aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Analysis/FlowSensitive
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/Analysis/FlowSensitive')
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/ASTOps.cpp287
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/AdornedCFG.cpp183
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Arena.cpp213
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/CNFFormula.cpp303
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp362
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp1257
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp77
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Formula.cpp94
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.cpp584
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.css169
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.html119
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.js219
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Logger.cpp111
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/ChromiumCheckModel.cpp71
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.cpp944
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/RecordOps.cpp133
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/SimplifyConstraints.cpp180
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Transfer.cpp897
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.cpp571
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Value.cpp60
-rw-r--r--contrib/llvm-project/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp418
21 files changed, 7252 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/ASTOps.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/ASTOps.cpp
new file mode 100644
index 000000000000..27d42a7b5085
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/ASTOps.cpp
@@ -0,0 +1,287 @@
+//===-- ASTOps.cc -------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Operations on AST nodes that are used in flow-sensitive analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/ASTOps.h"
+#include "clang/AST/ComputeDependence.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/Type.h"
+#include "clang/Analysis/FlowSensitive/StorageLocation.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include <cassert>
+#include <iterator>
+#include <vector>
+
+#define DEBUG_TYPE "dataflow"
+
+namespace clang::dataflow {
+
+const Expr &ignoreCFGOmittedNodes(const Expr &E) {
+ const Expr *Current = &E;
+ const Expr *Last = nullptr;
+ while (Current != Last) {
+ Last = Current;
+ if (auto *EWC = dyn_cast<ExprWithCleanups>(Current)) {
+ Current = EWC->getSubExpr();
+ assert(Current != nullptr);
+ }
+ if (auto *CE = dyn_cast<ConstantExpr>(Current)) {
+ Current = CE->getSubExpr();
+ assert(Current != nullptr);
+ }
+ Current = Current->IgnoreParens();
+ assert(Current != nullptr);
+ }
+ return *Current;
+}
+
+const Stmt &ignoreCFGOmittedNodes(const Stmt &S) {
+ if (auto *E = dyn_cast<Expr>(&S))
+ return ignoreCFGOmittedNodes(*E);
+ return S;
+}
+
+// FIXME: Does not precisely handle non-virtual diamond inheritance. A single
+// field decl will be modeled for all instances of the inherited field.
+static void getFieldsFromClassHierarchy(QualType Type, FieldSet &Fields) {
+ if (Type->isIncompleteType() || Type->isDependentType() ||
+ !Type->isRecordType())
+ return;
+
+ for (const FieldDecl *Field : Type->getAsRecordDecl()->fields())
+ Fields.insert(Field);
+ if (auto *CXXRecord = Type->getAsCXXRecordDecl())
+ for (const CXXBaseSpecifier &Base : CXXRecord->bases())
+ getFieldsFromClassHierarchy(Base.getType(), Fields);
+}
+
+/// Gets the set of all fields in the type.
+FieldSet getObjectFields(QualType Type) {
+ FieldSet Fields;
+ getFieldsFromClassHierarchy(Type, Fields);
+ return Fields;
+}
+
+bool containsSameFields(const FieldSet &Fields,
+ const RecordStorageLocation::FieldToLoc &FieldLocs) {
+ if (Fields.size() != FieldLocs.size())
+ return false;
+ for ([[maybe_unused]] auto [Field, Loc] : FieldLocs)
+ if (!Fields.contains(cast_or_null<FieldDecl>(Field)))
+ return false;
+ return true;
+}
+
+/// Returns the fields of a `RecordDecl` that are initialized by an
+/// `InitListExpr` or `CXXParenListInitExpr`, in the order in which they appear
+/// in `InitListExpr::inits()` / `CXXParenListInitExpr::getInitExprs()`.
+/// `InitList->getType()` must be a record type.
+template <class InitListT>
+static std::vector<const FieldDecl *>
+getFieldsForInitListExpr(const InitListT *InitList) {
+ const RecordDecl *RD = InitList->getType()->getAsRecordDecl();
+ assert(RD != nullptr);
+
+ std::vector<const FieldDecl *> Fields;
+
+ if (InitList->getType()->isUnionType()) {
+ if (const FieldDecl *Field = InitList->getInitializedFieldInUnion())
+ Fields.push_back(Field);
+ return Fields;
+ }
+
+ // Unnamed bitfields are only used for padding and do not appear in
+ // `InitListExpr`'s inits. However, those fields do appear in `RecordDecl`'s
+ // field list, and we thus need to remove them before mapping inits to
+ // fields to avoid mapping inits to the wrongs fields.
+ llvm::copy_if(
+ RD->fields(), std::back_inserter(Fields),
+ [](const FieldDecl *Field) { return !Field->isUnnamedBitField(); });
+ return Fields;
+}
+
+RecordInitListHelper::RecordInitListHelper(const InitListExpr *InitList)
+ : RecordInitListHelper(InitList->getType(),
+ getFieldsForInitListExpr(InitList),
+ InitList->inits()) {}
+
+RecordInitListHelper::RecordInitListHelper(
+ const CXXParenListInitExpr *ParenInitList)
+ : RecordInitListHelper(ParenInitList->getType(),
+ getFieldsForInitListExpr(ParenInitList),
+ ParenInitList->getInitExprs()) {}
+
+RecordInitListHelper::RecordInitListHelper(
+ QualType Ty, std::vector<const FieldDecl *> Fields,
+ ArrayRef<Expr *> Inits) {
+ auto *RD = Ty->getAsCXXRecordDecl();
+ assert(RD != nullptr);
+
+ // Unions initialized with an empty initializer list need special treatment.
+ // For structs/classes initialized with an empty initializer list, Clang
+ // puts `ImplicitValueInitExpr`s in `InitListExpr::inits()`, but for unions,
+ // it doesn't do this -- so we create an `ImplicitValueInitExpr` ourselves.
+ SmallVector<Expr *> InitsForUnion;
+ if (Ty->isUnionType() && Inits.empty()) {
+ assert(Fields.size() <= 1);
+ if (!Fields.empty()) {
+ ImplicitValueInitForUnion.emplace(Fields.front()->getType());
+ InitsForUnion.push_back(&*ImplicitValueInitForUnion);
+ }
+ Inits = InitsForUnion;
+ }
+
+ size_t InitIdx = 0;
+
+ assert(Fields.size() + RD->getNumBases() == Inits.size());
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ assert(InitIdx < Inits.size());
+ Expr *Init = Inits[InitIdx++];
+ BaseInits.emplace_back(&Base, Init);
+ }
+
+ assert(Fields.size() == Inits.size() - InitIdx);
+ for (const FieldDecl *Field : Fields) {
+ assert(InitIdx < Inits.size());
+ Expr *Init = Inits[InitIdx++];
+ FieldInits.emplace_back(Field, Init);
+ }
+}
+
+static void insertIfGlobal(const Decl &D,
+ llvm::DenseSet<const VarDecl *> &Globals) {
+ if (auto *V = dyn_cast<VarDecl>(&D))
+ if (V->hasGlobalStorage())
+ Globals.insert(V);
+}
+
+static void insertIfFunction(const Decl &D,
+ llvm::DenseSet<const FunctionDecl *> &Funcs) {
+ if (auto *FD = dyn_cast<FunctionDecl>(&D))
+ Funcs.insert(FD);
+}
+
+static MemberExpr *getMemberForAccessor(const CXXMemberCallExpr &C) {
+ // Use getCalleeDecl instead of getMethodDecl in order to handle
+ // pointer-to-member calls.
+ const auto *MethodDecl = dyn_cast_or_null<CXXMethodDecl>(C.getCalleeDecl());
+ if (!MethodDecl)
+ return nullptr;
+ auto *Body = dyn_cast_or_null<CompoundStmt>(MethodDecl->getBody());
+ if (!Body || Body->size() != 1)
+ return nullptr;
+ if (auto *RS = dyn_cast<ReturnStmt>(*Body->body_begin()))
+ if (auto *Return = RS->getRetValue())
+ return dyn_cast<MemberExpr>(Return->IgnoreParenImpCasts());
+ return nullptr;
+}
+
+class ReferencedDeclsVisitor
+ : public AnalysisASTVisitor<ReferencedDeclsVisitor> {
+public:
+ ReferencedDeclsVisitor(ReferencedDecls &Referenced)
+ : Referenced(Referenced) {}
+
+ void TraverseConstructorInits(const CXXConstructorDecl *Ctor) {
+ for (const CXXCtorInitializer *Init : Ctor->inits()) {
+ if (Init->isMemberInitializer()) {
+ Referenced.Fields.insert(Init->getMember());
+ } else if (Init->isIndirectMemberInitializer()) {
+ for (const auto *I : Init->getIndirectMember()->chain())
+ Referenced.Fields.insert(cast<FieldDecl>(I));
+ }
+
+ Expr *InitExpr = Init->getInit();
+
+ // Also collect declarations referenced in `InitExpr`.
+ TraverseStmt(InitExpr);
+
+ // If this is a `CXXDefaultInitExpr`, also collect declarations referenced
+ // within the default expression.
+ if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr))
+ TraverseStmt(DefaultInit->getExpr());
+ }
+ }
+
+ bool VisitDecl(Decl *D) {
+ insertIfGlobal(*D, Referenced.Globals);
+ insertIfFunction(*D, Referenced.Functions);
+ return true;
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ insertIfGlobal(*E->getDecl(), Referenced.Globals);
+ insertIfFunction(*E->getDecl(), Referenced.Functions);
+ return true;
+ }
+
+ bool VisitCXXMemberCallExpr(CXXMemberCallExpr *C) {
+ // If this is a method that returns a member variable but does nothing else,
+ // model the field of the return value.
+ if (MemberExpr *E = getMemberForAccessor(*C))
+ if (const auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl()))
+ Referenced.Fields.insert(FD);
+ return true;
+ }
+
+ bool VisitMemberExpr(MemberExpr *E) {
+ // FIXME: should we be using `E->getFoundDecl()`?
+ const ValueDecl *VD = E->getMemberDecl();
+ insertIfGlobal(*VD, Referenced.Globals);
+ insertIfFunction(*VD, Referenced.Functions);
+ if (const auto *FD = dyn_cast<FieldDecl>(VD))
+ Referenced.Fields.insert(FD);
+ return true;
+ }
+
+ bool VisitInitListExpr(InitListExpr *InitList) {
+ if (InitList->getType()->isRecordType())
+ for (const auto *FD : getFieldsForInitListExpr(InitList))
+ Referenced.Fields.insert(FD);
+ return true;
+ }
+
+ bool VisitCXXParenListInitExpr(CXXParenListInitExpr *ParenInitList) {
+ if (ParenInitList->getType()->isRecordType())
+ for (const auto *FD : getFieldsForInitListExpr(ParenInitList))
+ Referenced.Fields.insert(FD);
+ return true;
+ }
+
+private:
+ ReferencedDecls &Referenced;
+};
+
+ReferencedDecls getReferencedDecls(const FunctionDecl &FD) {
+ ReferencedDecls Result;
+ ReferencedDeclsVisitor Visitor(Result);
+ Visitor.TraverseStmt(FD.getBody());
+ if (const auto *CtorDecl = dyn_cast<CXXConstructorDecl>(&FD))
+ Visitor.TraverseConstructorInits(CtorDecl);
+
+ return Result;
+}
+
+ReferencedDecls getReferencedDecls(const Stmt &S) {
+ ReferencedDecls Result;
+ ReferencedDeclsVisitor Visitor(Result);
+ Visitor.TraverseStmt(const_cast<Stmt *>(&S));
+ return Result;
+}
+
+} // namespace clang::dataflow
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/AdornedCFG.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/AdornedCFG.cpp
new file mode 100644
index 000000000000..255543021a99
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/AdornedCFG.cpp
@@ -0,0 +1,183 @@
+//===- AdornedCFG.cpp ---------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an `AdornedCFG` class that is used by dataflow analyses
+// that run over Control-Flow Graphs (CFGs).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/Stmt.h"
+#include "clang/Analysis/CFG.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/Error.h"
+#include <utility>
+
+namespace clang {
+namespace dataflow {
+
+/// Returns a map from statements to basic blocks that contain them.
+static llvm::DenseMap<const Stmt *, const CFGBlock *>
+buildStmtToBasicBlockMap(const CFG &Cfg) {
+ llvm::DenseMap<const Stmt *, const CFGBlock *> StmtToBlock;
+ for (const CFGBlock *Block : Cfg) {
+ if (Block == nullptr)
+ continue;
+
+ for (const CFGElement &Element : *Block) {
+ auto Stmt = Element.getAs<CFGStmt>();
+ if (!Stmt)
+ continue;
+
+ StmtToBlock[Stmt->getStmt()] = Block;
+ }
+ }
+ // Some terminator conditions don't appear as a `CFGElement` anywhere else -
+ // for example, this is true if the terminator condition is a `&&` or `||`
+ // operator.
+ // We associate these conditions with the block the terminator appears in,
+ // but only if the condition has not already appeared as a regular
+ // `CFGElement`. (The `insert()` below does nothing if the key already exists
+ // in the map.)
+ for (const CFGBlock *Block : Cfg) {
+ if (Block != nullptr)
+ if (const Stmt *TerminatorCond = Block->getTerminatorCondition())
+ StmtToBlock.insert({TerminatorCond, Block});
+ }
+ // Terminator statements typically don't appear as a `CFGElement` anywhere
+ // else, so we want to associate them with the block that they terminate.
+ // However, there are some important special cases:
+ // - The conditional operator is a type of terminator, but it also appears
+ // as a regular `CFGElement`, and we want to associate it with the block
+ // in which it appears as a `CFGElement`.
+ // - The `&&` and `||` operators are types of terminators, but like the
+ // conditional operator, they can appear as a regular `CFGElement` or
+ // as a terminator condition (see above).
+ // We process terminators last to make sure that we only associate them with
+ // the block they terminate if they haven't previously occurred as a regular
+ // `CFGElement` or as a terminator condition.
+ for (const CFGBlock *Block : Cfg) {
+ if (Block != nullptr)
+ if (const Stmt *TerminatorStmt = Block->getTerminatorStmt())
+ StmtToBlock.insert({TerminatorStmt, Block});
+ }
+ return StmtToBlock;
+}
+
+static llvm::BitVector findReachableBlocks(const CFG &Cfg) {
+ llvm::BitVector BlockReachable(Cfg.getNumBlockIDs(), false);
+
+ llvm::SmallVector<const CFGBlock *> BlocksToVisit;
+ BlocksToVisit.push_back(&Cfg.getEntry());
+ while (!BlocksToVisit.empty()) {
+ const CFGBlock *Block = BlocksToVisit.back();
+ BlocksToVisit.pop_back();
+
+ if (BlockReachable[Block->getBlockID()])
+ continue;
+
+ BlockReachable[Block->getBlockID()] = true;
+
+ for (const CFGBlock *Succ : Block->succs())
+ if (Succ)
+ BlocksToVisit.push_back(Succ);
+ }
+
+ return BlockReachable;
+}
+
+static llvm::DenseSet<const CFGBlock *>
+buildContainsExprConsumedInDifferentBlock(
+ const CFG &Cfg,
+ const llvm::DenseMap<const Stmt *, const CFGBlock *> &StmtToBlock) {
+ llvm::DenseSet<const CFGBlock *> Result;
+
+ auto CheckChildExprs = [&Result, &StmtToBlock](const Stmt *S,
+ const CFGBlock *Block) {
+ for (const Stmt *Child : S->children()) {
+ if (!isa_and_nonnull<Expr>(Child))
+ continue;
+ const CFGBlock *ChildBlock = StmtToBlock.lookup(Child);
+ if (ChildBlock != Block)
+ Result.insert(ChildBlock);
+ }
+ };
+
+ for (const CFGBlock *Block : Cfg) {
+ if (Block == nullptr)
+ continue;
+
+ for (const CFGElement &Element : *Block)
+ if (auto S = Element.getAs<CFGStmt>())
+ CheckChildExprs(S->getStmt(), Block);
+
+ if (const Stmt *TerminatorCond = Block->getTerminatorCondition())
+ CheckChildExprs(TerminatorCond, Block);
+ }
+
+ return Result;
+}
+
+llvm::Expected<AdornedCFG> AdornedCFG::build(const FunctionDecl &Func) {
+ if (!Func.doesThisDeclarationHaveABody())
+ return llvm::createStringError(
+ std::make_error_code(std::errc::invalid_argument),
+ "Cannot analyze function without a body");
+
+ return build(Func, *Func.getBody(), Func.getASTContext());
+}
+
+llvm::Expected<AdornedCFG> AdornedCFG::build(const Decl &D, Stmt &S,
+ ASTContext &C) {
+ if (D.isTemplated())
+ return llvm::createStringError(
+ std::make_error_code(std::errc::invalid_argument),
+ "Cannot analyze templated declarations");
+
+ // The shape of certain elements of the AST can vary depending on the
+ // language. We currently only support C++.
+ if (!C.getLangOpts().CPlusPlus || C.getLangOpts().ObjC)
+ return llvm::createStringError(
+ std::make_error_code(std::errc::invalid_argument),
+ "Can only analyze C++");
+
+ CFG::BuildOptions Options;
+ Options.PruneTriviallyFalseEdges = true;
+ Options.AddImplicitDtors = true;
+ Options.AddTemporaryDtors = true;
+ Options.AddInitializers = true;
+ Options.AddCXXDefaultInitExprInCtors = true;
+ Options.AddLifetime = true;
+
+ // Ensure that all sub-expressions in basic blocks are evaluated.
+ Options.setAllAlwaysAdd();
+
+ auto Cfg = CFG::buildCFG(&D, &S, &C, Options);
+ if (Cfg == nullptr)
+ return llvm::createStringError(
+ std::make_error_code(std::errc::invalid_argument),
+ "CFG::buildCFG failed");
+
+ llvm::DenseMap<const Stmt *, const CFGBlock *> StmtToBlock =
+ buildStmtToBasicBlockMap(*Cfg);
+
+ llvm::BitVector BlockReachable = findReachableBlocks(*Cfg);
+
+ llvm::DenseSet<const CFGBlock *> ContainsExprConsumedInDifferentBlock =
+ buildContainsExprConsumedInDifferentBlock(*Cfg, StmtToBlock);
+
+ return AdornedCFG(D, std::move(Cfg), std::move(StmtToBlock),
+ std::move(BlockReachable),
+ std::move(ContainsExprConsumedInDifferentBlock));
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Arena.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Arena.cpp
new file mode 100644
index 000000000000..81137e8088e3
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Arena.cpp
@@ -0,0 +1,213 @@
+//===-- Arena.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Arena.h"
+#include "clang/Analysis/FlowSensitive/Formula.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "llvm/Support/Error.h"
+#include <string>
+
+namespace clang::dataflow {
+
+static std::pair<const Formula *, const Formula *>
+canonicalFormulaPair(const Formula &LHS, const Formula &RHS) {
+ auto Res = std::make_pair(&LHS, &RHS);
+ if (&RHS < &LHS) // FIXME: use a deterministic order instead
+ std::swap(Res.first, Res.second);
+ return Res;
+}
+
+template <class Key, class ComputeFunc>
+const Formula &cached(llvm::DenseMap<Key, const Formula *> &Cache, Key K,
+ ComputeFunc &&Compute) {
+ auto [It, Inserted] = Cache.try_emplace(std::forward<Key>(K));
+ if (Inserted)
+ It->second = Compute();
+ return *It->second;
+}
+
+const Formula &Arena::makeAtomRef(Atom A) {
+ return cached(AtomRefs, A, [&] {
+ return &Formula::create(Alloc, Formula::AtomRef, {},
+ static_cast<unsigned>(A));
+ });
+}
+
+const Formula &Arena::makeAnd(const Formula &LHS, const Formula &RHS) {
+ return cached(Ands, canonicalFormulaPair(LHS, RHS), [&] {
+ if (&LHS == &RHS)
+ return &LHS;
+ if (LHS.kind() == Formula::Literal)
+ return LHS.literal() ? &RHS : &LHS;
+ if (RHS.kind() == Formula::Literal)
+ return RHS.literal() ? &LHS : &RHS;
+
+ return &Formula::create(Alloc, Formula::And, {&LHS, &RHS});
+ });
+}
+
+const Formula &Arena::makeOr(const Formula &LHS, const Formula &RHS) {
+ return cached(Ors, canonicalFormulaPair(LHS, RHS), [&] {
+ if (&LHS == &RHS)
+ return &LHS;
+ if (LHS.kind() == Formula::Literal)
+ return LHS.literal() ? &LHS : &RHS;
+ if (RHS.kind() == Formula::Literal)
+ return RHS.literal() ? &RHS : &LHS;
+
+ return &Formula::create(Alloc, Formula::Or, {&LHS, &RHS});
+ });
+}
+
+const Formula &Arena::makeNot(const Formula &Val) {
+ return cached(Nots, &Val, [&] {
+ if (Val.kind() == Formula::Not)
+ return Val.operands()[0];
+ if (Val.kind() == Formula::Literal)
+ return &makeLiteral(!Val.literal());
+
+ return &Formula::create(Alloc, Formula::Not, {&Val});
+ });
+}
+
+const Formula &Arena::makeImplies(const Formula &LHS, const Formula &RHS) {
+ return cached(Implies, std::make_pair(&LHS, &RHS), [&] {
+ if (&LHS == &RHS)
+ return &makeLiteral(true);
+ if (LHS.kind() == Formula::Literal)
+ return LHS.literal() ? &RHS : &makeLiteral(true);
+ if (RHS.kind() == Formula::Literal)
+ return RHS.literal() ? &RHS : &makeNot(LHS);
+
+ return &Formula::create(Alloc, Formula::Implies, {&LHS, &RHS});
+ });
+}
+
+const Formula &Arena::makeEquals(const Formula &LHS, const Formula &RHS) {
+ return cached(Equals, canonicalFormulaPair(LHS, RHS), [&] {
+ if (&LHS == &RHS)
+ return &makeLiteral(true);
+ if (LHS.kind() == Formula::Literal)
+ return LHS.literal() ? &RHS : &makeNot(RHS);
+ if (RHS.kind() == Formula::Literal)
+ return RHS.literal() ? &LHS : &makeNot(LHS);
+
+ return &Formula::create(Alloc, Formula::Equal, {&LHS, &RHS});
+ });
+}
+
+IntegerValue &Arena::makeIntLiteral(llvm::APInt Value) {
+ auto [It, Inserted] = IntegerLiterals.try_emplace(Value, nullptr);
+
+ if (Inserted)
+ It->second = &create<IntegerValue>();
+ return *It->second;
+}
+
+BoolValue &Arena::makeBoolValue(const Formula &F) {
+ auto [It, Inserted] = FormulaValues.try_emplace(&F);
+ if (Inserted)
+ It->second = (F.kind() == Formula::AtomRef)
+ ? (BoolValue *)&create<AtomicBoolValue>(F)
+ : &create<FormulaBoolValue>(F);
+ return *It->second;
+}
+
+namespace {
+const Formula *parse(Arena &A, llvm::StringRef &In) {
+ auto EatSpaces = [&] { In = In.ltrim(' '); };
+ EatSpaces();
+
+ if (In.consume_front("!")) {
+ if (auto *Arg = parse(A, In))
+ return &A.makeNot(*Arg);
+ return nullptr;
+ }
+
+ if (In.consume_front("(")) {
+ auto *Arg1 = parse(A, In);
+ if (!Arg1)
+ return nullptr;
+
+ EatSpaces();
+ decltype(&Arena::makeOr) Op;
+ if (In.consume_front("|"))
+ Op = &Arena::makeOr;
+ else if (In.consume_front("&"))
+ Op = &Arena::makeAnd;
+ else if (In.consume_front("=>"))
+ Op = &Arena::makeImplies;
+ else if (In.consume_front("="))
+ Op = &Arena::makeEquals;
+ else
+ return nullptr;
+
+ auto *Arg2 = parse(A, In);
+ if (!Arg2)
+ return nullptr;
+
+ EatSpaces();
+ if (!In.consume_front(")"))
+ return nullptr;
+
+ return &(A.*Op)(*Arg1, *Arg2);
+ }
+
+ // For now, only support unnamed variables V0, V1 etc.
