler emits calls to __asan_load*() and __asan_store*() around memory accesses, and the runtime consults the shadow map to determine whether a given access is valid. kasan_mark() is called by various kernel allocators to update state in the shadow map. Updates to those allocators will come in subsequent commits. The runtime also defines various interceptors. Some low-level routines are implemented in assembly and are thus not amenable to compiler instrumentation. To handle this, the runtime implements these routines on behalf of the rest of the kernel. The sanitizer implementation validates memory accesses manually before handing off to the real implementation. The sanitizer in a KASAN-configured kernel can be disabled by setting the loader tunable debug.kasan.disable=1. Obtained from: NetBSD MFC after: 2 weeks Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D29416
Diffstat (limited to 'share/man/man9/kasan.9')
-rw-r--r--share/man/man9/kasan.9171
1 files changed, 171 insertions, 0 deletions
diff --git a/share/man/man9/kasan.9 b/share/man/man9/kasan.9
new file mode 100644
index 000000000000..ecc068209913
--- /dev/null
+++ b/share/man/man9/kasan.9
@@ -0,0 +1,171 @@
+.\"-
+.\" Copyright (c) 2021 The FreeBSD Foundation
+.\"
+.\" This documentation was written by Mark Johnston under sponsorship from
+.\" the FreeBSD Foundation.
+.\"
+.\" Redistribution and use in source and binary forms, with or without
+.\" modification, are permitted provided that the following conditions
+.\" are met:
+.\" 1. Redistributions of source code must retain the above copyright
+.\" notice, this list of conditions and the following disclaimer.
+.\" 2. Redistributions in binary form must reproduce the above copyright
+.\" notice, this list of conditions and the following disclaimer in the
+.\" documentation and/or other materials provided with the distribution.
+.\"
+.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+.\" SUCH DAMAGE.
+.\"
+.\" $FreeBSD$
+.\"
+.Dd April 13, 2021
+.Dt KASAN 9
+.Os
+.Sh NAME
+.Nm kasan
+.Nd kernel address sanitizer
+.Sh SYNOPSIS
+To compile KASAN into the kernel, place the following line in your kernel
+configuration file:
+.Bd -ragged -offset indent
+.Cd "options KASAN"
+.Ed
+.Pp
+.Ft void
+.Fn kasan_mark "const void *addr" "size_t size" "size_t redzsize" "uint8_t code"
+.Sh DESCRIPTION
+.Nm
+is a subsystem which leverages compiler instrumentation to detect invalid
+memory accesses in the kernel.
+Currently it is implemented only on the amd64 platform.
+.Pp
+When
+.Nm
+is compiled into the kernel, the compiler is configured to emit function
+calls upon every memory access.
+The functions are implemented by
+.Nm
+and permit run-time detection of several types of bugs including
+use-after-frees, double frees and frees of invalid pointers, and out-of-bounds
+accesses.
+These protections apply to memory allocated by
+.Xr uma 9 ,
+.Xr malloc 9
+and related functions, and
+.Fn kmem_malloc
+and related functions,
+as well as global variables and kernel stacks.
+.Nm
+is conservative and will not detect all instances of these types of bugs.
+Memory accesses through the kernel map are sanitized, but accesses via the
+direct map are not.
+When
+.Nm
+is configured, the kernel aims to minimize its use of the direct map.
+.Sh IMPLEMENTATION NOTES
+.Nm
+is implemented using compiler instrumentation and a kernel runtime.
+When a
+kernel is built with the KASAN option enabled, the compiler inserts function calls
+before most memory accesses in the generated code.
+The runtime implements the corresponding functions, which decide whether a
+given access is valid.
+If not, the runtime prints a warning or panics the kernel, depending on the
+value of the
+.Sy debug.kasan.panic_on_violation
+sysctl/tunable.
+.Pp
+The
+.Nm
+runtime works by maintaining a shadow map for the kernel map.
+There exists a linear mapping between addresses in the kernel map and addresses
+in the shadow map.
+The shadow map is used to store information about the current state of
+allocations from the kernel map.
+For example, when a buffer is returned by
+.Xr malloc 9 ,
+the corresponding region of the shadow map is marked to indicate that the
+buffer is valid.
+When it is freed, the shadow map is updated to mark the buffer as invalid.
+Accesses to the buffer are intercepted by the
+.Nm
+runtime and validated using the contents of the shadow map.
+.Pp
+Upon booting, all kernel memory is marked as valid.
+Kernel allocators must mark cached but free buffers as invalid, and must mark
+them valid before freeing the kernel virtual address range.
+This slightly reduces the effectiveness of
+.Nm
+but simplifies its maintenance and integration into the kernel.
+.Pp
+Updates to the shadow map are performed by calling
+.Fn kasan_mark .
+Parameter
+.Fa addr
+is the address of the buffer whose shadow is to be updated,
+.Fa size
+is the usable size of the buffer, and
+.Fa redzsize
+is the full size of the buffer allocated from lower layers of the system.
+.Fa redzsize
+must be greater than or equal to
+.Fa size .
+In some cases kernel allocators will return a buffer larger than that requested
+by the consumer; the unused space at the end is referred to as a red zone and is
+always marked as invalid.
+.Fa code
+allows the caller to specify an identifier used when marking a buffer as invalid.
+The identifier is included in any reports generated by
+.Nm
+and helps identify the source of the invalid access.
+For instance, when an item is freed to a
+.Xr uma 9
+zone, the item is marked with
+.Dv KASAN_UMA_FREED .
+See
+.In sys/asan.h
+for the available identifiers.
+If the entire buffer is to be marked valid, i.e.,
+.Fa size
+and
+.Fa redzsize
+are equal,
+.Fa code
+should be 0.
+.Sh SEE ALSO
+.Xr malloc 9 ,
+.Xr memguard 9 ,
+.Xr redzone 9 ,
+.Xr uma 9
+.Sh HISTORY
+.Nm
+first appeared in
+.Fx 14.0 .
+.Sh BUGS
+Accesses to kernel memory outside of the kernel map are ignored by the
+.Nm
+runtime.
+When
+.Nm
+is configured, the kernel memory allocators are configured to use the kernel
+map, but some uses of the direct map remain.
+For example, on amd64, accesses to page table pages are not tracked.
+.Pp
+Some kernel memory allocators explicitly permit accesses after an object has
+been freed.
+These cannot be sanitized by
+.Nm .
+For example, memory from all
+.Xr uma 9
+zones initialized with the
+.Dv UMA_ZONE_NOFREE
+flag are not sanitized.