+ // FIXME: parse e.g. "X" by allocating an atom and storing a name somewhere.
+ if (In.consume_front("V")) {
+ std::underlying_type_t<Atom> At;
+ if (In.consumeInteger(10, At))
+ return nullptr;
+ return &A.makeAtomRef(static_cast<Atom>(At));
+ }
+
+ if (In.consume_front("true"))
+ return &A.makeLiteral(true);
+ if (In.consume_front("false"))
+ return &A.makeLiteral(false);
+
+ return nullptr;
+}
+
+class FormulaParseError : public llvm::ErrorInfo<FormulaParseError> {
+ std::string Formula;
+ unsigned Offset;
+
+public:
+ static char ID;
+ FormulaParseError(llvm::StringRef Formula, unsigned Offset)
+ : Formula(Formula), Offset(Offset) {}
+
+ void log(raw_ostream &OS) const override {
+ OS << "bad formula at offset " << Offset << "\n";
+ OS << Formula << "\n";
+ OS.indent(Offset) << "^";
+ }
+
+ std::error_code convertToErrorCode() const override {
+ return std::make_error_code(std::errc::invalid_argument);
+ }
+};
+
+char FormulaParseError::ID = 0;
+
+} // namespace
+
+llvm::Expected<const Formula &> Arena::parseFormula(llvm::StringRef In) {
+ llvm::StringRef Rest = In;
+ auto *Result = parse(*this, Rest);
+ if (!Result) // parse() hit something unparseable
+ return llvm::make_error<FormulaParseError>(In, In.size() - Rest.size());
+ Rest = Rest.ltrim();
+ if (!Rest.empty()) // parse didn't consume all the input
+ return llvm::make_error<FormulaParseError>(In, In.size() - Rest.size());
+ return *Result;
+}
+
+} // namespace clang::dataflow
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/CNFFormula.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/CNFFormula.cpp
new file mode 100644
index 000000000000..2410ce1e7bd6
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/CNFFormula.cpp
@@ -0,0 +1,303 @@
+//===- CNFFormula.cpp -------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// A representation of a boolean formula in 3-CNF.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/CNFFormula.h"
+#include "llvm/ADT/DenseSet.h"
+
+#include <queue>
+
+namespace clang {
+namespace dataflow {
+
+namespace {
+
+/// Applies simplifications while building up a BooleanFormula.
+/// We keep track of unit clauses, which tell us variables that must be
+/// true/false in any model that satisfies the overall formula.
+/// Such variables can be dropped from subsequently-added clauses, which
+/// may in turn yield more unit clauses or even a contradiction.
+/// The total added complexity of this preprocessing is O(N) where we
+/// for every clause, we do a lookup for each unit clauses.
+/// The lookup is O(1) on average. This method won't catch all
+/// contradictory formulas, more passes can in principle catch
+/// more cases but we leave all these and the general case to the
+/// proper SAT solver.
+struct CNFFormulaBuilder {
+ // Formula should outlive CNFFormulaBuilder.
+ explicit CNFFormulaBuilder(CNFFormula &CNF) : Formula(CNF) {}
+
+ /// Adds the `L1 v ... v Ln` clause to the formula. Applies
+ /// simplifications, based on single-literal clauses.
+ ///
+ /// Requirements:
+ ///
+ /// `Li` must not be `NullLit`.
+ ///
+ /// All literals must be distinct.
+ void addClause(ArrayRef<Literal> Literals) {
+ // We generate clauses with up to 3 literals in this file.
+ assert(!Literals.empty() && Literals.size() <= 3);
+ // Contains literals of the simplified clause.
+ llvm::SmallVector<Literal> Simplified;
+ for (auto L : Literals) {
+ assert(L != NullLit &&
+ llvm::all_of(Simplified, [L](Literal S) { return S != L; }));
+ auto X = var(L);
+ if (trueVars.contains(X)) { // X must be true
+ if (isPosLit(L))
+ return; // Omit clause `(... v X v ...)`, it is `true`.
+ else
+ continue; // Omit `!X` from `(... v !X v ...)`.
+ }
+ if (falseVars.contains(X)) { // X must be false
+ if (isNegLit(L))
+ return; // Omit clause `(... v !X v ...)`, it is `true`.
+ else
+ continue; // Omit `X` from `(... v X v ...)`.
+ }
+ Simplified.push_back(L);
+ }
+ if (Simplified.empty()) {
+ // Simplification made the clause empty, which is equivalent to `false`.
+ // We already know that this formula is unsatisfiable.
+ Formula.addClause(Simplified);
+ return;
+ }
+ if (Simplified.size() == 1) {
+ // We have new unit clause.
+ const Literal lit = Simplified.front();
+ const Variable v = var(lit);
+ if (isPosLit(lit))
+ trueVars.insert(v);
+ else
+ falseVars.insert(v);
+ }
+ Formula.addClause(Simplified);
+ }
+
+ /// Returns true if we observed a contradiction while adding clauses.
+ /// In this case then the formula is already known to be unsatisfiable.
+ bool isKnownContradictory() { return Formula.knownContradictory(); }
+
+private:
+ CNFFormula &Formula;
+ llvm::DenseSet<Variable> trueVars;
+ llvm::DenseSet<Variable> falseVars;
+};
+
+} // namespace
+
+CNFFormula::CNFFormula(Variable LargestVar)
+ : LargestVar(LargestVar), KnownContradictory(false) {
+ Clauses.push_back(0);
+ ClauseStarts.push_back(0);
+}
+
+void CNFFormula::addClause(ArrayRef<Literal> lits) {
+ assert(llvm::all_of(lits, [](Literal L) { return L != NullLit; }));
+
+ if (lits.empty())
+ KnownContradictory = true;
+
+ const size_t S = Clauses.size();
+ ClauseStarts.push_back(S);
+ Clauses.insert(Clauses.end(), lits.begin(), lits.end());
+}
+
+CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Formulas,
+ llvm::DenseMap<Variable, Atom> &Atomics) {
+ // The general strategy of the algorithm implemented below is to map each
+ // of the sub-values in `Vals` to a unique variable and use these variables in
+ // the resulting CNF expression to avoid exponential blow up. The number of
+ // literals in the resulting formula is guaranteed to be linear in the number
+ // of sub-formulas in `Vals`.
+
+ // Map each sub-formula in `Vals` to a unique variable.
+ llvm::DenseMap<const Formula *, Variable> FormulaToVar;
+ // Store variable identifiers and Atom of atomic booleans.
+ Variable NextVar = 1;
+ {
+ std::queue<const Formula *> UnprocessedFormulas;
+ for (const Formula *F : Formulas)
+ UnprocessedFormulas.push(F);
+ while (!UnprocessedFormulas.empty()) {
+ Variable Var = NextVar;
+ const Formula *F = UnprocessedFormulas.front();
+ UnprocessedFormulas.pop();
+
+ if (!FormulaToVar.try_emplace(F, Var).second)
+ continue;
+ ++NextVar;
+
+ for (const Formula *Op : F->operands())
+ UnprocessedFormulas.push(Op);
+ if (F->kind() == Formula::AtomRef)
+ Atomics[Var] = F->getAtom();
+ }
+ }
+
+ auto GetVar = [&FormulaToVar](const Formula *F) {
+ auto ValIt = FormulaToVar.find(F);
+ assert(ValIt != FormulaToVar.end());
+ return ValIt->second;
+ };
+
+ CNFFormula CNF(NextVar - 1);
+ std::vector<bool> ProcessedSubVals(NextVar, false);
+ CNFFormulaBuilder builder(CNF);
+
+ // Add a conjunct for each variable that represents a top-level conjunction
+ // value in `Vals`.
+ for (const Formula *F : Formulas)
+ builder.addClause(posLit(GetVar(F)));
+
+ // Add conjuncts that represent the mapping between newly-created variables
+ // and their corresponding sub-formulas.
+ std::queue<const Formula *> UnprocessedFormulas;
+ for (const Formula *F : Formulas)
+ UnprocessedFormulas.push(F);
+ while (!UnprocessedFormulas.empty()) {
+ const Formula *F = UnprocessedFormulas.front();
+ UnprocessedFormulas.pop();
+ const Variable Var = GetVar(F);
+
+ if (ProcessedSubVals[Var])
+ continue;
+ ProcessedSubVals[Var] = true;
+
+ switch (F->kind()) {
+ case Formula::AtomRef:
+ break;
+ case Formula::Literal:
+ CNF.addClause(F->literal() ? posLit(Var) : negLit(Var));
+ break;
+ case Formula::And: {
+ const Variable LHS = GetVar(F->operands()[0]);
+ const Variable RHS = GetVar(F->operands()[1]);
+
+ if (LHS == RHS) {
+ // `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
+ // already in conjunctive normal form. Below we add each of the
+ // conjuncts of the latter expression to the result.
+ builder.addClause({negLit(Var), posLit(LHS)});
+ builder.addClause({posLit(Var), negLit(LHS)});
+ } else {
+ // `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v
+ // !B)` which is already in conjunctive normal form. Below we add each
+ // of the conjuncts of the latter expression to the result.
+ builder.addClause({negLit(Var), posLit(LHS)});
+ builder.addClause({negLit(Var), posLit(RHS)});
+ builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
+ }
+ break;
+ }
+ case Formula::Or: {
+ const Variable LHS = GetVar(F->operands()[0]);
+ const Variable RHS = GetVar(F->operands()[1]);
+
+ if (LHS == RHS) {
+ // `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
+ // already in conjunctive normal form. Below we add each of the
+ // conjuncts of the latter expression to the result.
+ builder.addClause({negLit(Var), posLit(LHS)});
+ builder.addClause({posLit(Var), negLit(LHS)});
+ } else {
+ // `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v
+ // !B)` which is already in conjunctive normal form. Below we add each
+ // of the conjuncts of the latter expression to the result.
+ builder.addClause({negLit(Var), posLit(LHS), posLit(RHS)});
+ builder.addClause({posLit(Var), negLit(LHS)});
+ builder.addClause({posLit(Var), negLit(RHS)});
+ }
+ break;
+ }
+ case Formula::Not: {
+ const Variable Operand = GetVar(F->operands()[0]);
+
+ // `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is
+ // already in conjunctive normal form. Below we add each of the
+ // conjuncts of the latter expression to the result.
+ builder.addClause({negLit(Var), negLit(Operand)});
+ builder.addClause({posLit(Var), posLit(Operand)});
+ break;
+ }
+ case Formula::Implies: {
+ const Variable LHS = GetVar(F->operands()[0]);
+ const Variable RHS = GetVar(F->operands()[1]);
+
+ // `X <=> (A => B)` is equivalent to
+ // `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
+ // conjunctive normal form. Below we add each of the conjuncts of
+ // the latter expression to the result.
+ builder.addClause({posLit(Var), posLit(LHS)});
+ builder.addClause({posLit(Var), negLit(RHS)});
+ builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
+ break;
+ }
+ case Formula::Equal: {
+ const Variable LHS = GetVar(F->operands()[0]);
+ const Variable RHS = GetVar(F->operands()[1]);
+
+ if (LHS == RHS) {
+ // `X <=> (A <=> A)` is equivalent to `X` which is already in
+ // conjunctive normal form. Below we add each of the conjuncts of the
+ // latter expression to the result.
+ builder.addClause(posLit(Var));
+
+ // No need to visit the sub-values of `Val`.
+ continue;
+ }
+ // `X <=> (A <=> B)` is equivalent to
+ // `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which
+ // is already in conjunctive normal form. Below we add each of the
+ // conjuncts of the latter expression to the result.
+ builder.addClause({posLit(Var), posLit(LHS), posLit(RHS)});
+ builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
+ builder.addClause({negLit(Var), posLit(LHS), negLit(RHS)});
+ builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
+ break;
+ }
+ }
+ if (builder.isKnownContradictory()) {
+ return CNF;
+ }
+ for (const Formula *Child : F->operands())
+ UnprocessedFormulas.push(Child);
+ }
+
+ // Unit clauses that were added later were not
+ // considered for the simplification of earlier clauses. Do a final
+ // pass to find more opportunities for simplification.
+ CNFFormula FinalCNF(NextVar - 1);
+ CNFFormulaBuilder FinalBuilder(FinalCNF);
+
+ // Collect unit clauses.
+ for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
+ if (CNF.clauseSize(C) == 1) {
+ FinalBuilder.addClause(CNF.clauseLiterals(C)[0]);
+ }
+ }
+
+ // Add all clauses that were added previously, preserving the order.
+ for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
+ FinalBuilder.addClause(CNF.clauseLiterals(C));
+ if (FinalBuilder.isKnownContradictory()) {
+ break;
+ }
+ }
+ // It is possible there were new unit clauses again, but
+ // we stop here and leave the rest to the solver algorithm.
+ return FinalCNF;
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp
new file mode 100644
index 000000000000..4b86daa56d7b
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp
@@ -0,0 +1,362 @@
+//===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a DataflowAnalysisContext class that owns objects that
+// encompass the state of a program and stores context that is used during
+// dataflow analysis.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Analysis/FlowSensitive/ASTOps.h"
+#include "clang/Analysis/FlowSensitive/DebugSupport.h"
+#include "clang/Analysis/FlowSensitive/Formula.h"
+#include "clang/Analysis/FlowSensitive/Logger.h"
+#include "clang/Analysis/FlowSensitive/SimplifyConstraints.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+static llvm::cl::opt<std::string> DataflowLog(
+ "dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional,
+ llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual "
+ "log to stderr. With an arg, writes HTML logs under the "
+ "specified directory (one per analyzed function)."));
+
+namespace clang {
+namespace dataflow {
+
+FieldSet DataflowAnalysisContext::getModeledFields(QualType Type) {
+ // During context-sensitive analysis, a struct may be allocated in one
+ // function, but its field accessed in a function lower in the stack than
+ // the allocation. Since we only collect fields used in the function where
+ // the allocation occurs, we can't apply that filter when performing
+ // context-sensitive analysis. But, this only applies to storage locations,
+ // since field access it not allowed to fail. In contrast, field *values*
+ // don't need this allowance, since the API allows for uninitialized fields.
+ if (Opts.ContextSensitiveOpts)
+ return getObjectFields(Type);
+
+ return llvm::set_intersection(getObjectFields(Type), ModeledFields);
+}
+
+void DataflowAnalysisContext::addModeledFields(const FieldSet &Fields) {
+ ModeledFields.set_union(Fields);
+}
+
+StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
+ if (!Type.isNull() && Type->isRecordType()) {
+ llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
+ for (const FieldDecl *Field : getModeledFields(Type))
+ if (Field->getType()->isReferenceType())
+ FieldLocs.insert({Field, nullptr});
+ else
+ FieldLocs.insert({Field, &createStorageLocation(
+ Field->getType().getNonReferenceType())});
+
+ RecordStorageLocation::SyntheticFieldMap SyntheticFields;
+ for (const auto &Entry : getSyntheticFields(Type))
+ SyntheticFields.insert(
+ {Entry.getKey(),
+ &createStorageLocation(Entry.getValue().getNonReferenceType())});
+
+ return createRecordStorageLocation(Type, std::move(FieldLocs),
+ std::move(SyntheticFields));
+ }
+ return arena().create<ScalarStorageLocation>(Type);
+}
+
+// Returns the keys for a given `StringMap`.
+// Can't use `StringSet` as the return type as it doesn't support `operator==`.
+template <typename T>
+static llvm::DenseSet<llvm::StringRef> getKeys(const llvm::StringMap<T> &Map) {
+ return llvm::DenseSet<llvm::StringRef>(Map.keys().begin(), Map.keys().end());
+}
+
+RecordStorageLocation &DataflowAnalysisContext::createRecordStorageLocation(
+ QualType Type, RecordStorageLocation::FieldToLoc FieldLocs,
+ RecordStorageLocation::SyntheticFieldMap SyntheticFields) {
+ assert(Type->isRecordType());
+ assert(containsSameFields(getModeledFields(Type), FieldLocs));
+ assert(getKeys(getSyntheticFields(Type)) == getKeys(SyntheticFields));
+
+ RecordStorageLocationCreated = true;
+ return arena().create<RecordStorageLocation>(Type, std::move(FieldLocs),
+ std::move(SyntheticFields));
+}
+
+StorageLocation &
+DataflowAnalysisContext::getStableStorageLocation(const ValueDecl &D) {
+ if (auto *Loc = DeclToLoc.lookup(&D))
+ return *Loc;
+ auto &Loc = createStorageLocation(D.getType().getNonReferenceType());
+ DeclToLoc[&D] = &Loc;
+ return Loc;
+}
+
+StorageLocation &
+DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
+ const Expr &CanonE = ignoreCFGOmittedNodes(E);
+
+ if (auto *Loc = ExprToLoc.lookup(&CanonE))
+ return *Loc;
+ auto &Loc = createStorageLocation(CanonE.getType());
+ ExprToLoc[&CanonE] = &Loc;
+ return Loc;
+}
+
+PointerValue &
+DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
+ auto CanonicalPointeeType =
+ PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
+ auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
+ if (Res.second) {
+ auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
+ Res.first->second = &arena().create<PointerValue>(PointeeLoc);
+ }
+ return *Res.first->second;
+}
+
+void DataflowAnalysisContext::addInvariant(const Formula &Constraint) {
+ if (Invariant == nullptr)
+ Invariant = &Constraint;
+ else
+ Invariant = &arena().makeAnd(*Invariant, Constraint);
+}
+
+void DataflowAnalysisContext::addFlowConditionConstraint(
+ Atom Token, const Formula &Constraint) {
+ auto Res = FlowConditionConstraints.try_emplace(Token, &Constraint);
+ if (!Res.second) {
+ Res.first->second =
+ &arena().makeAnd(*Res.first->second, Constraint);
+ }
+}
+
+Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) {
+ Atom ForkToken = arena().makeFlowConditionToken();
+ FlowConditionDeps[ForkToken].insert(Token);
+ addFlowConditionConstraint(ForkToken, arena().makeAtomRef(Token));
+ return ForkToken;
+}
+
+Atom
+DataflowAnalysisContext::joinFlowConditions(Atom FirstToken,
+ Atom SecondToken) {
+ Atom Token = arena().makeFlowConditionToken();
+ FlowConditionDeps[Token].insert(FirstToken);
+ FlowConditionDeps[Token].insert(SecondToken);
+ addFlowConditionConstraint(Token,
+ arena().makeOr(arena().makeAtomRef(FirstToken),
+ arena().makeAtomRef(SecondToken)));
+ return Token;
+}
+
+Solver::Result DataflowAnalysisContext::querySolver(
+ llvm::SetVector<const Formula *> Constraints) {
+ return S.solve(Constraints.getArrayRef());
+}
+
+bool DataflowAnalysisContext::flowConditionImplies(Atom Token,
+ const Formula &F) {
+ if (F.isLiteral(true))
+ return true;
+
+ // Returns true if and only if truth assignment of the flow condition implies
+ // that `F` is also true. We prove whether or not this property holds by
+ // reducing the problem to satisfiability checking. In other words, we attempt
+ // to show that assuming `F` is false makes the constraints induced by the
+ // flow condition unsatisfiable.
+ llvm::SetVector<const Formula *> Constraints;
+ Constraints.insert(&arena().makeAtomRef(Token));
+ Constraints.insert(&arena().makeNot(F));
+ addTransitiveFlowConditionConstraints(Token, Constraints);
+ return isUnsatisfiable(std::move(Constraints));
+}
+
+bool DataflowAnalysisContext::flowConditionAllows(Atom Token,
+ const Formula &F) {
+ if (F.isLiteral(false))
+ return false;
+
+ llvm::SetVector<const Formula *> Constraints;
+ Constraints.insert(&arena().makeAtomRef(Token));
+ Constraints.insert(&F);
+ addTransitiveFlowConditionConstraints(Token, Constraints);
+ return isSatisfiable(std::move(Constraints));
+}
+
+bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1,
+ const Formula &Val2) {
+ llvm::SetVector<const Formula *> Constraints;
+ Constraints.insert(&arena().makeNot(arena().makeEquals(Val1, Val2)));
+ return isUnsatisfiable(std::move(Constraints));
+}
+
+void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
+ Atom Token, llvm::SetVector<const Formula *> &Constraints) {
+ llvm::DenseSet<Atom> AddedTokens;
+ std::vector<Atom> Remaining = {Token};
+
+ if (Invariant)
+ Constraints.insert(Invariant);
+ // Define all the flow conditions that might be referenced in constraints.
+ while (!Remaining.empty()) {
+ auto Token = Remaining.back();
+ Remaining.pop_back();
+ if (!AddedTokens.insert(Token).second)
+ continue;
+
+ auto ConstraintsIt = FlowConditionConstraints.find(Token);
+ if (ConstraintsIt == FlowConditionConstraints.end()) {
+ Constraints.insert(&arena().makeAtomRef(Token));
+ } else {
+ // Bind flow condition token via `iff` to its set of constraints:
+ // FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
+ Constraints.insert(&arena().makeEquals(arena().makeAtomRef(Token),
+ *ConstraintsIt->second));
+ }
+
+ if (auto DepsIt = FlowConditionDeps.find(Token);
+ DepsIt != FlowConditionDeps.end())
+ for (Atom A : DepsIt->second)
+ Remaining.push_back(A);
+ }
+}
+
+static void printAtomList(const llvm::SmallVector<Atom> &Atoms,
+ llvm::raw_ostream &OS) {
+ OS << "(";
+ for (size_t i = 0; i < Atoms.size(); ++i) {
+ OS << Atoms[i];
+ if (i + 1 < Atoms.size())
+ OS << ", ";
+ }
+ OS << ")\n";
+}
+
+void DataflowAnalysisContext::dumpFlowCondition(Atom Token,
+ llvm::raw_ostream &OS) {
+ llvm::SetVector<const Formula *> Constraints;
+ Constraints.insert(&arena().makeAtomRef(Token));
+ addTransitiveFlowConditionConstraints(Token, Constraints);
+
+ OS << "Flow condition token: " << Token << "\n";
+ SimplifyConstraintsInfo Info;
+ llvm::SetVector<const Formula *> OriginalConstraints = Constraints;
+ simplifyConstraints(Constraints, arena(), &Info);
+ if (!Constraints.empty()) {
+ OS << "Constraints:\n";
+ for (const auto *Constraint : Constraints) {
+ Constraint->print(OS);
+ OS << "\n";
+ }
+ }
+ if (!Info.TrueAtoms.empty()) {
+ OS << "True atoms: ";
+ printAtomList(Info.TrueAtoms, OS);
+ }
+ if (!Info.FalseAtoms.empty()) {
+ OS << "False atoms: ";
+ printAtomList(Info.FalseAtoms, OS);
+ }
+ if (!Info.EquivalentAtoms.empty()) {
+ OS << "Equivalent atoms:\n";
+ for (const llvm::SmallVector<Atom> &Class : Info.EquivalentAtoms)
+ printAtomList(Class, OS);
+ }
+
+ OS << "\nFlow condition constraints before simplification:\n";
+ for (const auto *Constraint : OriginalConstraints) {
+ Constraint->print(OS);
+ OS << "\n";
+ }
+}
+
+const AdornedCFG *
+DataflowAnalysisContext::getAdornedCFG(const FunctionDecl *F) {
+ // Canonicalize the key:
+ F = F->getDefinition();
+ if (F == nullptr)
+ return nullptr;
+ auto It = FunctionContexts.find(F);
+ if (It != FunctionContexts.end())
+ return &It->second;
+
+ if (F->doesThisDeclarationHaveABody()) {
+ auto ACFG = AdornedCFG::build(*F);
+ // FIXME: Handle errors.
+ assert(ACFG);
+ auto Result = FunctionContexts.insert({F, std::move(*ACFG)});
+ return &Result.first->second;
+ }
+
+ return nullptr;
+}
+
+static std::unique_ptr<Logger> makeLoggerFromCommandLine() {
+ if (DataflowLog.empty())
+ return Logger::textual(llvm::errs());
+
+ llvm::StringRef Dir = DataflowLog;
+ if (auto EC = llvm::sys::fs::create_directories(Dir))
+ llvm::errs() << "Failed to create log dir: " << EC.message() << "\n";
+ // All analysis runs within a process will log to the same directory.
+ // Share a counter so they don't all overwrite each other's 0.html.
+ // (Don't share a logger, it's not threadsafe).
+ static std::atomic<unsigned> Counter = {0};
+ auto StreamFactory =
+ [Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> {
+ llvm::SmallString<256> File(Dir);
+ llvm::sys::path::append(File,
+ std::to_string(Counter.fetch_add(1)) + ".html");
+ std::error_code EC;
+ auto OS = std::make_unique<llvm::raw_fd_ostream>(File, EC);
+ if (EC) {
+ llvm::errs() << "Failed to create log " << File << ": " << EC.message()
+ << "\n";
+ return std::make_unique<llvm::raw_null_ostream>();
+ }
+ return OS;
+ };
+ return Logger::html(std::move(StreamFactory));
+}
+
+DataflowAnalysisContext::DataflowAnalysisContext(
+ Solver &S, std::unique_ptr<Solver> &&OwnedSolver, Options Opts)
+ : S(S), OwnedSolver(std::move(OwnedSolver)), A(std::make_unique<Arena>()),
+ Opts(Opts) {
+ // If the -dataflow-log command-line flag was set, synthesize a logger.
+ // This is ugly but provides a uniform method for ad-hoc debugging dataflow-
+ // based tools.
+ if (Opts.Log == nullptr) {
+ if (DataflowLog.getNumOccurrences() > 0) {
+ LogOwner = makeLoggerFromCommandLine();
+ this->Opts.Log = LogOwner.get();
+ // FIXME: if the flag is given a value, write an HTML log to a file.
+ } else {
+ this->Opts.Log = &Logger::null();
+ }
+ }
+}
+
+DataflowAnalysisContext::~DataflowAnalysisContext() = default;
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp
new file mode 100644
index 000000000000..8d7fe1848821
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp
@@ -0,0 +1,1257 @@
+//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an Environment class that is used by dataflow analyses
+// that run over Control-Flow Graphs (CFGs) to keep track of the state of the
+// program at given program points.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/Type.h"
+#include "clang/Analysis/FlowSensitive/ASTOps.h"
+#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
+#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <memory>
+#include <utility>
+
+#define DEBUG_TYPE "dataflow"
+
+namespace clang {
+namespace dataflow {
+
+// FIXME: convert these to parameters of the analysis or environment. Current
+// settings have been experimentaly validated, but only for a particular
+// analysis.
+static constexpr int MaxCompositeValueDepth = 3;
+static constexpr int MaxCompositeValueSize = 1000;
+
+/// Returns a map consisting of key-value entries that are present in both maps.
+static llvm::DenseMap<const ValueDecl *, StorageLocation *> intersectDeclToLoc(
+ const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc1,
+ const llvm::DenseMap<const ValueDecl *, StorageLocation *> &DeclToLoc2) {
+ llvm::DenseMap<const ValueDecl *, StorageLocation *> Result;
+ for (auto &Entry : DeclToLoc1) {
+ auto It = DeclToLoc2.find(Entry.first);
+ if (It != DeclToLoc2.end() && Entry.second == It->second)
+ Result.insert({Entry.first, Entry.second});
+ }
+ return Result;
+}
+
+// Performs a join on either `ExprToLoc` or `ExprToVal`.
+// The maps must be consistent in the sense that any entries for the same
+// expression must map to the same location / value. This is the case if we are
+// performing a join for control flow within a full-expression (which is the
+// only case when this function should be used).
+template <typename MapT> MapT joinExprMaps(const MapT &Map1, const MapT &Map2) {
+ MapT Result = Map1;
+
+ for (const auto &Entry : Map2) {
+ [[maybe_unused]] auto [It, Inserted] = Result.insert(Entry);
+ // If there was an existing entry, its value should be the same as for the
+ // entry we were trying to insert.
+ assert(It->second == Entry.second);
+ }
+
+ return Result;
+}
+
+// Whether to consider equivalent two values with an unknown relation.
+//
+// FIXME: this function is a hack enabling unsoundness to support
+// convergence. Once we have widening support for the reference/pointer and
+// struct built-in models, this should be unconditionally `false` (and inlined
+// as such at its call sites).
+static bool equateUnknownValues(Value::Kind K) {
+ switch (K) {
+ case Value::Kind::Integer:
+ case Value::Kind::Pointer:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool compareDistinctValues(QualType Type, Value &Val1,
+ const Environment &Env1, Value &Val2,
+ const Environment &Env2,
+ Environment::ValueModel &Model) {
+ // Note: Potentially costly, but, for booleans, we could check whether both
+ // can be proven equivalent in their respective environments.
+
+ // FIXME: move the reference/pointers logic from `areEquivalentValues` to here
+ // and implement separate, join/widen specific handling for
+ // reference/pointers.
+ switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
+ case ComparisonResult::Same:
+ return true;
+ case ComparisonResult::Different:
+ return false;
+ case ComparisonResult::Unknown:
+ return equateUnknownValues(Val1.getKind());
+ }
+ llvm_unreachable("All cases covered in switch");
+}
+
+/// Attempts to join distinct values `Val1` and `Val2` in `Env1` and `Env2`,
+/// respectively, of the same type `Type`. Joining generally produces a single
+/// value that (soundly) approximates the two inputs, although the actual
+/// meaning depends on `Model`.
+static Value *joinDistinctValues(QualType Type, Value &Val1,
+ const Environment &Env1, Value &Val2,
+ const Environment &Env2,
+ Environment &JoinedEnv,
+ Environment::ValueModel &Model) {
+ // Join distinct boolean values preserving information about the constraints
+ // in the respective path conditions.
+ if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
+ // FIXME: Checking both values should be unnecessary, since they should have
+ // a consistent shape. However, right now we can end up with BoolValue's in
+ // integer-typed variables due to our incorrect handling of
+ // boolean-to-integer casts (we just propagate the BoolValue to the result
+ // of the cast). So, a join can encounter an integer in one branch but a
+ // bool in the other.
+ // For example:
+ // ```
+ // std::optional<bool> o;
+ // int x;
+ // if (o.has_value())
+ // x = o.value();
+ // ```
+ auto &Expr1 = cast<BoolValue>(Val1).formula();
+ auto &Expr2 = cast<BoolValue>(Val2).formula();
+ auto &A = JoinedEnv.arena();
+ auto &JoinedVal = A.makeAtomRef(A.makeAtom());
+ JoinedEnv.assume(
+ A.makeOr(A.makeAnd(A.makeAtomRef(Env1.getFlowConditionToken()),
+ A.makeEquals(JoinedVal, Expr1)),
+ A.makeAnd(A.makeAtomRef(Env2.getFlowConditionToken()),
+ A.makeEquals(JoinedVal, Expr2))));
+ return &A.makeBoolValue(JoinedVal);
+ }
+
+ Value *JoinedVal = JoinedEnv.createValue(Type);
+ if (JoinedVal)
+ Model.join(Type, Val1, Env1, Val2, Env2, *JoinedVal, JoinedEnv);
+
+ return JoinedVal;
+}
+
+static WidenResult widenDistinctValues(QualType Type, Value &Prev,
+ const Environment &PrevEnv,
+ Value &Current, Environment &CurrentEnv,
+ Environment::ValueModel &Model) {
+ // Boolean-model widening.
+ if (isa<BoolValue>(Prev) && isa<BoolValue>(Current)) {
+ // FIXME: Checking both values should be unnecessary, but we can currently
+ // end up with `BoolValue`s in integer-typed variables. See comment in
+ // `joinDistinctValues()` for details.
+ auto &PrevBool = cast<BoolValue>(Prev);
+ auto &CurBool = cast<BoolValue>(Current);
+
+ if (isa<TopBoolValue>(Prev))
+ // Safe to return `Prev` here, because Top is never dependent on the
+ // environment.
+ return {&Prev, LatticeEffect::Unchanged};
+
+ // We may need to widen to Top, but before we do so, check whether both
+ // values are implied to be either true or false in the current environment.
+ // In that case, we can simply return a literal instead.
+ bool TruePrev = PrevEnv.proves(PrevBool.formula());
+ bool TrueCur = CurrentEnv.proves(CurBool.formula());
+ if (TruePrev && TrueCur)
+ return {&CurrentEnv.getBoolLiteralValue(true), LatticeEffect::Unchanged};
+ if (!TruePrev && !TrueCur &&
+ PrevEnv.proves(PrevEnv.arena().makeNot(PrevBool.formula())) &&
+ CurrentEnv.proves(CurrentEnv.arena().makeNot(CurBool.formula())))
+ return {&CurrentEnv.getBoolLiteralValue(false), LatticeEffect::Unchanged};
+
+ return {&CurrentEnv.makeTopBoolValue(), LatticeEffect::Changed};
+ }
+
+ // FIXME: Add other built-in model widening.
+
+ // Custom-model widening.
+ if (auto Result = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
+ return *Result;
+
+ return {&Current, equateUnknownValues(Prev.getKind())
+ ? LatticeEffect::Unchanged
+ : LatticeEffect::Changed};
+}
+
+// Returns whether the values in `Map1` and `Map2` compare equal for those
+// keys that `Map1` and `Map2` have in common.
+template <typename Key>
+bool compareKeyToValueMaps(const llvm::MapVector<Key, Value *> &Map1,
+ const llvm::MapVector<Key, Value *> &Map2,
+ const Environment &Env1, const Environment &Env2,
+ Environment::ValueModel &Model) {
+ for (auto &Entry : Map1) {
+ Key K = Entry.first;
+ assert(K != nullptr);
+
+ Value *Val = Entry.second;
+ assert(Val != nullptr);
+
+ auto It = Map2.find(K);
+ if (It == Map2.end())
+ continue;
+ assert(It->second != nullptr);
+
+ if (!areEquivalentValues(*Val, *It->second) &&
+ !compareDistinctValues(K->getType(), *Val, Env1, *It->second, Env2,
+ Model))
+ return false;
+ }
+
+ return true;
+}
+
+// Perform a join on two `LocToVal` maps.
+static llvm::MapVector<const StorageLocation *, Value *>
+joinLocToVal(const llvm::MapVector<const StorageLocation *, Value *> &LocToVal,
+ const llvm::MapVector<const StorageLocation *, Value *> &LocToVal2,
+ const Environment &Env1, const Environment &Env2,
+ Environment &JoinedEnv, Environment::ValueModel &Model) {
+ llvm::MapVector<const StorageLocation *, Value *> Result;
+ for (auto &Entry : LocToVal) {
+ const StorageLocation *Loc = Entry.first;
+ assert(Loc != nullptr);
+
+ Value *Val = Entry.second;
+ assert(Val != nullptr);
+
+ auto It = LocToVal2.find(Loc);
+ if (It == LocToVal2.end())
+ continue;
+ assert(It->second != nullptr);
+
+ if (Value *JoinedVal = Environment::joinValues(
+ Loc->getType(), Val, Env1, It->second, Env2, JoinedEnv, Model)) {
+ Result.insert({Loc, JoinedVal});
+ }
+ }
+
+ return Result;
+}
+
+// Perform widening on either `LocToVal` or `ExprToVal`. `Key` must be either
+// `const StorageLocation *` or `const Expr *`.
+template <typename Key>
+llvm::MapVector<Key, Value *>
+widenKeyToValueMap(const llvm::MapVector<Key, Value *> &CurMap,
+ const llvm::MapVector<Key, Value *> &PrevMap,
+ Environment &CurEnv, const Environment &PrevEnv,
+ Environment::ValueModel &Model, LatticeEffect &Effect) {
+ llvm::MapVector<Key, Value *> WidenedMap;
+ for (auto &Entry : CurMap) {
+ Key K = Entry.first;
+ assert(K != nullptr);
+
+ Value *Val = Entry.second;
+ assert(Val != nullptr);
+
+ auto PrevIt = PrevMap.find(K);
+ if (PrevIt == PrevMap.end())
+ continue;
+ assert(PrevIt->second != nullptr);
+
+ if (areEquivalentValues(*Val, *PrevIt->second)) {
+ WidenedMap.insert({K, Val});
+ continue;
+ }
+
+ auto [WidenedVal, ValEffect] = widenDistinctValues(
+ K->getType(), *PrevIt->second, PrevEnv, *Val, CurEnv, Model);
+ WidenedMap.insert({K, WidenedVal});
+ if (ValEffect == LatticeEffect::Changed)
+ Effect = LatticeEffect::Changed;
+ }
+
+ return WidenedMap;
+}
+
+namespace {
+
+// Visitor that builds a map from record prvalues to result objects.
+// For each result object that it encounters, it propagates the storage location
+// of the result object to all record prvalues that can initialize it.
+class ResultObjectVisitor : public AnalysisASTVisitor<ResultObjectVisitor> {
+public:
+ // `ResultObjectMap` will be filled with a map from record prvalues to result
+ // object. If this visitor will traverse a function that returns a record by
+ // value, `LocForRecordReturnVal` is the location to which this record should
+ // be written; otherwise, it is null.
+ explicit ResultObjectVisitor(
+ llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap,
+ RecordStorageLocation *LocForRecordReturnVal,
+ DataflowAnalysisContext &DACtx)
+ : ResultObjectMap(ResultObjectMap),
+ LocForRecordReturnVal(LocForRecordReturnVal), DACtx(DACtx) {}
+
+ // Traverse all member and base initializers of `Ctor`. This function is not
+ // called by `RecursiveASTVisitor`; it should be called manually if we are
+ // analyzing a constructor. `ThisPointeeLoc` is the storage location that
+ // `this` points to.
+ void TraverseConstructorInits(const CXXConstructorDecl *Ctor,
+ RecordStorageLocation *ThisPointeeLoc) {
+ assert(ThisPointeeLoc != nullptr);
+ for (const CXXCtorInitializer *Init : Ctor->inits()) {
+ Expr *InitExpr = Init->getInit();
+ if (FieldDecl *Field = Init->getMember();
+ Field != nullptr && Field->getType()->isRecordType()) {
+ PropagateResultObject(InitExpr, cast<RecordStorageLocation>(
+ ThisPointeeLoc->getChild(*Field)));
+ } else if (Init->getBaseClass()) {
+ PropagateResultObject(InitExpr, ThisPointeeLoc);
+ }
+
+ // Ensure that any result objects within `InitExpr` (e.g. temporaries)
+ // are also propagated to the prvalues that initialize them.
+ TraverseStmt(InitExpr);
+
+ // If this is a `CXXDefaultInitExpr`, also propagate any result objects
+ // within the default expression.
+ if (auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(InitExpr))
+ TraverseStmt(DefaultInit->getExpr());
+ }
+ }
+
+ bool VisitVarDecl(VarDecl *VD) {
+ if (VD->getType()->isRecordType() && VD->hasInit())
+ PropagateResultObject(
+ VD->getInit(),
+ &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*VD)));
+ return true;
+ }
+
+ bool VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE) {
+ if (MTE->getType()->isRecordType())
+ PropagateResultObject(
+ MTE->getSubExpr(),
+ &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*MTE)));
+ return true;
+ }
+
+ bool VisitReturnStmt(ReturnStmt *Return) {
+ Expr *RetValue = Return->getRetValue();
+ if (RetValue != nullptr && RetValue->getType()->isRecordType() &&
+ RetValue->isPRValue())
+ PropagateResultObject(RetValue, LocForRecordReturnVal);
+ return true;
+ }
+
+ bool VisitExpr(Expr *E) {
+ // Clang's AST can have record-type prvalues without a result object -- for
+ // example as full-expressions contained in a compound statement or as
+ // arguments of call expressions. We notice this if we get here and a
+ // storage location has not yet been associated with `E`. In this case,
+ // treat this as if it was a `MaterializeTemporaryExpr`.
+ if (E->isPRValue() && E->getType()->isRecordType() &&
+ !ResultObjectMap.contains(E))
+ PropagateResultObject(
+ E, &cast<RecordStorageLocation>(DACtx.getStableStorageLocation(*E)));
+ return true;
+ }
+
+ void
+ PropagateResultObjectToRecordInitList(const RecordInitListHelper &InitList,
+ RecordStorageLocation *Loc) {
+ for (auto [Base, Init] : InitList.base_inits()) {
+ assert(Base->getType().getCanonicalType() ==
+ Init->getType().getCanonicalType());
+
+ // Storage location for the base class is the same as that of the
+ // derived class because we "flatten" the object hierarchy and put all
+ // fields in `RecordStorageLocation` of the derived class.
+ PropagateResultObject(Init, Loc);
+ }
+
+ for (auto [Field, Init] : InitList.field_inits()) {
+ // Fields of non-record type are handled in
+ // `TransferVisitor::VisitInitListExpr()`.
+ if (Field->getType()->isRecordType())
+ PropagateResultObject(
+ Init, cast<RecordStorageLocation>(Loc->getChild(*Field)));
+ }
+ }
+
+ // Assigns `Loc` as the result object location of `E`, then propagates the
+ // location to all lower-level prvalues that initialize the same object as
+ // `E` (or one of its base classes or member variables).
+ void PropagateResultObject(Expr *E, RecordStorageLocation *Loc) {
+ if (!E->isPRValue() || !E->getType()->isRecordType()) {
+ assert(false);
+ // Ensure we don't propagate the result object if we hit this in a
+ // release build.
+ return;
+ }
+
+ ResultObjectMap[E] = Loc;
+
+ // The following AST node kinds are "original initializers": They are the
+ // lowest-level AST node that initializes a given object, and nothing
+ // below them can initialize the same object (or part of it).
+ if (isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || isa<LambdaExpr>(E) ||
+ isa<CXXDefaultArgExpr>(E) || isa<CXXStdInitializerListExpr>(E) ||
+ isa<AtomicExpr>(E) ||
+ // We treat `BuiltinBitCastExpr` as an "original initializer" too as
+ // it may not even be casting from a record type -- and even if it is,
+ // the two objects are in general of unrelated type.
+ isa<BuiltinBitCastExpr>(E)) {
+ return;
+ }
+ if (auto *Op = dyn_cast<BinaryOperator>(E);
+ Op && Op->getOpcode() == BO_Cmp) {
+ // Builtin `<=>` returns a `std::strong_ordering` object.
+ return;
+ }
+
+ if (auto *InitList = dyn_cast<InitListExpr>(E)) {
+ if (!InitList->isSemanticForm())
+ return;
+ if (InitList->isTransparent()) {
+ PropagateResultObject(InitList->getInit(0), Loc);
+ return;
+ }
+
+ PropagateResultObjectToRecordInitList(RecordInitListHelper(InitList),
+ Loc);
+ return;
+ }
+
+ if (auto *ParenInitList = dyn_cast<CXXParenListInitExpr>(E)) {
+ PropagateResultObjectToRecordInitList(RecordInitListHelper(ParenInitList),
+ Loc);
+ return;
+ }
+
+ if (auto *Op = dyn_cast<BinaryOperator>(E); Op && Op->isCommaOp()) {
+ PropagateResultObject(Op->getRHS(), Loc);
+ return;
+ }
+
+ if (auto *Cond = dyn_cast<AbstractConditionalOperator>(E)) {
+ PropagateResultObject(Cond->getTrueExpr(), Loc);
+ PropagateResultObject(Cond->getFalseExpr(), Loc);
+ return;
+ }
+
+ if (auto *SE = dyn_cast<StmtExpr>(E)) {
+ PropagateResultObject(cast<Expr>(SE->getSubStmt()->body_back()), Loc);
+ return;
+ }
+
+ if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(E)) {
+ PropagateResultObject(DIE->getExpr(), Loc);
+ return;
+ }
+
+ // All other expression nodes that propagate a record prvalue should have
+ // exactly one child.
+ SmallVector<Stmt *, 1> Children(E->child_begin(), E->child_end());
+ LLVM_DEBUG({
+ if (Children.size() != 1)
+ E->dump();
+ });
+ assert(Children.size() == 1);
+ for (Stmt *S : Children)
+ PropagateResultObject(cast<Expr>(S), Loc);
+ }
+
+private:
+ llvm::DenseMap<const Expr *, RecordStorageLocation *> &ResultObjectMap;
+ RecordStorageLocation *LocForRecordReturnVal;
+ DataflowAnalysisContext &DACtx;
+};
+
+} // namespace
+
+void Environment::initialize() {
+ if (InitialTargetStmt == nullptr)
+ return;
+
+ if (InitialTargetFunc == nullptr) {
+ initFieldsGlobalsAndFuncs(getReferencedDecls(*InitialTargetStmt));
+ ResultObjectMap =
+ std::make_shared<PrValueToResultObject>(buildResultObjectMap(
+ DACtx, InitialTargetStmt, getThisPointeeStorageLocation(),
+ /*LocForRecordReturnValue=*/nullptr));
+ return;
+ }
+
+ initFieldsGlobalsAndFuncs(getReferencedDecls(*InitialTargetFunc));
+
+ for (const auto *ParamDecl : InitialTargetFunc->parameters()) {
+ assert(ParamDecl != nullptr);
+ setStorageLocation(*ParamDecl, createObject(*ParamDecl, nullptr));
+ }
+
+ if (InitialTargetFunc->getReturnType()->isRecordType())
+ LocForRecordReturnVal = &cast<RecordStorageLocation>(
+ createStorageLocation(InitialTargetFunc->getReturnType()));
+
+ if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(InitialTargetFunc)) {
+ auto *Parent = MethodDecl->getParent();
+ assert(Parent != nullptr);
+
+ if (Parent->isLambda()) {
+ for (const auto &Capture : Parent->captures()) {
+ if (Capture.capturesVariable()) {
+ const auto *VarDecl = Capture.getCapturedVar();
+ assert(VarDecl != nullptr);
+ setStorageLocation(*VarDecl, createObject(*VarDecl, nullptr));
+ } else if (Capture.capturesThis()) {
+ if (auto *Ancestor = InitialTargetFunc->getNonClosureAncestor()) {
+ const auto *SurroundingMethodDecl = cast<CXXMethodDecl>(Ancestor);
+ QualType ThisPointeeType =
+ SurroundingMethodDecl->getFunctionObjectParameterType();
+ setThisPointeeStorageLocation(
+ cast<RecordStorageLocation>(createObject(ThisPointeeType)));
+ } else if (auto *FieldBeingInitialized =
+ dyn_cast<FieldDecl>(Parent->getLambdaContextDecl())) {
+ // This is in a field initializer, rather than a method.
+ setThisPointeeStorageLocation(
+ cast<RecordStorageLocation>(createObject(QualType(
+ FieldBeingInitialized->getParent()->getTypeForDecl(), 0))));
+ } else {
+ assert(false && "Unexpected this-capturing lambda context.");
+ }
+ }
+ }
+ } else if (MethodDecl->isImplicitObjectMemberFunction()) {
+ QualType ThisPointeeType = MethodDecl->getFunctionObjectParameterType();
+ auto &ThisLoc =
+ cast<RecordStorageLocation>(createStorageLocation(ThisPointeeType));
+ setThisPointeeStorageLocation(ThisLoc);
+ // Initialize fields of `*this` with values, but only if we're not
+ // analyzing a constructor; after all, it's the constructor's job to do
+ // this (and we want to be able to test that).
+ if (!isa<CXXConstructorDecl>(MethodDecl))
+ initializeFieldsWithValues(ThisLoc);
+ }
+ }
+
+ // We do this below the handling of `CXXMethodDecl` above so that we can
+ // be sure that the storage location for `this` has been set.
+ ResultObjectMap =
+ std::make_shared<PrValueToResultObject>(buildResultObjectMap(
+ DACtx, InitialTargetFunc, getThisPointeeStorageLocation(),
+ LocForRecordReturnVal));
+}
+
+// FIXME: Add support for resetting globals after function calls to enable the
+// implementation of sound analyses.
+
+void Environment::initFieldsGlobalsAndFuncs(const ReferencedDecls &Referenced) {
+ // These have to be added before the lines that follow to ensure that
+ // `create*` work correctly for structs.
+ DACtx->addModeledFields(Referenced.Fields);
+
+ for (const VarDecl *D : Referenced.Globals) {
+ if (getStorageLocation(*D) != nullptr)
+ continue;
+
+ // We don't run transfer functions on the initializers of global variables,
+ // so they won't be associated with a value or storage location. We
+ // therefore intentionally don't pass an initializer to `createObject()`; in
+ // particular, this ensures that `createObject()` will initialize the fields
+ // of record-type variables with values.
+ setStorageLocation(*D, createObject(*D, nullptr));
+ }
+
+ for (const FunctionDecl *FD : Referenced.Functions) {
+ if (getStorageLocation(*FD) != nullptr)
+ continue;
+ auto &Loc = createStorageLocation(*FD);
+ setStorageLocation(*FD, Loc);
+ }
+}
+
+Environment Environment::fork() const {
+ Environment Copy(*this);
+ Copy.FlowConditionToken = DACtx->forkFlowCondition(FlowConditionToken);
+ return Copy;
+}
+
+bool Environment::canDescend(unsigned MaxDepth,
+ const FunctionDecl *Callee) const {
+ return CallStack.size() < MaxDepth && !llvm::is_contained(CallStack, Callee);
+}
+
+Environment Environment::pushCall(const CallExpr *Call) const {
+ Environment Env(*this);
+
+ if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
+ if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
+ if (!isa<CXXThisExpr>(Arg))
+ Env.ThisPointeeLoc =
+ cast<RecordStorageLocation>(getStorageLocation(*Arg));
+ // Otherwise (when the argument is `this`), retain the current
+ // environment's `ThisPointeeLoc`.
+ }
+ }
+
+ if (Call->getType()->isRecordType() && Call->isPRValue())
+ Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
+
+ Env.pushCallInternal(Call->getDirectCallee(),
+ llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
+
+ return Env;
+}
+
+Environment Environment::pushCall(const CXXConstructExpr *Call) const {
+ Environment Env(*this);
+
+ Env.ThisPointeeLoc = &Env.getResultObjectLocation(*Call);
+ Env.LocForRecordReturnVal = &Env.getResultObjectLocation(*Call);
+
+ Env.pushCallInternal(Call->getConstructor(),
+ llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
+
+ return Env;
+}
+
+void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
+ ArrayRef<const Expr *> Args) {
+ // Canonicalize to the definition of the function. This ensures that we're
+ // putting arguments into the same `ParamVarDecl`s` that the callee will later
+ // be retrieving them from.
+ assert(FuncDecl->getDefinition() != nullptr);
+ FuncDecl = FuncDecl->getDefinition();
+
+ CallStack.push_back(FuncDecl);
+
+ initFieldsGlobalsAndFuncs(getReferencedDecls(*FuncDecl));
+
+ const auto *ParamIt = FuncDecl->param_begin();
+
+ // FIXME: Parameters don't always map to arguments 1:1; examples include
+ // overloaded operators implemented as member functions, and parameter packs.
+ for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
+ assert(ParamIt != FuncDecl->param_end());
+ const VarDecl *Param = *ParamIt;
+ setStorageLocation(*Param, createObject(*Param, Args[ArgIndex]));
+ }
+
+ ResultObjectMap = std::make_shared<PrValueToResultObject>(
+ buildResultObjectMap(DACtx, FuncDecl, getThisPointeeStorageLocation(),
+ LocForRecordReturnVal));
+}
+
+void Environment::popCall(const CallExpr *Call, const Environment &CalleeEnv) {
+ // We ignore some entries of `CalleeEnv`:
+ // - `DACtx` because is already the same in both
+ // - We don't want the callee's `DeclCtx`, `ReturnVal`, `ReturnLoc` or
+ // `ThisPointeeLoc` because they don't apply to us.
+ // - `DeclToLoc`, `ExprToLoc`, and `ExprToVal` capture information from the
+ // callee's local scope, so when popping that scope, we do not propagate
+ // the maps.
+ this->LocToVal = std::move(CalleeEnv.LocToVal);
+ this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
+
+ if (Call->isGLValue()) {
+ if (CalleeEnv.ReturnLoc != nullptr)
+ setStorageLocation(*Call, *CalleeEnv.ReturnLoc);
+ } else if (!Call->getType()->isVoidType()) {
+ if (CalleeEnv.ReturnVal != nullptr)
+ setValue(*Call, *CalleeEnv.ReturnVal);
+ }
+}
+
+void Environment::popCall(const CXXConstructExpr *Call,
+ const Environment &CalleeEnv) {
+ // See also comment in `popCall(const CallExpr *, const Environment &)` above.
+ this->LocToVal = std::move(CalleeEnv.LocToVal);
+ this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
+}
+
+bool Environment::equivalentTo(const Environment &Other,
+ Environment::ValueModel &Model) const {
+ assert(DACtx == Other.DACtx);
+
+ if (ReturnVal != Other.ReturnVal)
+ return false;
+
+ if (ReturnLoc != Other.ReturnLoc)
+ return false;
+
+ if (LocForRecordReturnVal != Other.LocForRecordReturnVal)
+ return false;
+
+ if (ThisPointeeLoc != Other.ThisPointeeLoc)
+ return false;
+
+ if (DeclToLoc != Other.DeclToLoc)
+ return false;
+
+ if (ExprToLoc != Other.ExprToLoc)
+ return false;
+
+ if (!compareKeyToValueMaps(ExprToVal, Other.ExprToVal, *this, Other, Model))
+ return false;
+
+ if (!compareKeyToValueMaps(LocToVal, Other.LocToVal, *this, Other, Model))
+ return false;
+
+ return true;
+}
+
+LatticeEffect Environment::widen(const Environment &PrevEnv,
+ Environment::ValueModel &Model) {
+ assert(DACtx == PrevEnv.DACtx);
+ assert(ReturnVal == PrevEnv.ReturnVal);
+ assert(ReturnLoc == PrevEnv.ReturnLoc);
+ assert(LocForRecordReturnVal == PrevEnv.LocForRecordReturnVal);
+ assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
+ assert(CallStack == PrevEnv.CallStack);
+ assert(ResultObjectMap == PrevEnv.ResultObjectMap);
+ assert(InitialTargetFunc == PrevEnv.InitialTargetFunc);
+ assert(InitialTargetStmt == PrevEnv.InitialTargetStmt);
+
+ auto Effect = LatticeEffect::Unchanged;
+
+ // By the API, `PrevEnv` is a previous version of the environment for the same
+ // block, so we have some guarantees about its shape. In particular, it will
+ // be the result of a join or widen operation on previous values for this
+ // block. For `DeclToLoc`, `ExprToVal`, and `ExprToLoc`, join guarantees that
+ // these maps are subsets of the maps in `PrevEnv`. So, as long as we maintain
+ // this property here, we don't need change their current values to widen.
+ assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
+ assert(ExprToVal.size() <= PrevEnv.ExprToVal.size());
+ assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
+
+ ExprToVal = widenKeyToValueMap(ExprToVal, PrevEnv.ExprToVal, *this, PrevEnv,
+ Model, Effect);
+
+ LocToVal = widenKeyToValueMap(LocToVal, PrevEnv.LocToVal, *this, PrevEnv,
+ Model, Effect);
+ if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
+ ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
+ ExprToVal.size() != PrevEnv.ExprToVal.size() ||
+ LocToVal.size() != PrevEnv.LocToVal.size())
+ Effect = LatticeEffect::Changed;
+
+ return Effect;
+}
+
+Environment Environment::join(const Environment &EnvA, const Environment &EnvB,
+ Environment::ValueModel &Model,
+ ExprJoinBehavior ExprBehavior) {
+ assert(EnvA.DACtx == EnvB.DACtx);
+ assert(EnvA.LocForRecordReturnVal == EnvB.LocForRecordReturnVal);
+ assert(EnvA.ThisPointeeLoc == EnvB.ThisPointeeLoc);
+ assert(EnvA.CallStack == EnvB.CallStack);
+ assert(EnvA.ResultObjectMap == EnvB.ResultObjectMap);
+ assert(EnvA.InitialTargetFunc == EnvB.InitialTargetFunc);
+ assert(EnvA.InitialTargetStmt == EnvB.InitialTargetStmt);
+
+ Environment JoinedEnv(*EnvA.DACtx);
+
+ JoinedEnv.CallStack = EnvA.CallStack;
+ JoinedEnv.ResultObjectMap = EnvA.ResultObjectMap;
+ JoinedEnv.LocForRecordReturnVal = EnvA.LocForRecordReturnVal;
+ JoinedEnv.ThisPointeeLoc = EnvA.ThisPointeeLoc;
+ JoinedEnv.InitialTargetFunc = EnvA.InitialTargetFunc;
+ JoinedEnv.InitialTargetStmt = EnvA.InitialTargetStmt;
+
+ const FunctionDecl *Func = EnvA.getCurrentFunc();
+ if (!Func) {
+ JoinedEnv.ReturnVal = nullptr;
+ } else {
+ JoinedEnv.ReturnVal =
+ joinValues(Func->getReturnType(), EnvA.ReturnVal, EnvA, EnvB.ReturnVal,
+ EnvB, JoinedEnv, Model);
+ }
+
+ if (EnvA.ReturnLoc == EnvB.ReturnLoc)
+ JoinedEnv.ReturnLoc = EnvA.ReturnLoc;
+ else
+ JoinedEnv.ReturnLoc = nullptr;
+
+ JoinedEnv.DeclToLoc = intersectDeclToLoc(EnvA.DeclToLoc, EnvB.DeclToLoc);
+
+ // FIXME: update join to detect backedges and simplify the flow condition
+ // accordingly.
+ JoinedEnv.FlowConditionToken = EnvA.DACtx->joinFlowConditions(
+ EnvA.FlowConditionToken, EnvB.FlowConditionToken);
+
+ JoinedEnv.LocToVal =
+ joinLocToVal(EnvA.LocToVal, EnvB.LocToVal, EnvA, EnvB, JoinedEnv, Model);
+
+ if (ExprBehavior == KeepExprState) {
+ JoinedEnv.ExprToVal = joinExprMaps(EnvA.ExprToVal, EnvB.ExprToVal);
+ JoinedEnv.ExprToLoc = joinExprMaps(EnvA.ExprToLoc, EnvB.ExprToLoc);
+ }
+
+ return JoinedEnv;
+}
+
+Value *Environment::joinValues(QualType Ty, Value *Val1,
+ const Environment &Env1, Value *Val2,
+ const Environment &Env2, Environment &JoinedEnv,
+ Environment::ValueModel &Model) {
+ if (Val1 == nullptr || Val2 == nullptr)
+ // We can't say anything about the joined value -- even if one of the values
+ // is non-null, we don't want to simply propagate it, because it would be
+ // too specific: Because the other value is null, that means we have no
+ // information at all about the value (i.e. the value is unconstrained).
+ return nullptr;
+
+ if (areEquivalentValues(*Val1, *Val2))
+ // Arbitrarily return one of the two values.
+ return Val1;
+
+ return joinDistinctValues(Ty, *Val1, Env1, *Val2, Env2, JoinedEnv, Model);
+}
+
+StorageLocation &Environment::createStorageLocation(QualType Type) {
+ return DACtx->createStorageLocation(Type);
+}
+
+StorageLocation &Environment::createStorageLocation(const ValueDecl &D) {
+ // Evaluated declarations are always assigned the same storage locations to
+ // ensure that the environment stabilizes across loop iterations. Storage
+ // locations for evaluated declarations are stored in the analysis context.
+ return DACtx->getStableStorageLocation(D);
+}
+
+StorageLocation &Environment::createStorageLocation(const Expr &E) {
+ // Evaluated expressions are always assigned the same storage locations to
+ // ensure that the environment stabilizes across loop iterations. Storage
+ // locations for evaluated expressions are stored in the analysis context.
+ return DACtx->getStableStorageLocation(E);
+}
+
+void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
+ assert(!DeclToLoc.contains(&D));
+ // The only kinds of declarations that may have a "variable" storage location
+ // are declarations of reference type and `BindingDecl`. For all other
+ // declaration, the storage location should be the stable storage location
+ // returned by `createStorageLocation()`.
+ assert(D.getType()->isReferenceType() || isa<BindingDecl>(D) ||
+ &Loc == &createStorageLocation(D));
+ DeclToLoc[&D] = &Loc;
+}
+
+StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
+ auto It = DeclToLoc.find(&D);
+ if (It == DeclToLoc.end())
+ return nullptr;
+
+ StorageLocation *Loc = It->second;
+
+ return Loc;
+}
+
+void Environment::removeDecl(const ValueDecl &D) { DeclToLoc.erase(&D); }
+
+void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
+ // `DeclRefExpr`s to builtin function types aren't glvalues, for some reason,
+ // but we still want to be able to associate a `StorageLocation` with them,
+ // so allow these as an exception.
+ assert(E.isGLValue() ||
+ E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
+ const Expr &CanonE = ignoreCFGOmittedNodes(E);
+ assert(!ExprToLoc.contains(&CanonE));
+ ExprToLoc[&CanonE] = &Loc;
+}
+
+StorageLocation *Environment::getStorageLocation(const Expr &E) const {
+ // See comment in `setStorageLocation()`.
+ assert(E.isGLValue() ||
+ E.getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn));
+ auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
+ return It == ExprToLoc.end() ? nullptr : &*It->second;
+}
+
+RecordStorageLocation &
+Environment::getResultObjectLocation(const Expr &RecordPRValue) const {
+ assert(RecordPRValue.getType()->isRecordType());
+ assert(RecordPRValue.isPRValue());
+
+ assert(ResultObjectMap != nullptr);
+ RecordStorageLocation *Loc = ResultObjectMap->lookup(&RecordPRValue);
+ assert(Loc != nullptr);
+ // In release builds, use the "stable" storage location if the map lookup
+ // failed.
+ if (Loc == nullptr)
+ return cast<RecordStorageLocation>(
+ DACtx->getStableStorageLocation(RecordPRValue));
+ return *Loc;
+}
+
+PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
+ return DACtx->getOrCreateNullPointerValue(PointeeType);
+}
+
+void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
+ QualType Type) {
+ llvm::DenseSet<QualType> Visited;
+ int CreatedValuesCount = 0;
+ initializeFieldsWithValues(Loc, Type, Visited, 0, CreatedValuesCount);
+ if (CreatedValuesCount > MaxCompositeValueSize) {
+ llvm::errs() << "Attempting to initialize a huge value of type: " << Type
+ << '\n';
+ }
+}
+
+void Environment::setValue(const StorageLocation &Loc, Value &Val) {
+ // Records should not be associated with values.
+ assert(!isa<RecordStorageLocation>(Loc));
+ LocToVal[&Loc] = &Val;
+}
+
+void Environment::setValue(const Expr &E, Value &Val) {
+ const Expr &CanonE = ignoreCFGOmittedNodes(E);
+
+ assert(CanonE.isPRValue());
+ // Records should not be associated with values.
+ assert(!CanonE.getType()->isRecordType());
+ ExprToVal[&CanonE] = &Val;
+}
+
+Value *Environment::getValue(const StorageLocation &Loc) const {
+ // Records should not be associated with values.
+ assert(!isa<RecordStorageLocation>(Loc));
+ return LocToVal.lookup(&Loc);
+}
+
+Value *Environment::getValue(const ValueDecl &D) const {
+ auto *Loc = getStorageLocation(D);
+ if (Loc == nullptr)
+ return nullptr;
+ return getValue(*Loc);
+}
+
+Value *Environment::getValue(const Expr &E) const {
+ // Records should not be associated with values.
+ assert(!E.getType()->isRecordType());
+
+ if (E.isPRValue()) {
+ auto It = ExprToVal.find(&ignoreCFGOmittedNodes(E));
+ return It == ExprToVal.end() ? nullptr : It->second;
+ }
+
+ auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
+ if (It == ExprToLoc.end())
+ return nullptr;
+ return getValue(*It->second);
+}
+
+Value *Environment::createValue(QualType Type) {
+ llvm::DenseSet<QualType> Visited;
+ int CreatedValuesCount = 0;
+ Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
+ CreatedValuesCount);
+ if (CreatedValuesCount > MaxCompositeValueSize) {
+ llvm::errs() << "Attempting to initialize a huge value of type: " << Type
+ << '\n';
+ }
+ return Val;
+}
+
+Value *Environment::createValueUnlessSelfReferential(
+ QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
+ int &CreatedValuesCount) {
+ assert(!Type.isNull());
+ assert(!Type->isReferenceType());
+ assert(!Type->isRecordType());
+
+ // Allow unlimited fields at depth 1; only cap at deeper nesting levels.
+ if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
+ Depth > MaxCompositeValueDepth)
+ return nullptr;
+
+ if (Type->isBooleanType()) {
+ CreatedValuesCount++;
+ return &makeAtomicBoolValue();
+ }
+
+ if (Type->isIntegerType()) {
+ // FIXME: consider instead `return nullptr`, given that we do nothing useful
+ // with integers, and so distinguishing them serves no purpose, but could
+ // prevent convergence.
+ CreatedValuesCount++;
+ return &arena().create<IntegerValue>();
+ }
+
+ if (Type->isPointerType()) {
+ CreatedValuesCount++;
+ QualType PointeeType = Type->getPointeeType();
+ StorageLocation &PointeeLoc =
+ createLocAndMaybeValue(PointeeType, Visited, Depth, CreatedValuesCount);
+
+ return &arena().create<PointerValue>(PointeeLoc);
+ }
+
+ return nullptr;
+}
+
+StorageLocation &
+Environment::createLocAndMaybeValue(QualType Ty,
+ llvm::DenseSet<QualType> &Visited,
+ int Depth, int &CreatedValuesCount) {
+ if (!Visited.insert(Ty.getCanonicalType()).second)
+ return createStorageLocation(Ty.getNonReferenceType());
+ auto EraseVisited = llvm::make_scope_exit(
+ [&Visited, Ty] { Visited.erase(Ty.getCanonicalType()); });
+
+ Ty = Ty.getNonReferenceType();
+
+ if (Ty->isRecordType()) {
+ auto &Loc = cast<RecordStorageLocation>(createStorageLocation(Ty));
+ initializeFieldsWithValues(Loc, Ty, Visited, Depth, CreatedValuesCount);
+ return Loc;
+ }
+
+ StorageLocation &Loc = createStorageLocation(Ty);
+
+ if (Value *Val = createValueUnlessSelfReferential(Ty, Visited, Depth,
+ CreatedValuesCount))
+ setValue(Loc, *Val);
+
+ return Loc;
+}
+
+void Environment::initializeFieldsWithValues(RecordStorageLocation &Loc,
+ QualType Type,
+ llvm::DenseSet<QualType> &Visited,
+ int Depth,
+ int &CreatedValuesCount) {
+ auto initField = [&](QualType FieldType, StorageLocation &FieldLoc) {
+ if (FieldType->isRecordType()) {
+ auto &FieldRecordLoc = cast<RecordStorageLocation>(FieldLoc);
+ initializeFieldsWithValues(FieldRecordLoc, FieldRecordLoc.getType(),
+ Visited, Depth + 1, CreatedValuesCount);
+ } else {
+ if (getValue(FieldLoc) != nullptr)
+ return;
+ if (!Visited.insert(FieldType.getCanonicalType()).second)
+ return;
+ if (Value *Val = createValueUnlessSelfReferential(
+ FieldType, Visited, Depth + 1, CreatedValuesCount))
+ setValue(FieldLoc, *Val);
+ Visited.erase(FieldType.getCanonicalType());
+ }
+ };
+
+ for (const FieldDecl *Field : DACtx->getModeledFields(Type)) {
+ assert(Field != nullptr);
+ QualType FieldType = Field->getType();
+
+ if (FieldType->isReferenceType()) {
+ Loc.setChild(*Field,
+ &createLocAndMaybeValue(FieldType, Visited, Depth + 1,
+ CreatedValuesCount));
+ } else {
+ StorageLocation *FieldLoc = Loc.getChild(*Field);
+ assert(FieldLoc != nullptr);
+ initField(FieldType, *FieldLoc);
+ }
+ }
+ for (const auto &[FieldName, FieldType] : DACtx->getSyntheticFields(Type)) {
+ // Synthetic fields cannot have reference type, so we don't need to deal
+ // with this case.
+ assert(!FieldType->isReferenceType());
+ initField(FieldType, Loc.getSyntheticField(FieldName));
+ }
+}
+
+StorageLocation &Environment::createObjectInternal(const ValueDecl *D,
+ QualType Ty,
+ const Expr *InitExpr) {
+ if (Ty->isReferenceType()) {
+ // Although variables of reference type always need to be initialized, it
+ // can happen that we can't see the initializer, so `InitExpr` may still
+ // be null.
+ if (InitExpr) {
+ if (auto *InitExprLoc = getStorageLocation(*InitExpr))
+ return *InitExprLoc;
+ }
+
+ // Even though we have an initializer, we might not get an
+ // InitExprLoc, for example if the InitExpr is a CallExpr for which we
+ // don't have a function body. In this case, we just invent a storage
+ // location and value -- it's the best we can do.
+ return createObjectInternal(D, Ty.getNonReferenceType(), nullptr);
+ }
+
+ StorageLocation &Loc =
+ D ? createStorageLocation(*D) : createStorageLocation(Ty);
+
+ if (Ty->isRecordType()) {
+ auto &RecordLoc = cast<RecordStorageLocation>(Loc);
+ if (!InitExpr)
+ initializeFieldsWithValues(RecordLoc);
+ } else {
+ Value *Val = nullptr;
+ if (InitExpr)
+ // In the (few) cases where an expression is intentionally
+ // "uninterpreted", `InitExpr` is not associated with a value. There are
+ // two ways to handle this situation: propagate the status, so that
+ // uninterpreted initializers result in uninterpreted variables, or
+ // provide a default value. We choose the latter so that later refinements
+ // of the variable can be used for reasoning about the surrounding code.
+ // For this reason, we let this case be handled by the `createValue()`
+ // call below.
+ //
+ // FIXME. If and when we interpret all language cases, change this to
+ // assert that `InitExpr` is interpreted, rather than supplying a
+ // default value (assuming we don't update the environment API to return
+ // references).
+ Val = getValue(*InitExpr);
+ if (!Val)
+ Val = createValue(Ty);
+ if (Val)
+ setValue(Loc, *Val);
+ }
+
+ return Loc;
+}
+
+void Environment::assume(const Formula &F) {
+ DACtx->addFlowConditionConstraint(FlowConditionToken, F);
+}
+
+bool Environment::proves(const Formula &F) const {
+ return DACtx->flowConditionImplies(FlowConditionToken, F);
+}
+
+bool Environment::allows(const Formula &F) const {
+ return DACtx->flowConditionAllows(FlowConditionToken, F);
+}
+
+void Environment::dump(raw_ostream &OS) const {
+ llvm::DenseMap<const StorageLocation *, std::string> LocToName;
+ if (LocForRecordReturnVal != nullptr)
+ LocToName[LocForRecordReturnVal] = "(returned record)";
+ if (ThisPointeeLoc != nullptr)
+ LocToName[ThisPointeeLoc] = "this";
+
+ OS << "DeclToLoc:\n";
+ for (auto [D, L] : DeclToLoc) {
+ auto Iter = LocToName.insert({L, D->getNameAsString()}).first;
+ OS << " [" << Iter->second << ", " << L << "]\n";
+ }
+ OS << "ExprToLoc:\n";
+ for (auto [E, L] : ExprToLoc)
+ OS << " [" << E << ", " << L << "]\n";
+
+ OS << "ExprToVal:\n";
+ for (auto [E, V] : ExprToVal)
+ OS << " [" << E << ", " << V << ": " << *V << "]\n";
+
+ OS << "LocToVal:\n";
+ for (auto [L, V] : LocToVal) {
+ OS << " [" << L;
+ if (auto Iter = LocToName.find(L); Iter != LocToName.end())
+ OS << " (" << Iter->second << ")";
+ OS << ", " << V << ": " << *V << "]\n";
+ }
+
+ if (const FunctionDecl *Func = getCurrentFunc()) {
+ if (Func->getReturnType()->isReferenceType()) {
+ OS << "ReturnLoc: " << ReturnLoc;
+ if (auto Iter = LocToName.find(ReturnLoc); Iter != LocToName.end())
+ OS << " (" << Iter->second << ")";
+ OS << "\n";
+ } else if (Func->getReturnType()->isRecordType() ||
+ isa<CXXConstructorDecl>(Func)) {
+ OS << "LocForRecordReturnVal: " << LocForRecordReturnVal << "\n";
+ } else if (!Func->getReturnType()->isVoidType()) {
+ if (ReturnVal == nullptr)
+ OS << "ReturnVal: nullptr\n";
+ else
+ OS << "ReturnVal: " << *ReturnVal << "\n";
+ }
+
+ if (isa<CXXMethodDecl>(Func)) {
+ OS << "ThisPointeeLoc: " << ThisPointeeLoc << "\n";
+ }
+ }
+
+ OS << "\n";
+ DACtx->dumpFlowCondition(FlowConditionToken, OS);
+}
+
+void Environment::dump() const { dump(llvm::dbgs()); }
+
+Environment::PrValueToResultObject Environment::buildResultObjectMap(
+ DataflowAnalysisContext *DACtx, const FunctionDecl *FuncDecl,
+ RecordStorageLocation *ThisPointeeLoc,
+ RecordStorageLocation *LocForRecordReturnVal) {
+ assert(FuncDecl->doesThisDeclarationHaveABody());
+
+ PrValueToResultObject Map = buildResultObjectMap(
+ DACtx, FuncDecl->getBody(), ThisPointeeLoc, LocForRecordReturnVal);
+
+ ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
+ if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FuncDecl))
+ Visitor.TraverseConstructorInits(Ctor, ThisPointeeLoc);
+
+ return Map;
+}
+
+Environment::PrValueToResultObject Environment::buildResultObjectMap(
+ DataflowAnalysisContext *DACtx, Stmt *S,
+ RecordStorageLocation *ThisPointeeLoc,
+ RecordStorageLocation *LocForRecordReturnVal) {
+ PrValueToResultObject Map;
+ ResultObjectVisitor Visitor(Map, LocForRecordReturnVal, *DACtx);
+ Visitor.TraverseStmt(S);
+ return Map;
+}
+
+RecordStorageLocation *getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
+ const Environment &Env) {
+ Expr *ImplicitObject = MCE.getImplicitObjectArgument();
+ if (ImplicitObject == nullptr)
+ return nullptr;
+ if (ImplicitObject->getType()->isPointerType()) {
+ if (auto *Val = Env.get<PointerValue>(*ImplicitObject))
+ return &cast<RecordStorageLocation>(Val->getPointeeLoc());
+ return nullptr;
+ }
+ return cast_or_null<RecordStorageLocation>(
+ Env.getStorageLocation(*ImplicitObject));
+}
+
+RecordStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
+ const Environment &Env) {
+ Expr *Base = ME.getBase();
+ if (Base == nullptr)
+ return nullptr;
+ if (ME.isArrow()) {
+ if (auto *Val = Env.get<PointerValue>(*Base))
+ return &cast<RecordStorageLocation>(Val->getPointeeLoc());
+ return nullptr;
+ }
+ return Env.get<RecordStorageLocation>(*Base);
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp
new file mode 100644
index 000000000000..d40aab7a7f10
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/DebugSupport.cpp
@@ -0,0 +1,77 @@
+//===- DebugSupport.cpp -----------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines functions which generate more readable forms of data
+// structures used in the dataflow analyses, for debugging purposes.
+//
+//===----------------------------------------------------------------------===//
+
+#include <utility>
+
+#include "clang/Analysis/FlowSensitive/DebugSupport.h"
+#include "clang/Analysis/FlowSensitive/Solver.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ErrorHandling.h"
+
+namespace clang {
+namespace dataflow {
+
+llvm::StringRef debugString(Value::Kind Kind) {
+ switch (Kind) {
+ case Value::Kind::Integer:
+ return "Integer";
+ case Value::Kind::Pointer:
+ return "Pointer";
+ case Value::Kind::AtomicBool:
+ return "AtomicBool";
+ case Value::Kind::TopBool:
+ return "TopBool";
+ case Value::Kind::FormulaBool:
+ return "FormulaBool";
+ }
+ llvm_unreachable("Unhandled value kind");
+}
+
+llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
+ Solver::Result::Assignment Assignment) {
+ switch (Assignment) {
+ case Solver::Result::Assignment::AssignedFalse:
+ return OS << "False";
+ case Solver::Result::Assignment::AssignedTrue:
+ return OS << "True";
+ }
+ llvm_unreachable("Booleans can only be assigned true/false");
+}
+
+llvm::StringRef debugString(Solver::Result::Status Status) {
+ switch (Status) {
+ case Solver::Result::Status::Satisfiable:
+ return "Satisfiable";
+ case Solver::Result::Status::Unsatisfiable:
+ return "Unsatisfiable";
+ case Solver::Result::Status::TimedOut:
+ return "TimedOut";
+ }
+ llvm_unreachable("Unhandled SAT check result status");
+}
+
+llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Solver::Result &R) {
+ OS << debugString(R.getStatus()) << "\n";
+ if (auto Solution = R.getSolution()) {
+ std::vector<std::pair<Atom, Solver::Result::Assignment>> Sorted = {
+ Solution->begin(), Solution->end()};
+ llvm::sort(Sorted);
+ for (const auto &Entry : Sorted)
+ OS << Entry.first << " = " << Entry.second << "\n";
+ }
+ return OS;
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Formula.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Formula.cpp
new file mode 100644
index 000000000000..ef7d23ff6c56
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Formula.cpp
@@ -0,0 +1,94 @@
+//===- Formula.cpp ----------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Formula.h"
+#include "clang/Basic/LLVM.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <type_traits>
+
+namespace clang::dataflow {
+
+const Formula &Formula::create(llvm::BumpPtrAllocator &Alloc, Kind K,
+ ArrayRef<const Formula *> Operands,
+ unsigned Value) {
+ assert(Operands.size() == numOperands(K));
+ if (Value != 0) // Currently, formulas have values or operands, not both.
+ assert(numOperands(K) == 0);
+ void *Mem = Alloc.Allocate(sizeof(Formula) +
+ Operands.size() * sizeof(Operands.front()),
+ alignof(Formula));
+ Formula *Result = new (Mem) Formula();
+ Result->FormulaKind = K;
+ Result->Value = Value;
+ // Operands are stored as `const Formula *`s after the formula itself.
+ // We don't need to construct an object as pointers are trivial types.
+ // Formula is alignas(const Formula *), so alignment is satisfied.
+ llvm::copy(Operands, reinterpret_cast<const Formula **>(Result + 1));
+ return *Result;
+}
+
+static llvm::StringLiteral sigil(Formula::Kind K) {
+ switch (K) {
+ case Formula::AtomRef:
+ case Formula::Literal:
+ return "";
+ case Formula::Not:
+ return "!";
+ case Formula::And:
+ return " & ";
+ case Formula::Or:
+ return " | ";
+ case Formula::Implies:
+ return " => ";
+ case Formula::Equal:
+ return " = ";
+ }
+ llvm_unreachable("unhandled formula kind");
+}
+
+void Formula::print(llvm::raw_ostream &OS, const AtomNames *Names) const {
+ if (Names && kind() == AtomRef)
+ if (auto It = Names->find(getAtom()); It != Names->end()) {
+ OS << It->second;
+ return;
+ }
+
+ switch (numOperands(kind())) {
+ case 0:
+ switch (kind()) {
+ case AtomRef:
+ OS << getAtom();
+ break;
+ case Literal:
+ OS << (literal() ? "true" : "false");
+ break;
+ default:
+ llvm_unreachable("unhandled formula kind");
+ }
+ break;
+ case 1:
+ OS << sigil(kind());
+ operands()[0]->print(OS, Names);
+ break;
+ case 2:
+ OS << '(';
+ operands()[0]->print(OS, Names);
+ OS << sigil(kind());
+ operands()[1]->print(OS, Names);
+ OS << ')';
+ break;
+ default:
+ llvm_unreachable("unhandled formula arity");
+ }
+}
+
+} // namespace clang::dataflow \ No newline at end of file
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.cpp
new file mode 100644
index 000000000000..a36cb41a63df
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.cpp
@@ -0,0 +1,584 @@
+//===-- HTMLLogger.cpp ----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the HTML logger. Given a directory dir/, we write
+// dir/0.html for the first analysis, etc.
+// These files contain a visualization that allows inspecting the CFG and the
+// state of the analysis at each point.
+// Static assets (HTMLLogger.js, HTMLLogger.css) and SVG graphs etc are embedded
+// so each output file is self-contained.
+//
+// VIEWS
+//
+// The timeline and function view are always shown. These allow selecting basic
+// blocks, statements within them, and processing iterations (BBs are visited
+// multiple times when e.g. loops are involved).
+// These are written directly into the HTML body.
+//
+// There are also listings of particular basic blocks, and dumps of the state
+// at particular analysis points (i.e. BB2 iteration 3 statement 2).
+// These are only shown when the relevant BB/analysis point is *selected*.
+//
+// DATA AND TEMPLATES
+//
+// The HTML proper is mostly static.
+// The analysis data is in a JSON object HTMLLoggerData which is embedded as
+// a <script> in the <head>.
+// This gets rendered into DOM by a simple template processor which substitutes
+// the data into <template> tags embedded in the HTML. (see inflate() in JS).
+//
+// SELECTION
+//
+// This is the only real interactive mechanism.
+//
+// At any given time, there are several named selections, e.g.:
+// bb: B2 (basic block 0 is selected)
+// elt: B2.4 (statement 4 is selected)
+// iter: B2:1 (iteration 1 of the basic block is selected)
+// hover: B3 (hovering over basic block 3)
+//
+// The selection is updated by mouse events: hover by moving the mouse and
+// others by clicking. Elements that are click targets generally have attributes
+// (id or data-foo) that define what they should select.
+// See watchSelection() in JS for the exact logic.
+//
+// When the "bb" selection is set to "B2":
+// - sections <section data-selection="bb"> get shown
+// - templates under such sections get re-rendered
+// - elements with class/id "B2" get class "bb-select"
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
+#include "clang/Analysis/FlowSensitive/DebugSupport.h"
+#include "clang/Analysis/FlowSensitive/Logger.h"
+#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/JSON.h"
+#include "llvm/Support/Program.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+// Defines assets: HTMLLogger_{html_js,css}
+#include "HTMLLogger.inc"
+
+namespace clang::dataflow {
+namespace {
+
+// Render a graphviz graph specification to SVG using the `dot` tool.
+llvm::Expected<std::string> renderSVG(llvm::StringRef DotGraph);
+
+using StreamFactory = std::function<std::unique_ptr<llvm::raw_ostream>()>;
+
+// Recursively dumps Values/StorageLocations as JSON
+class ModelDumper {
+public:
+ ModelDumper(llvm::json::OStream &JOS, const Environment &Env)
+ : JOS(JOS), Env(Env) {}
+
+ void dump(Value &V) {
+ JOS.attribute("value_id", llvm::to_string(&V));
+ if (!Visited.insert(&V).second)
+ return;
+
+ JOS.attribute("kind", debugString(V.getKind()));
+
+ switch (V.getKind()) {
+ case Value::Kind::Integer:
+ case Value::Kind::TopBool:
+ case Value::Kind::AtomicBool:
+ case Value::Kind::FormulaBool:
+ break;
+ case Value::Kind::Pointer:
+ JOS.attributeObject(
+ "pointee", [&] { dump(cast<PointerValue>(V).getPointeeLoc()); });
+ break;
+ }
+
+ for (const auto& Prop : V.properties())
+ JOS.attributeObject(("p:" + Prop.first()).str(),
+ [&] { dump(*Prop.second); });
+
+ // Running the SAT solver is expensive, but knowing which booleans are
+ // guaranteed true/false here is valuable and hard to determine by hand.
+ if (auto *B = llvm::dyn_cast<BoolValue>(&V)) {
+ JOS.attribute("formula", llvm::to_string(B->formula()));
+ JOS.attribute("truth", Env.proves(B->formula()) ? "true"
+ : Env.proves(Env.arena().makeNot(B->formula()))
+ ? "false"
+ : "unknown");
+ }
+ }
+ void dump(const StorageLocation &L) {
+ JOS.attribute("location", llvm::to_string(&L));
+ if (!Visited.insert(&L).second)
+ return;
+
+ JOS.attribute("type", L.getType().getAsString());
+ if (!L.getType()->isRecordType())
+ if (auto *V = Env.getValue(L))
+ dump(*V);
+
+ if (auto *RLoc = dyn_cast<RecordStorageLocation>(&L)) {
+ for (const auto &Child : RLoc->children())
+ JOS.attributeObject("f:" + Child.first->getNameAsString(), [&] {
+ if (Child.second)
+ if (Value *Val = Env.getValue(*Child.second))
+ dump(*Val);
+ });
+
+ for (const auto &SyntheticField : RLoc->synthetic_fields())
+ JOS.attributeObject(("sf:" + SyntheticField.first()).str(),
+ [&] { dump(*SyntheticField.second); });
+ }
+ }
+
+ llvm::DenseSet<const void*> Visited;
+ llvm::json::OStream &JOS;
+ const Environment &Env;
+};
+
+class HTMLLogger : public Logger {
+ struct Iteration {
+ const CFGBlock *Block;
+ unsigned Iter;
+ bool PostVisit;
+ bool Converged;
+ };
+
+ StreamFactory Streams;
+ std::unique_ptr<llvm::raw_ostream> OS;
+ std::string JSON;
+ llvm::raw_string_ostream JStringStream{JSON};
+ llvm::json::OStream JOS{JStringStream, /*Indent=*/2};
+
+ const AdornedCFG *ACFG;
+ // Timeline of iterations of CFG block visitation.
+ std::vector<Iteration> Iters;
+ // Indexes in `Iters` of the iterations for each block.
+ llvm::DenseMap<const CFGBlock *, llvm::SmallVector<size_t>> BlockIters;
+ // For a given block ID, did the block converge (on the last iteration)?
+ llvm::BitVector BlockConverged;
+ // The messages logged in the current context but not yet written.
+ std::string ContextLogs;
+ // The number of elements we have visited within the current CFG block.
+ unsigned ElementIndex;
+
+public:
+ explicit HTMLLogger(StreamFactory Streams) : Streams(std::move(Streams)) {}
+ void beginAnalysis(const AdornedCFG &ACFG,
+ TypeErasedDataflowAnalysis &A) override {
+ OS = Streams();
+ this->ACFG = &ACFG;
+ *OS << llvm::StringRef(HTMLLogger_html).split("<?INJECT?>").first;
+
+ BlockConverged.resize(ACFG.getCFG().getNumBlockIDs());
+
+ const auto &D = ACFG.getDecl();
+ const auto &SM = A.getASTContext().getSourceManager();
+ *OS << "<title>";
+ if (const auto *ND = dyn_cast<NamedDecl>(&D))
+ *OS << ND->getNameAsString() << " at ";
+ *OS << SM.getFilename(D.getLocation()) << ":"
+ << SM.getSpellingLineNumber(D.getLocation());
+ *OS << "</title>\n";
+
+ *OS << "<style>" << HTMLLogger_css << "</style>\n";
+ *OS << "<script>" << HTMLLogger_js << "</script>\n";
+
+ writeCode();
+ JOS.objectBegin();
+ JOS.attributeBegin("states");
+ JOS.objectBegin();
+ }
+ // Between beginAnalysis() and endAnalysis() we write all the states for
+ // particular analysis points into the `timeline` array.
+ void endAnalysis() override {
+ JOS.objectEnd();
+ JOS.attributeEnd();
+
+ JOS.attributeArray("timeline", [&] {
+ for (const auto &E : Iters) {
+ JOS.object([&] {
+ JOS.attribute("block", blockID(E.Block->getBlockID()));
+ JOS.attribute("iter", E.Iter);
+ JOS.attribute("post_visit", E.PostVisit);
+ JOS.attribute("converged", E.Converged);
+ });
+ }
+ });
+ JOS.attributeObject("cfg", [&] {
+ for (const auto &E : BlockIters)
+ writeBlock(*E.first, E.second);
+ });
+
+ JOS.objectEnd();
+
+ writeCFG();
+
+ *OS << "<script>var HTMLLoggerData = \n";
+ *OS << JSON;
+ *OS << ";\n</script>\n";
+ *OS << llvm::StringRef(HTMLLogger_html).split("<?INJECT?>").second;
+ }
+
+ void enterBlock(const CFGBlock &B, bool PostVisit) override {
+ llvm::SmallVector<size_t> &BIter = BlockIters[&B];
+ unsigned IterNum = BIter.size() + 1;
+ BIter.push_back(Iters.size());
+ Iters.push_back({&B, IterNum, PostVisit, /*Converged=*/false});
+ if (!PostVisit)
+ BlockConverged[B.getBlockID()] = false;
+ ElementIndex = 0;
+ }
+ void enterElement(const CFGElement &E) override {
+ ++ElementIndex;
+ }
+
+ static std::string blockID(unsigned Block) {
+ return llvm::formatv("B{0}", Block);
+ }
+ static std::string eltID(unsigned Block, unsigned Element) {
+ return llvm::formatv("B{0}.{1}", Block, Element);
+ }
+ static std::string iterID(unsigned Block, unsigned Iter) {
+ return llvm::formatv("B{0}:{1}", Block, Iter);
+ }
+ static std::string elementIterID(unsigned Block, unsigned Iter,
+ unsigned Element) {
+ return llvm::formatv("B{0}:{1}_B{0}.{2}", Block, Iter, Element);
+ }
+
+ // Write the analysis state associated with a particular analysis point.
+ // FIXME: this dump is fairly opaque. We should show:
+ // - values associated with the current Stmt
+ // - values associated with its children
+ // - meaningful names for values
+ // - which boolean values are implied true/false by the flow condition
+ void recordState(TypeErasedDataflowAnalysisState &State) override {
+ unsigned Block = Iters.back().Block->getBlockID();
+ unsigned Iter = Iters.back().Iter;
+ bool PostVisit = Iters.back().PostVisit;
+ JOS.attributeObject(elementIterID(Block, Iter, ElementIndex), [&] {
+ JOS.attribute("block", blockID(Block));
+ JOS.attribute("iter", Iter);
+ JOS.attribute("post_visit", PostVisit);
+ JOS.attribute("element", ElementIndex);
+
+ // If this state immediately follows an Expr, show its built-in model.
+ if (ElementIndex > 0) {
+ auto S =
+ Iters.back().Block->Elements[ElementIndex - 1].getAs<CFGStmt>();
+ if (const Expr *E = S ? llvm::dyn_cast<Expr>(S->getStmt()) : nullptr) {
+ if (E->isPRValue()) {
+ if (!E->getType()->isRecordType())
+ if (auto *V = State.Env.getValue(*E))
+ JOS.attributeObject(
+ "value", [&] { ModelDumper(JOS, State.Env).dump(*V); });
+ } else {
+ if (auto *Loc = State.Env.getStorageLocation(*E))
+ JOS.attributeObject(
+ "value", [&] { ModelDumper(JOS, State.Env).dump(*Loc); });
+ }
+ }
+ }
+ if (!ContextLogs.empty()) {
+ JOS.attribute("logs", ContextLogs);
+ ContextLogs.clear();
+ }
+ {
+ std::string BuiltinLattice;
+ llvm::raw_string_ostream BuiltinLatticeS(BuiltinLattice);
+ State.Env.dump(BuiltinLatticeS);
+ JOS.attribute("builtinLattice", BuiltinLattice);
+ }
+ });
+ }
+ void blockConverged() override {
+ Iters.back().Converged = true;
+ BlockConverged[Iters.back().Block->getBlockID()] = true;
+ }
+
+ void logText(llvm::StringRef S) override {
+ ContextLogs.append(S.begin(), S.end());
+ ContextLogs.push_back('\n');
+ }
+
+private:
+ // Write the CFG block details.
+ // Currently this is just the list of elements in execution order.
+ // FIXME: an AST dump would be a useful view, too.
+ void writeBlock(const CFGBlock &B, llvm::ArrayRef<size_t> ItersForB) {
+ JOS.attributeObject(blockID(B.getBlockID()), [&] {
+ JOS.attributeArray("iters", [&] {
+ for (size_t IterIdx : ItersForB) {
+ const Iteration &Iter = Iters[IterIdx];
+ JOS.object([&] {
+ JOS.attribute("iter", Iter.Iter);
+ JOS.attribute("post_visit", Iter.PostVisit);
+ JOS.attribute("converged", Iter.Converged);
+ });
+ }
+ });
+ JOS.attributeArray("elements", [&] {
+ for (const auto &Elt : B.Elements) {
+ std::string Dump;
+ llvm::raw_string_ostream DumpS(Dump);
+ Elt.dumpToStream(DumpS);
+ JOS.value(Dump);
+ }
+ });
+ });
+ }
+
+ // Write the code of function being examined.
+ // We want to overlay the code with <span>s that mark which BB particular
+ // tokens are associated with, and even which BB element (so that clicking
+ // can select the right element).
+ void writeCode() {
+ const auto &AST = ACFG->getDecl().getASTContext();
+ bool Invalid = false;
+
+ // Extract the source code from the original file.
+ // Pretty-printing from the AST would probably be nicer (no macros or
+ // indentation to worry about), but we need the boundaries of particular
+ // AST nodes and the printer doesn't provide this.
+ auto Range = clang::Lexer::makeFileCharRange(
+ CharSourceRange::getTokenRange(ACFG->getDecl().getSourceRange()),
+ AST.getSourceManager(), AST.getLangOpts());
+ if (Range.isInvalid())
+ return;
+ llvm::StringRef Code = clang::Lexer::getSourceText(
+ Range, AST.getSourceManager(), AST.getLangOpts(), &Invalid);
+ if (Invalid)
+ return;
+
+ // TokenInfo stores the BB and set of elements that a token is part of.
+ struct TokenInfo {
+ enum : unsigned { Missing = static_cast<unsigned>(-1) };
+
+ // The basic block this is part of.
+ // This is the BB of the stmt with the smallest containing range.
+ unsigned BB = Missing;
+ unsigned BBPriority = 0;
+ // The most specific stmt this is part of (smallest range).
+ unsigned Elt = Missing;
+ unsigned EltPriority = 0;
+ // All stmts this is part of.
+ SmallVector<unsigned> Elts;
+
+ // Mark this token as being part of BB.Elt.
+ // RangeLen is the character length of the element's range, used to
+ // distinguish inner vs outer statements.
+ // For example in `a==0`, token "a" is part of the stmts "a" and "a==0".
+ // However "a" has a smaller range, so is more specific. Clicking on the
+ // token "a" should select the stmt "a".
+ void assign(unsigned BB, unsigned Elt, unsigned RangeLen) {
+ // A worse BB (larger range) => ignore.
+ if (this->BB != Missing && BB != this->BB && BBPriority <= RangeLen)
+ return;
+ if (BB != this->BB) {
+ this->BB = BB;
+ Elts.clear();
+ BBPriority = RangeLen;
+ }
+ BBPriority = std::min(BBPriority, RangeLen);
+ Elts.push_back(Elt);
+ if (this->Elt == Missing || EltPriority > RangeLen)
+ this->Elt = Elt;
+ }
+ bool operator==(const TokenInfo &Other) const {
+ return std::tie(BB, Elt, Elts) ==
+ std::tie(Other.BB, Other.Elt, Other.Elts);
+ }
+ // Write the attributes for the <span> on this token.
+ void write(llvm::raw_ostream &OS) const {
+ OS << "class='c";
+ if (BB != Missing)
+ OS << " " << blockID(BB);
+ for (unsigned Elt : Elts)
+ OS << " " << eltID(BB, Elt);
+ OS << "'";
+
+ if (Elt != Missing)
+ OS << " data-elt='" << eltID(BB, Elt) << "'";
+ if (BB != Missing)
+ OS << " data-bb='" << blockID(BB) << "'";
+ }
+ };
+
+ // Construct one TokenInfo per character in a flat array.
+ // This is inefficient (chars in a token all have the same info) but simple.
+ std::vector<TokenInfo> State(Code.size());
+ for (const auto *Block : ACFG->getCFG()) {
+ unsigned EltIndex = 0;
+ for (const auto& Elt : *Block) {
+ ++EltIndex;
+ if (const auto S = Elt.getAs<CFGStmt>()) {
+ auto EltRange = clang::Lexer::makeFileCharRange(
+ CharSourceRange::getTokenRange(S->getStmt()->getSourceRange()),
+ AST.getSourceManager(), AST.getLangOpts());
+ if (EltRange.isInvalid())
+ continue;
+ if (EltRange.getBegin() < Range.getBegin() ||
+ EltRange.getEnd() >= Range.getEnd() ||
+ EltRange.getEnd() < Range.getBegin() ||
+ EltRange.getEnd() >= Range.getEnd())
+ continue;
+ unsigned Off = EltRange.getBegin().getRawEncoding() -
+ Range.getBegin().getRawEncoding();
+ unsigned Len = EltRange.getEnd().getRawEncoding() -
+ EltRange.getBegin().getRawEncoding();
+ for (unsigned I = 0; I < Len; ++I)
+ State[Off + I].assign(Block->getBlockID(), EltIndex, Len);
+ }
+ }
+ }
+
+ // Finally, write the code with the correct <span>s.
+ unsigned Line =
+ AST.getSourceManager().getSpellingLineNumber(Range.getBegin());
+ *OS << "<template data-copy='code'>\n";
+ *OS << "<code class='filename'>";
+ llvm::printHTMLEscaped(
+ llvm::sys::path::filename(
+ AST.getSourceManager().getFilename(Range.getBegin())),
+ *OS);
+ *OS << "</code>";
+ *OS << "<code class='line' data-line='" << Line++ << "'>";
+ for (unsigned I = 0; I < Code.size(); ++I) {
+ // Don't actually write a <span> around each character, only break spans
+ // when the TokenInfo changes.
+ bool NeedOpen = I == 0 || !(State[I] == State[I-1]);
+ bool NeedClose = I + 1 == Code.size() || !(State[I] == State[I + 1]);
+ if (NeedOpen) {
+ *OS << "<span ";
+ State[I].write(*OS);
+ *OS << ">";
+ }
+ if (Code[I] == '\n')
+ *OS << "</code>\n<code class='line' data-line='" << Line++ << "'>";
+ else
+ llvm::printHTMLEscaped(Code.substr(I, 1), *OS);
+ if (NeedClose) *OS << "</span>";
+ }
+ *OS << "</code>\n";
+ *OS << "</template>";
+ }
+
+ // Write the CFG diagram, a graph of basic blocks.
+ // Laying out graphs is hard, so we construct a graphviz description and shell
+ // out to `dot` to turn it into an SVG.
+ void writeCFG() {
+ *OS << "<template data-copy='cfg'>\n";
+ if (auto SVG = renderSVG(buildCFGDot(ACFG->getCFG())))
+ *OS << *SVG;
+ else
+ *OS << "Can't draw CFG: " << toString(SVG.takeError());
+ *OS << "</template>\n";
+ }
+
+ // Produce a graphviz description of a CFG.
+ std::string buildCFGDot(const clang::CFG &CFG) {
+ std::string Graph;
+ llvm::raw_string_ostream GraphS(Graph);
+ // Graphviz likes to add unhelpful tooltips everywhere, " " suppresses.
+ GraphS << R"(digraph {
+ tooltip=" "
+ node[class=bb, shape=square, fontname="sans-serif", tooltip=" "]
+ edge[tooltip = " "]
+)";
+ for (unsigned I = 0; I < CFG.getNumBlockIDs(); ++I) {
+ std::string Name = blockID(I);
+ // Rightwards arrow, vertical line
+ const char *ConvergenceMarker = (const char *)u8"\\n\u2192\u007c";
+ if (BlockConverged[I])
+ Name += ConvergenceMarker;
+ GraphS << " " << blockID(I) << " [id=" << blockID(I) << " label=\""
+ << Name << "\"]\n";
+ }
+ for (const auto *Block : CFG) {
+ for (const auto &Succ : Block->succs()) {
+ if (Succ.getReachableBlock())
+ GraphS << " " << blockID(Block->getBlockID()) << " -> "
+ << blockID(Succ.getReachableBlock()->getBlockID()) << "\n";
+ }
+ }
+ GraphS << "}\n";
+ return Graph;
+ }
+};
+
+// Nothing interesting here, just subprocess/temp-file plumbing.
+llvm::Expected<std::string> renderSVG(llvm::StringRef DotGraph) {
+ std::string DotPath;
+ if (const auto *FromEnv = ::getenv("GRAPHVIZ_DOT"))
+ DotPath = FromEnv;
+ else {
+ auto FromPath = llvm::sys::findProgramByName("dot");
+ if (!FromPath)
+ return llvm::createStringError(FromPath.getError(),
+ "'dot' not found on PATH");
+ DotPath = FromPath.get();
+ }
+
+ // Create input and output files for `dot` subprocess.
+ // (We create the output file as empty, to reserve the temp filename).
+ llvm::SmallString<256> Input, Output;
+ int InputFD;
+ if (auto EC = llvm::sys::fs::createTemporaryFile("analysis", ".dot", InputFD,
+ Input))
+ return llvm::createStringError(EC, "failed to create `dot` temp input");
+ llvm::raw_fd_ostream(InputFD, /*shouldClose=*/true) << DotGraph;
+ auto DeleteInput =
+ llvm::make_scope_exit([&] { llvm::sys::fs::remove(Input); });
+ if (auto EC = llvm::sys::fs::createTemporaryFile("analysis", ".svg", Output))
+ return llvm::createStringError(EC, "failed to create `dot` temp output");
+ auto DeleteOutput =
+ llvm::make_scope_exit([&] { llvm::sys::fs::remove(Output); });
+
+ std::vector<std::optional<llvm::StringRef>> Redirects = {
+ Input, Output,
+ /*stderr=*/std::nullopt};
+ std::string ErrMsg;
+ int Code = llvm::sys::ExecuteAndWait(
+ DotPath, {"dot", "-Tsvg"}, /*Env=*/std::nullopt, Redirects,
+ /*SecondsToWait=*/0, /*MemoryLimit=*/0, &ErrMsg);
+ if (!ErrMsg.empty())
+ return llvm::createStringError(llvm::inconvertibleErrorCode(),
+ "'dot' failed: " + ErrMsg);
+ if (Code != 0)
+ return llvm::createStringError(llvm::inconvertibleErrorCode(),
+ "'dot' failed (" + llvm::Twine(Code) + ")");
+
+ auto Buf = llvm::MemoryBuffer::getFile(Output);
+ if (!Buf)
+ return llvm::createStringError(Buf.getError(), "Can't read `dot` output");
+
+ // Output has <?xml> prefix we don't want. Skip to <svg> tag.
+ llvm::StringRef Result = Buf.get()->getBuffer();
+ auto Pos = Result.find("<svg");
+ if (Pos == llvm::StringRef::npos)
+ return llvm::createStringError(llvm::inconvertibleErrorCode(),
+ "Can't find <svg> tag in `dot` output");
+ return Result.substr(Pos).str();
+}
+
+} // namespace
+
+std::unique_ptr<Logger>
+Logger::html(std::function<std::unique_ptr<llvm::raw_ostream>()> Streams) {
+ return std::make_unique<HTMLLogger>(std::move(Streams));
+}
+
+} // namespace clang::dataflow
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.css b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.css
new file mode 100644
index 000000000000..e25270430efc
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.css
@@ -0,0 +1,169 @@
+/*===-- HTMLLogger.css ----------------------------------------------------===
+*
+* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+* See https://llvm.org/LICENSE.txt for license information.
+* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+*
+*===----------------------------------------------------------------------===*/
+html { font-family: sans-serif; }
+body { margin: 0; display: flex; justify-content: left; }
+body > * { box-sizing: border-box; }
+body > section {
+ border: 1px solid black;
+ min-width: 20em;
+ overflow: auto;
+ max-height: 100vh;
+}
+section header {
+ background-color: #008;
+ color: white;
+ font-weight: bold;
+ font-size: large;
+ padding-right: 0.5em;
+}
+section h2 {
+ font-size: medium;
+ margin-bottom: 0.5em;
+ padding-top: 0.5em;
+ border-top: 1px solid #aaa;
+}
+#timeline {
+ min-width: max-content;
+ counter-reset: entry_counter;
+}
+#timeline .entry .counter::before {
+ counter-increment: entry_counter;
+ content: counter(entry_counter) ":";
+}
+#timeline .entry .counter {
+ display: inline-block;
+ min-width: 2em; /* Enough space for two digits and a colon */
+ text-align: right;
+}
+#timeline .entry.hover {
+ background-color: #aaa;
+}
+#timeline .entry.iter-select {
+ background-color: #aac;
+}
+
+#bb-elements {
+ font-family: monospace;
+ font-size: x-small;
+ border-collapse: collapse;
+}
+#bb-elements td:nth-child(1) {
+ text-align: right;
+ width: 4em;
+ border-right: 1px solid #008;
+ padding: 0.3em 0.5em;
+
+ font-weight: bold;
+ color: #888;
+};
+#bb-elements tr.hover {
+ background-color: #abc;
+}
+#bb-elements tr.elt-select {
+ background-color: #acf;
+}
+#iterations {
+ display: flex;
+}
+#iterations .chooser {
+ flex-grow: 1;
+ text-align: center;
+ padding-left: 0.2em;
+}
+#iterations .chooser :last-child {
+ padding-right: 0.2em;
+}
+#iterations .chooser:not(.iter-select).hover {
+ background-color: #ddd;
+}
+#iterations .iter-select {
+ font-weight: bold;
+}
+#iterations .chooser:not(.iter-select) {
+ text-decoration: underline;
+ color: blue;
+ cursor: pointer;
+ background-color: #ccc;
+}
+
+code.filename {
+ font-weight: bold;
+ color: black;
+ background-color: #ccc;
+ display: block;
+ text-align: center;
+}
+code.line {
+ display: block;
+ white-space: pre;
+}
+code.line:before { /* line numbers */
+ content: attr(data-line);
+ display: inline-block;
+ width: 2em;
+ text-align: right;
+ padding-right: 2px;
+ background-color: #ccc;
+ border-right: 1px solid #888;
+ margin-right: 8px;
+}
+code.line:has(.bb-select):before {
+ border-right: 4px solid black;
+ margin-right: 5px;
+}
+.c.hover, .bb.hover {
+ filter: saturate(200%) brightness(90%);
+}
+.c.elt-select {
+ box-shadow: inset 0 -4px 2px -2px #a00;
+}
+.bb.bb-select polygon {
+ stroke-width: 4px;
+ filter: brightness(70%) saturate(150%);
+}
+.bb { user-select: none; }
+.bb polygon { fill: white; }
+#cfg {
+ position: relative;
+ margin-left: 0.5em;
+}
+
+.value {
+ border: 1px solid #888;
+ font-size: x-small;
+ flex-grow: 1;
+}
+.value > summary {
+ background-color: #ace;
+ display: flex;
+ cursor: pointer;
+}
+.value > summary::before {
+ content: '\25ba'; /* Black Right-Pointing Pointer */
+ margin-right: 0.5em;
+ font-size: 0.9em;
+}
+.value[open] > summary::before {
+ content: '\25bc'; /* Black Down-Pointing Triangle */
+}
+.value > summary > .location {
+ margin-left: auto;
+}
+.value .address {
+ font-size: xx-small;
+ font-family: monospace;
+ color: #888;
+}
+.value .property {
+ display: flex;
+ margin-top: 0.5em;
+}
+.value .property .key {
+ font-weight: bold;
+ min-width: 5em;
+}
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.html b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.html
new file mode 100644
index 000000000000..be173e8b2854
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.html
@@ -0,0 +1,119 @@
+<!doctype html>
+<html>
+<!-- HTMLLogger.cpp ----------------------------------------------------
+
+ Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+ See https://llvm.org/LICENSE.txt for license information.
+ SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+
+//===------------------------------------------------------------------------>
+
+<head>
+<?INJECT?>
+
+<template id="value-template">
+ <details class="value" open>
+ <summary>
+ <span>{{v.kind}}
+ <template data-if="v.value_id"><span class="address">#{{v.value_id}}</span></template>
+ </span>
+ <template data-if="v.location">
+ <span class="location">{{v.type}} <span class="address">@{{v.location}}</span></span>
+ </template>
+ </summary>
+ <template
+ data-for="kv in Object.entries(v)"
+ data-if="['kind', 'value_id', 'type', 'location'].indexOf(kv[0]) < 0">
+ <div class="property"><span class="key">{{kv[0]}}</span>
+ <template data-if="typeof(kv[1]) != 'object'">{{kv[1]}}</template>
+ <template data-if="typeof(kv[1]) == 'object'" data-let="v = kv[1]">
+ <template data-use="value-template"></template>
+ </template>
+ </div>
+ </template>
+ </details>
+</template>
+
+</head>
+
+<body>
+
+<section id="timeline" data-selection="">
+<header>Timeline</header>
+<template data-for="entry in timeline">
+ <div id="{{entry.block}}:{{entry.iter}}" data-bb="{{entry.block}}" class="entry">
+ <span class="counter"></span>
+ {{entry.block}}
+ <template data-if="entry.post_visit">(post-visit)</template>
+ <template data-if="!entry.post_visit">({{entry.iter}})</template>
+ <template data-if="entry.converged"> &#x2192;&#x7c;<!--Rightwards arrow, vertical line--></template>
+ </div>
+</template>
+</section>
+
+<section id="function" data-selection="">
+<header>Function</header>
+<div id="code"></div>
+<div id="cfg"></div>
+</section>
+
+<section id="block" data-selection="bb">
+<header><template>Block {{selection.bb}}</template></header>
+<div id="iterations">
+ <template data-for="iter in cfg[selection.bb].iters">
+ <a class="chooser {{selection.bb}}:{{iter.iter}}" data-iter="{{selection.bb}}:{{iter.iter}}">
+ <template data-if="iter.post_visit">Post-visit</template>
+ <template data-if="!iter.post_visit">{{iter.iter}}</template>
+ <template data-if="iter.converged"> &#x2192;&#x7c;<!--Rightwards arrow, vertical line--></template>
+ </a>
+ </template>
+</div>
+<table id="bb-elements">
+<template>
+ <tr id="{{selection.bb}}.0">
+ <td class="{{selection.bb}}">{{selection.bb}}.0</td>
+ <td>(initial state)</td>
+ </tr>
+</template>
+<template data-for="elt in cfg[selection.bb].elements">
+ <tr id="{{selection.bb}}.{{elt_index+1}}">
+ <td class="{{selection.bb}}">{{selection.bb}}.{{elt_index+1}}</td>
+ <td>{{elt}}</td>
+ </tr>
+</template>
+</table>
+</section>
+
+<section id="element" data-selection="iter,elt">
+<template data-let="state = states[selection.iter + '_' + selection.elt]">
+<header>
+ <template data-if="state.element == 0">{{state.block}} initial state</template>
+ <template data-if="state.element != 0">Element {{selection.elt}}</template>
+ <template data-if="state.post_visit"> (post-visit)</template>
+ <template data-if="!state.post_visit"> (iteration {{state.iter}})</template>
+</header>
+<template data-if="state.value" data-let="v = state.value">
+ <h2>Value</h2>
+ <template data-use="value-template"></template>
+</template>
+<template data-if="state.logs">
+ <h2>Logs</h2>
+ <pre>{{state.logs}}</pre>
+</template>
+<h2>Built-in lattice</h2>
+<pre>{{state.builtinLattice}}</pre>
+</template>
+</section>
+
+<script>
+addBBColors(Object.keys(HTMLLoggerData.cfg).length);
+watchSelection(HTMLLoggerData);
+updateSelection({}, HTMLLoggerData);
+// Copy code and cfg from <template>s into the body.
+for (tmpl of document.querySelectorAll('template[data-copy]'))
+ document.getElementById(tmpl.dataset.copy).replaceChildren(
+ ...tmpl.content.cloneNode(/*deep=*/true).childNodes);
+</script>
+
+</body>
+</html>
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.js b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.js
new file mode 100644
index 000000000000..6e04bc00f663
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/HTMLLogger.js
@@ -0,0 +1,219 @@
+//===-- HTMLLogger.js -----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+// Based on selected objects, hide/show sections & populate data from templates.
+//
+// For example, if the selection is {bb="BB4", elt="BB4.6" iter="BB4:2"}:
+// - show the "block" and "element" sections
+// - re-render templates within these sections (if selection changed)
+// - apply "bb-select" to items with class class "BB4", etc
+let selection = {};
+function updateSelection(changes, data) {
+ Object.assign(selection, changes);
+
+ data = Object.create(data);
+ data.selection = selection;
+ for (root of document.querySelectorAll('[data-selection]'))
+ updateSection(root, data);
+
+ for (var k in changes)
+ applyClassIf(k + '-select', classSelector(changes[k]));
+}
+
+// Given <section data-selection="x,y">:
+// - hide section if selections x or y are null
+// - re-render templates if x or y have changed
+function updateSection(root, data) {
+ let changed = root.selection == null;
+ root.selection ||= {};
+ for (key of root.dataset.selection.split(',')) {
+ if (!key) continue;
+ if (data.selection[key] != root.selection[key]) {
+ root.selection[key] = data.selection[key];
+ changed = true;
+ }
+ if (data.selection[key] == null) {
+ root.hidden = true;
+ return;
+ }
+ }
+ if (changed) {
+ root.hidden = false;
+ for (tmpl of root.getElementsByTagName('template'))
+ reinflate(tmpl, data);
+ }
+}
+
+// Expands template `tmpl` based on input `data`:
+// - interpolates {{expressions}} in text and attributes
+// - <template> tags can modify expansion: if, for etc
+// Outputs to `parent` element, inserting before `next`.
+function inflate(tmpl, data, parent, next) {
+ // We use eval() as our expression language in templates!
+ // The templates are static and trusted.
+ let evalExpr = (expr, data) => eval('with (data) { ' + expr + ' }');
+ let interpolate = (str, data) =>
+ str.replace(/\{\{(.*?)\}\}/g, (_, expr) => evalExpr(expr, data))
+ // Anything other than <template> tag: copy, interpolate, recursively inflate.
+ if (tmpl.nodeName != 'TEMPLATE') {
+ let clone = tmpl.cloneNode();
+ clone.inflated = true;
+ if (clone instanceof Text)
+ clone.textContent = interpolate(clone.textContent, data);
+ if (clone instanceof Element) {
+ for (attr of clone.attributes)
+ attr.value = interpolate(attr.value, data);
+ for (c of tmpl.childNodes)
+ inflate(c, data, clone, /*next=*/null);
+ }
+ return parent.insertBefore(clone, next);
+ }
+ // data-use="xyz": use <template id="xyz"> instead. (Allows recursion.)
+ if ('use' in tmpl.dataset)
+ return inflate(document.getElementById(tmpl.dataset.use), data, parent, next);
+ // <template> tag handling. Base case: recursively inflate.
+ function handle(data) {
+ for (c of tmpl.content.childNodes)
+ inflate(c, data, parent, next);
+ }
+ // Directives on <template> tags modify behavior.
+ const directives = {
+ // data-for="x in expr": expr is enumerable, bind x to each in turn
+ 'for': (nameInExpr, data, proceed) => {
+ let [name, expr] = nameInExpr.split(' in ');
+ let newData = Object.create(data);
+ let index = 0;
+ for (val of evalExpr(expr, data) || []) {
+ newData[name] = val;
+ newData[name + '_index'] = index++;
+ proceed(newData);
+ }
+ },
+ // data-if="expr": only include contents if expression is truthy
+ 'if': (expr, data, proceed) => { if (evalExpr(expr, data)) proceed(data); },
+ // data-let="x = expr": bind x to value of expr
+ 'let': (nameEqExpr, data, proceed) => {
+ let [name, expr] = nameEqExpr.split(' = ');
+ let newData = Object.create(data);
+ newData[name] = evalExpr(expr, data);
+ proceed(newData);
+ },
+ }
+ // Compose directive handlers on top of the base handler.
+ for (let [dir, value] of Object.entries(tmpl.dataset).reverse()) {
+ if (dir in directives) {
+ let proceed = handle;
+ handle = (data) => directives[dir](value, data, proceed);
+ }
+ }
+ handle(data);
+}
+// Expand a template, after first removing any prior expansion of it.
+function reinflate(tmpl, data) {
+ // Clear previously rendered template contents.
+ while (tmpl.nextSibling && tmpl.nextSibling.inflated)
+ tmpl.parentNode.removeChild(tmpl.nextSibling);
+ inflate(tmpl, data, tmpl.parentNode, tmpl.nextSibling);
+}
+
+// Handle a mouse event on a region containing selectable items.
+// This might end up changing the hover state or the selection state.
+//
+// targetSelector describes what target HTML element is selectable.
+// targetToID specifies how to determine the selection from it:
+// hover: a function from target to the class name to highlight
+// bb: a function from target to the basic-block name to select (BB4)
+// elt: a function from target to the CFG element name to select (BB4.5)
+// iter: a function from target to the BB iteration to select (BB4:2)
+// If an entry is missing, the selection is unmodified.
+// If an entry is null, the selection is always cleared.
+function mouseEventHandler(event, targetSelector, targetToID, data) {
+ var target = event.type == "mouseout" ? null : event.target.closest(targetSelector);
+ let selTarget = k => (target && targetToID[k]) ? targetToID[k](target) : null;
+ if (event.type == "click") {
+ let newSel = {};
+ for (var k in targetToID) {
+ if (k == 'hover') continue;
+ let t = selTarget(k);
+ newSel[k] = t;
+ }
+ updateSelection(newSel, data);
+ } else if ("hover" in targetToID) {
+ applyClassIf("hover", classSelector(selTarget("hover")));
+ }
+}
+function watch(rootSelector, targetSelector, targetToID, data) {
+ var root = document.querySelector(rootSelector);
+ for (event of ['mouseout', 'mousemove', 'click'])
+ root.addEventListener(event, e => mouseEventHandler(e, targetSelector, targetToID, data));
+}
+function watchSelection(data) {
+ let lastIter = (bb) => `${bb}:${data.cfg[bb].iters}`;
+ watch('#code', '.c', {
+ hover: e => e.dataset.elt,
+ bb: e => e.dataset.bb,
+ elt: e => e.dataset.elt,
+ // If we're already viewing an iteration of this BB, stick with the same.
+ iter: e => (selection.iter && selection.bb == e.dataset.bb) ? selection.iter : lastIter(e.dataset.bb),
+ }, data);
+ watch('#cfg', '.bb', {
+ hover: e => e.id,
+ bb: e => e.id,
+ elt: e => e.id + ".0",
+ iter: e => lastIter(e.id),
+ }, data);
+ watch('#timeline', '.entry', {
+ hover: e => [e.id, e.dataset.bb],
+ bb: e => e.dataset.bb,
+ elt: e => e.dataset.bb + ".0",
+ iter: e => e.id,
+ }, data);
+ watch('#bb-elements', 'tr', {
+ hover: e => e.id,
+ elt: e => e.id,
+ }, data);
+ watch('#iterations', '.chooser', {
+ hover: e => e.dataset.iter,
+ iter: e => e.dataset.iter,
+ }, data);
+ updateSelection({}, data);
+}
+function applyClassIf(cls, query) {
+ document.querySelectorAll('.' + cls).forEach(elt => elt.classList.remove(cls));
+ document.querySelectorAll(query).forEach(elt => elt.classList.add(cls));
+}
+// Turns a class name into a CSS selector matching it, with some wrinkles:
+// - we treat id="foo" just like class="foo" to avoid repetition in the HTML
+// - cls can be an array of strings, we match them all
+function classSelector(cls) {
+ if (cls == null) return null;
+ if (Array.isArray(cls)) return cls.map(classSelector).join(', ');
+ var escaped = cls.replace('.', '\\.').replace(':', '\\:');
+ // don't require id="foo" class="foo"
+ return '.' + escaped + ", #" + escaped;
+}
+
+// Add a stylesheet defining colors for n basic blocks.
+function addBBColors(n) {
+ let sheet = new CSSStyleSheet();
+ // hex values to subtract from fff to get a base color
+ options = [0x001, 0x010, 0x011, 0x100, 0x101, 0x110, 0x111];
+ function color(hex) {
+ return "#" + hex.toString(16).padStart(3, "0");
+ }
+ function add(selector, property, hex) {
+ sheet.insertRule(`${selector} { ${property}: ${color(hex)}; }`)
+ }
+ for (var i = 0; i < n; ++i) {
+ let opt = options[i%options.length];
+ add(`.B${i}`, 'background-color', 0xfff - 2*opt);
+ add(`#B${i} polygon`, 'fill', 0xfff - 2*opt);
+ add(`#B${i} polygon`, 'stroke', 0x888 - 4*opt);
+ }
+ document.adoptedStyleSheets.push(sheet);
+}
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Logger.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Logger.cpp
new file mode 100644
index 000000000000..8f40768171c9
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Logger.cpp
@@ -0,0 +1,111 @@
+//===-- Logger.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Logger.h"
+#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
+#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
+#include "llvm/Support/WithColor.h"
+
+namespace clang::dataflow {
+
+Logger &Logger::null() {
+ struct NullLogger final : Logger {};
+ static auto *Instance = new NullLogger();
+ return *Instance;
+}
+
+namespace {
+struct TextualLogger final : Logger {
+ llvm::raw_ostream &OS;
+ const CFG *CurrentCFG;
+ const CFGBlock *CurrentBlock;
+ const CFGElement *CurrentElement;
+ unsigned CurrentElementIndex;
+ bool ShowColors;
+ llvm::DenseMap<const CFGBlock *, unsigned> VisitCount;
+ TypeErasedDataflowAnalysis *CurrentAnalysis;
+
+ TextualLogger(llvm::raw_ostream &OS)
+ : OS(OS), ShowColors(llvm::WithColor::defaultAutoDetectFunction()(OS)) {}
+
+ virtual void beginAnalysis(const AdornedCFG &ACFG,
+ TypeErasedDataflowAnalysis &Analysis) override {
+ {
+ llvm::WithColor Header(OS, llvm::raw_ostream::Colors::RED, /*Bold=*/true);
+ OS << "=== Beginning data flow analysis ===\n";
+ }
+ auto &D = ACFG.getDecl();
+ D.print(OS);
+ OS << "\n";
+ D.dump(OS);
+ CurrentCFG = &ACFG.getCFG();
+ CurrentCFG->print(OS, Analysis.getASTContext().getLangOpts(), ShowColors);
+ CurrentAnalysis = &Analysis;
+ }
+ virtual void endAnalysis() override {
+ llvm::WithColor Header(OS, llvm::raw_ostream::Colors::RED, /*Bold=*/true);
+ unsigned Blocks = 0, Steps = 0;
+ for (const auto &E : VisitCount) {
+ ++Blocks;
+ Steps += E.second;
+ }
+ llvm::errs() << "=== Finished analysis: " << Blocks << " blocks in "
+ << Steps << " total steps ===\n";
+ }
+ virtual void enterBlock(const CFGBlock &Block, bool PostVisit) override {
+ unsigned Count = ++VisitCount[&Block];
+ {
+ llvm::WithColor Header(OS, llvm::raw_ostream::Colors::RED, /*Bold=*/true);
+ OS << "=== Entering block B" << Block.getBlockID();
+ if (PostVisit)
+ OS << " (post-visit)";
+ else
+ OS << " (iteration " << Count << ")";
+ OS << " ===\n";
+ }
+ Block.print(OS, CurrentCFG, CurrentAnalysis->getASTContext().getLangOpts(),
+ ShowColors);
+ CurrentBlock = &Block;
+ CurrentElement = nullptr;
+ CurrentElementIndex = 0;
+ }
+ virtual void enterElement(const CFGElement &Element) override {
+ ++CurrentElementIndex;
+ CurrentElement = &Element;
+ {
+ llvm::WithColor Subheader(OS, llvm::raw_ostream::Colors::CYAN,
+ /*Bold=*/true);
+ OS << "Processing element B" << CurrentBlock->getBlockID() << "."
+ << CurrentElementIndex << ": ";
+ Element.dumpToStream(OS);
+ }
+ }
+ void recordState(TypeErasedDataflowAnalysisState &State) override {
+ {
+ llvm::WithColor Subheader(OS, llvm::raw_ostream::Colors::CYAN,
+ /*Bold=*/true);
+ OS << "Computed state for B" << CurrentBlock->getBlockID() << "."
+ << CurrentElementIndex << ":\n";
+ }
+ // FIXME: currently the environment dump is verbose and unenlightening.
+ // FIXME: dump the user-defined lattice, too.
+ State.Env.dump(OS);
+ OS << "\n";
+ }
+ void blockConverged() override {
+ OS << "B" << CurrentBlock->getBlockID() << " has converged!\n";
+ }
+ virtual void logText(llvm::StringRef S) override { OS << S << "\n"; }
+};
+} // namespace
+
+std::unique_ptr<Logger> Logger::textual(llvm::raw_ostream &OS) {
+ return std::make_unique<TextualLogger>(OS);
+}
+
+} // namespace clang::dataflow
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/ChromiumCheckModel.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/ChromiumCheckModel.cpp
new file mode 100644
index 000000000000..5ac71e1d6bf6
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/ChromiumCheckModel.cpp
@@ -0,0 +1,71 @@
+//===-- ChromiumCheckModel.cpp ----------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Models/ChromiumCheckModel.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "llvm/ADT/DenseSet.h"
+
+namespace clang {
+namespace dataflow {
+
+/// Determines whether `D` is one of the methods used to implement Chromium's
+/// `CHECK` macros. Populates `CheckDecls`, if empty.
+bool isCheckLikeMethod(llvm::SmallDenseSet<const CXXMethodDecl *> &CheckDecls,
+ const CXXMethodDecl &D) {
+ // All of the methods of interest are static, so avoid any lookup for
+ // non-static methods (the common case).
+ if (!D.isStatic())
+ return false;
+
+ if (CheckDecls.empty()) {
+ // Attempt to initialize `CheckDecls` with the methods in class
+ // `CheckError`.
+ const CXXRecordDecl *ParentClass = D.getParent();
+ if (ParentClass == nullptr || !ParentClass->getDeclName().isIdentifier() ||
+ ParentClass->getName() != "CheckError")
+ return false;
+
+ // Check whether namespace is "logging".
+ const auto *N =
+ dyn_cast_or_null<NamespaceDecl>(ParentClass->getDeclContext());
+ if (N == nullptr || !N->getDeclName().isIdentifier() ||
+ N->getName() != "logging")
+ return false;
+
+ // Check whether "logging" is a top-level namespace.
+ if (N->getParent() == nullptr || !N->getParent()->isTranslationUnit())
+ return false;
+
+ for (const CXXMethodDecl *M : ParentClass->methods())
+ if (M->getDeclName().isIdentifier() && M->getName().ends_with("Check"))
+ CheckDecls.insert(M);
+ }
+
+ return CheckDecls.contains(&D);
+}
+
+bool ChromiumCheckModel::transfer(const CFGElement &Element, Environment &Env) {
+ auto CS = Element.getAs<CFGStmt>();
+ if (!CS)
+ return false;
+ auto Stmt = CS->getStmt();
+ if (const auto *Call = dyn_cast<CallExpr>(Stmt)) {
+ if (const auto *M = dyn_cast<CXXMethodDecl>(Call->getDirectCallee())) {
+ if (isCheckLikeMethod(CheckDecls, *M)) {
+ // Mark this branch as unreachable.
+ Env.assume(Env.arena().makeLiteral(false));
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.cpp
new file mode 100644
index 000000000000..0707aa662e4c
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.cpp
@@ -0,0 +1,944 @@
+//===-- UncheckedOptionalAccessModel.cpp ------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a dataflow analysis that detects unsafe uses of optional
+// values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/Stmt.h"
+#include "clang/ASTMatchers/ASTMatchers.h"
+#include "clang/ASTMatchers/ASTMatchersMacros.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/FlowSensitive/CFGMatchSwitch.h"
+#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
+#include "clang/Analysis/FlowSensitive/Formula.h"
+#include "clang/Analysis/FlowSensitive/NoopLattice.h"
+#include "clang/Analysis/FlowSensitive/StorageLocation.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "clang/Basic/SourceLocation.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <memory>
+#include <optional>
+#include <utility>
+
+namespace clang {
+namespace dataflow {
+
+static bool isTopLevelNamespaceWithName(const NamespaceDecl &NS,
+ llvm::StringRef Name) {
+ return NS.getDeclName().isIdentifier() && NS.getName() == Name &&
+ NS.getParent() != nullptr && NS.getParent()->isTranslationUnit();
+}
+
+static bool hasOptionalClassName(const CXXRecordDecl &RD) {
+ if (!RD.getDeclName().isIdentifier())
+ return false;
+
+ if (RD.getName() == "optional") {
+ if (const auto *N = dyn_cast_or_null<NamespaceDecl>(RD.getDeclContext()))
+ return N->isStdNamespace() || isTopLevelNamespaceWithName(*N, "absl");
+ return false;
+ }
+
+ if (RD.getName() == "Optional") {
+ // Check whether namespace is "::base" or "::folly".
+ const auto *N = dyn_cast_or_null<NamespaceDecl>(RD.getDeclContext());
+ return N != nullptr && (isTopLevelNamespaceWithName(*N, "base") ||
+ isTopLevelNamespaceWithName(*N, "folly"));
+ }
+
+ return false;
+}
+
+static const CXXRecordDecl *getOptionalBaseClass(const CXXRecordDecl *RD) {
+ if (RD == nullptr)
+ return nullptr;
+ if (hasOptionalClassName(*RD))
+ return RD;
+
+ if (!RD->hasDefinition())
+ return nullptr;
+
+ for (const CXXBaseSpecifier &Base : RD->bases())
+ if (const CXXRecordDecl *BaseClass =
+ getOptionalBaseClass(Base.getType()->getAsCXXRecordDecl()))
+ return BaseClass;
+
+ return nullptr;
+}
+
+namespace {
+
+using namespace ::clang::ast_matchers;
+using LatticeTransferState = TransferState<NoopLattice>;
+
+AST_MATCHER(CXXRecordDecl, optionalClass) { return hasOptionalClassName(Node); }
+
+AST_MATCHER(CXXRecordDecl, optionalOrDerivedClass) {
+ return getOptionalBaseClass(&Node) != nullptr;
+}
+
+auto desugarsToOptionalType() {
+ return hasUnqualifiedDesugaredType(
+ recordType(hasDeclaration(cxxRecordDecl(optionalClass()))));
+}
+
+auto desugarsToOptionalOrDerivedType() {
+ return hasUnqualifiedDesugaredType(
+ recordType(hasDeclaration(cxxRecordDecl(optionalOrDerivedClass()))));
+}
+
+auto hasOptionalType() { return hasType(desugarsToOptionalType()); }
+
+/// Matches any of the spellings of the optional types and sugar, aliases,
+/// derived classes, etc.
+auto hasOptionalOrDerivedType() {
+ return hasType(desugarsToOptionalOrDerivedType());
+}
+
+QualType getPublicType(const Expr *E) {
+ auto *Cast = dyn_cast<ImplicitCastExpr>(E->IgnoreParens());
+ if (Cast == nullptr || Cast->getCastKind() != CK_UncheckedDerivedToBase) {
+ QualType Ty = E->getType();
+ if (Ty->isPointerType())
+ return Ty->getPointeeType();
+ return Ty;
+ }
+
+ // Is the derived type that we're casting from the type of `*this`? In this
+ // special case, we can upcast to the base class even if the base is
+ // non-public.
+ bool CastingFromThis = isa<CXXThisExpr>(Cast->getSubExpr());
+
+ // Find the least-derived type in the path (i.e. the last entry in the list)
+ // that we can access.
+ const CXXBaseSpecifier *PublicBase = nullptr;
+ for (const CXXBaseSpecifier *Base : Cast->path()) {
+ if (Base->getAccessSpecifier() != AS_public && !CastingFromThis)
+ break;
+ PublicBase = Base;
+ CastingFromThis = false;
+ }
+
+ if (PublicBase != nullptr)
+ return PublicBase->getType();
+
+ // We didn't find any public type that we could cast to. There may be more
+ // casts in `getSubExpr()`, so recurse. (If there aren't any more casts, this
+ // will return the type of `getSubExpr()`.)
+ return getPublicType(Cast->getSubExpr());
+}
+
+// Returns the least-derived type for the receiver of `MCE` that
+// `MCE.getImplicitObjectArgument()->IgnoreParentImpCasts()` can be downcast to.
+// Effectively, we upcast until we reach a non-public base class, unless that
+// base is a base of `*this`.
+//
+// This is needed to correctly match methods called on types derived from
+// `std::optional`.
+//
+// Say we have a `struct Derived : public std::optional<int> {} d;` For a call
+// `d.has_value()`, the `getImplicitObjectArgument()` looks like this:
+//
+// ImplicitCastExpr 'const std::__optional_storage_base<int>' lvalue
+// | <UncheckedDerivedToBase (optional -> __optional_storage_base)>
+// `-DeclRefExpr 'Derived' lvalue Var 'd' 'Derived'
+//
+// The type of the implicit object argument is `__optional_storage_base`
+// (since this is the internal type that `has_value()` is declared on). If we
+// call `IgnoreParenImpCasts()` on the implicit object argument, we get the
+// `DeclRefExpr`, which has type `Derived`. Neither of these types is
+// `optional`, and hence neither is sufficient for querying whether we are
+// calling a method on `optional`.
+//
+// Instead, starting with the most derived type, we need to follow the chain of
+// casts
+QualType getPublicReceiverType(const CXXMemberCallExpr &MCE) {
+ return getPublicType(MCE.getImplicitObjectArgument());
+}
+
+AST_MATCHER_P(CXXMemberCallExpr, publicReceiverType,
+ ast_matchers::internal::Matcher<QualType>, InnerMatcher) {
+ return InnerMatcher.matches(getPublicReceiverType(Node), Finder, Builder);
+}
+
+auto isOptionalMemberCallWithNameMatcher(
+ ast_matchers::internal::Matcher<NamedDecl> matcher,
+ const std::optional<StatementMatcher> &Ignorable = std::nullopt) {
+ return cxxMemberCallExpr(Ignorable ? on(expr(unless(*Ignorable)))
+ : anything(),
+ publicReceiverType(desugarsToOptionalType()),
+ callee(cxxMethodDecl(matcher)));
+}
+
+auto isOptionalOperatorCallWithName(
+ llvm::StringRef operator_name,
+ const std::optional<StatementMatcher> &Ignorable = std::nullopt) {
+ return cxxOperatorCallExpr(
+ hasOverloadedOperatorName(operator_name),
+ callee(cxxMethodDecl(ofClass(optionalClass()))),
+ Ignorable ? callExpr(unless(hasArgument(0, *Ignorable))) : callExpr());
+}
+
+auto isMakeOptionalCall() {
+ return callExpr(callee(functionDecl(hasAnyName(
+ "std::make_optional", "base::make_optional",
+ "absl::make_optional", "folly::make_optional"))),
+ hasOptionalType());
+}
+
+auto nulloptTypeDecl() {
+ return namedDecl(hasAnyName("std::nullopt_t", "absl::nullopt_t",
+ "base::nullopt_t", "folly::None"));
+}
+
+auto hasNulloptType() { return hasType(nulloptTypeDecl()); }
+
+auto inPlaceClass() {
+ return recordDecl(hasAnyName("std::in_place_t", "absl::in_place_t",
+ "base::in_place_t", "folly::in_place_t"));
+}
+
+auto isOptionalNulloptConstructor() {
+ return cxxConstructExpr(
+ hasDeclaration(cxxConstructorDecl(parameterCountIs(1),
+ hasParameter(0, hasNulloptType()))),
+ hasOptionalOrDerivedType());
+}
+
+auto isOptionalInPlaceConstructor() {
+ return cxxConstructExpr(hasArgument(0, hasType(inPlaceClass())),
+ hasOptionalOrDerivedType());
+}
+
+auto isOptionalValueOrConversionConstructor() {
+ return cxxConstructExpr(
+ unless(hasDeclaration(
+ cxxConstructorDecl(anyOf(isCopyConstructor(), isMoveConstructor())))),
+ argumentCountIs(1), hasArgument(0, unless(hasNulloptType())),
+ hasOptionalOrDerivedType());
+}
+
+auto isOptionalValueOrConversionAssignment() {
+ return cxxOperatorCallExpr(
+ hasOverloadedOperatorName("="),
+ callee(cxxMethodDecl(ofClass(optionalOrDerivedClass()))),
+ unless(hasDeclaration(cxxMethodDecl(
+ anyOf(isCopyAssignmentOperator(), isMoveAssignmentOperator())))),
+ argumentCountIs(2), hasArgument(1, unless(hasNulloptType())));
+}
+
+auto isOptionalNulloptAssignment() {
+ return cxxOperatorCallExpr(
+ hasOverloadedOperatorName("="),
+ callee(cxxMethodDecl(ofClass(optionalOrDerivedClass()))),
+ argumentCountIs(2), hasArgument(1, hasNulloptType()));
+}
+
+auto isStdSwapCall() {
+ return callExpr(callee(functionDecl(hasName("std::swap"))),
+ argumentCountIs(2),
+ hasArgument(0, hasOptionalOrDerivedType()),
+ hasArgument(1, hasOptionalOrDerivedType()));
+}
+
+auto isStdForwardCall() {
+ return callExpr(callee(functionDecl(hasName("std::forward"))),
+ argumentCountIs(1),
+ hasArgument(0, hasOptionalOrDerivedType()));
+}
+
+constexpr llvm::StringLiteral ValueOrCallID = "ValueOrCall";
+
+auto isValueOrStringEmptyCall() {
+ // `opt.value_or("").empty()`
+ return cxxMemberCallExpr(
+ callee(cxxMethodDecl(hasName("empty"))),
+ onImplicitObjectArgument(ignoringImplicit(
+ cxxMemberCallExpr(on(expr(unless(cxxThisExpr()))),
+ callee(cxxMethodDecl(hasName("value_or"),
+ ofClass(optionalClass()))),
+ hasArgument(0, stringLiteral(hasSize(0))))
+ .bind(ValueOrCallID))));
+}
+
+auto isValueOrNotEqX() {
+ auto ComparesToSame = [](ast_matchers::internal::Matcher<Stmt> Arg) {
+ return hasOperands(
+ ignoringImplicit(
+ cxxMemberCallExpr(on(expr(unless(cxxThisExpr()))),
+ callee(cxxMethodDecl(hasName("value_or"),
+ ofClass(optionalClass()))),
+ hasArgument(0, Arg))
+ .bind(ValueOrCallID)),
+ ignoringImplicit(Arg));
+ };
+
+ // `opt.value_or(X) != X`, for X is `nullptr`, `""`, or `0`. Ideally, we'd
+ // support this pattern for any expression, but the AST does not have a
+ // generic expression comparison facility, so we specialize to common cases
+ // seen in practice. FIXME: define a matcher that compares values across
+ // nodes, which would let us generalize this to any `X`.
+ return binaryOperation(hasOperatorName("!="),
+ anyOf(ComparesToSame(cxxNullPtrLiteralExpr()),
+ ComparesToSame(stringLiteral(hasSize(0))),
+ ComparesToSame(integerLiteral(equals(0)))));
+}
+
+auto isCallReturningOptional() {
+ return callExpr(hasType(qualType(
+ anyOf(desugarsToOptionalOrDerivedType(),
+ referenceType(pointee(desugarsToOptionalOrDerivedType()))))));
+}
+
+template <typename L, typename R>
+auto isComparisonOperatorCall(L lhs_arg_matcher, R rhs_arg_matcher) {
+ return cxxOperatorCallExpr(
+ anyOf(hasOverloadedOperatorName("=="), hasOverloadedOperatorName("!=")),
+ argumentCountIs(2), hasArgument(0, lhs_arg_matcher),
+ hasArgument(1, rhs_arg_matcher));
+}
+
+/// Ensures that `Expr` is mapped to a `BoolValue` and returns its formula.
+const Formula &forceBoolValue(Environment &Env, const Expr &Expr) {
+ auto *Value = Env.get<BoolValue>(Expr);
+ if (Value != nullptr)
+ return Value->formula();
+
+ Value = &Env.makeAtomicBoolValue();
+ Env.setValue(Expr, *Value);
+ return Value->formula();
+}
+
+StorageLocation &locForHasValue(const RecordStorageLocation &OptionalLoc) {
+ return OptionalLoc.getSyntheticField("has_value");
+}
+
+StorageLocation &locForValue(const RecordStorageLocation &OptionalLoc) {
+ return OptionalLoc.getSyntheticField("value");
+}
+
+/// Sets `HasValueVal` as the symbolic value that represents the "has_value"
+/// property of the optional at `OptionalLoc`.
+void setHasValue(RecordStorageLocation &OptionalLoc, BoolValue &HasValueVal,
+ Environment &Env) {
+ Env.setValue(locForHasValue(OptionalLoc), HasValueVal);
+}
+
+/// Returns the symbolic value that represents the "has_value" property of the
+/// optional at `OptionalLoc`. Returns null if `OptionalLoc` is null.
+BoolValue *getHasValue(Environment &Env, RecordStorageLocation *OptionalLoc) {
+ if (OptionalLoc == nullptr)
+ return nullptr;
+ StorageLocation &HasValueLoc = locForHasValue(*OptionalLoc);
+ auto *HasValueVal = Env.get<BoolValue>(HasValueLoc);
+ if (HasValueVal == nullptr) {
+ HasValueVal = &Env.makeAtomicBoolValue();
+ Env.setValue(HasValueLoc, *HasValueVal);
+ }
+ return HasValueVal;
+}
+
+QualType valueTypeFromOptionalDecl(const CXXRecordDecl &RD) {
+ auto &CTSD = cast<ClassTemplateSpecializationDecl>(RD);
+ return CTSD.getTemplateArgs()[0].getAsType();
+}
+
+/// Returns the number of optional wrappers in `Type`.
+///
+/// For example, if `Type` is `optional<optional<int>>`, the result of this
+/// function will be 2.
+int countOptionalWrappers(const ASTContext &ASTCtx, QualType Type) {
+ const CXXRecordDecl *Optional =
+ getOptionalBaseClass(Type->getAsCXXRecordDecl());
+ if (Optional == nullptr)
+ return 0;
+ return 1 + countOptionalWrappers(
+ ASTCtx,
+ valueTypeFromOptionalDecl(*Optional).getDesugaredType(ASTCtx));
+}
+
+StorageLocation *getLocBehindPossiblePointer(const Expr &E,
+ const Environment &Env) {
+ if (E.isPRValue()) {
+ if (auto *PointerVal = dyn_cast_or_null<PointerValue>(Env.getValue(E)))
+ return &PointerVal->getPointeeLoc();
+ return nullptr;
+ }
+ return Env.getStorageLocation(E);
+}
+
+void transferUnwrapCall(const Expr *UnwrapExpr, const Expr *ObjectExpr,
+ LatticeTransferState &State) {
+ if (auto *OptionalLoc = cast_or_null<RecordStorageLocation>(
+ getLocBehindPossiblePointer(*ObjectExpr, State.Env))) {
+ if (State.Env.getStorageLocation(*UnwrapExpr) == nullptr)
+ State.Env.setStorageLocation(*UnwrapExpr, locForValue(*OptionalLoc));
+ }
+}
+
+void transferArrowOpCall(const Expr *UnwrapExpr, const Expr *ObjectExpr,
+ LatticeTransferState &State) {
+ if (auto *OptionalLoc = cast_or_null<RecordStorageLocation>(
+ getLocBehindPossiblePointer(*ObjectExpr, State.Env)))
+ State.Env.setValue(
+ *UnwrapExpr, State.Env.create<PointerValue>(locForValue(*OptionalLoc)));
+}
+
+void transferMakeOptionalCall(const CallExpr *E,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ setHasValue(State.Env.getResultObjectLocation(*E),
+ State.Env.getBoolLiteralValue(true), State.Env);
+}
+
+void transferOptionalHasValueCall(const CXXMemberCallExpr *CallExpr,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ if (auto *HasValueVal = getHasValue(
+ State.Env, getImplicitObjectLocation(*CallExpr, State.Env))) {
+ State.Env.setValue(*CallExpr, *HasValueVal);
+ }
+}
+
+/// `ModelPred` builds a logical formula relating the predicate in
+/// `ValueOrPredExpr` to the optional's `has_value` property.
+void transferValueOrImpl(
+ const clang::Expr *ValueOrPredExpr, const MatchFinder::MatchResult &Result,
+ LatticeTransferState &State,
+ const Formula &(*ModelPred)(Environment &Env, const Formula &ExprVal,
+ const Formula &HasValueVal)) {
+ auto &Env = State.Env;
+
+ const auto *MCE =
+ Result.Nodes.getNodeAs<clang::CXXMemberCallExpr>(ValueOrCallID);
+
+ auto *HasValueVal =
+ getHasValue(State.Env, getImplicitObjectLocation(*MCE, State.Env));
+ if (HasValueVal == nullptr)
+ return;
+
+ Env.assume(ModelPred(Env, forceBoolValue(Env, *ValueOrPredExpr),
+ HasValueVal->formula()));
+}
+
+void transferValueOrStringEmptyCall(const clang::Expr *ComparisonExpr,
+ const MatchFinder::MatchResult &Result,
+ LatticeTransferState &State) {
+ return transferValueOrImpl(ComparisonExpr, Result, State,
+ [](Environment &Env, const Formula &ExprVal,
+ const Formula &HasValueVal) -> const Formula & {
+ auto &A = Env.arena();
+ // If the result is *not* empty, then we know the
+ // optional must have been holding a value. If
+ // `ExprVal` is true, though, we don't learn
+ // anything definite about `has_value`, so we
+ // don't add any corresponding implications to
+ // the flow condition.
+ return A.makeImplies(A.makeNot(ExprVal),
+ HasValueVal);
+ });
+}
+
+void transferValueOrNotEqX(const Expr *ComparisonExpr,
+ const MatchFinder::MatchResult &Result,
+ LatticeTransferState &State) {
+ transferValueOrImpl(ComparisonExpr, Result, State,
+ [](Environment &Env, const Formula &ExprVal,
+ const Formula &HasValueVal) -> const Formula & {
+ auto &A = Env.arena();
+ // We know that if `(opt.value_or(X) != X)` then
+ // `opt.hasValue()`, even without knowing further
+ // details about the contents of `opt`.
+ return A.makeImplies(ExprVal, HasValueVal);
+ });
+}
+
+void transferCallReturningOptional(const CallExpr *E,
+ const MatchFinder::MatchResult &Result,
+ LatticeTransferState &State) {
+ RecordStorageLocation *Loc = nullptr;
+ if (E->isPRValue()) {
+ Loc = &State.Env.getResultObjectLocation(*E);
+ } else {
+ Loc = State.Env.get<RecordStorageLocation>(*E);
+ if (Loc == nullptr) {
+ Loc = &cast<RecordStorageLocation>(State.Env.createStorageLocation(*E));
+ State.Env.setStorageLocation(*E, *Loc);
+ }
+ }
+
+ if (State.Env.getValue(locForHasValue(*Loc)) != nullptr)
+ return;
+
+ setHasValue(*Loc, State.Env.makeAtomicBoolValue(), State.Env);
+}
+
+void constructOptionalValue(const Expr &E, Environment &Env,
+ BoolValue &HasValueVal) {
+ RecordStorageLocation &Loc = Env.getResultObjectLocation(E);
+ setHasValue(Loc, HasValueVal, Env);
+}
+
+/// Returns a symbolic value for the "has_value" property of an `optional<T>`
+/// value that is constructed/assigned from a value of type `U` or `optional<U>`
+/// where `T` is constructible from `U`.
+BoolValue &valueOrConversionHasValue(QualType DestType, const Expr &E,
+ const MatchFinder::MatchResult &MatchRes,
+ LatticeTransferState &State) {
+ const int DestTypeOptionalWrappersCount =
+ countOptionalWrappers(*MatchRes.Context, DestType);
+ const int ArgTypeOptionalWrappersCount = countOptionalWrappers(
+ *MatchRes.Context, E.getType().getNonReferenceType());
+
+ // Is this an constructor of the form `template<class U> optional(U &&)` /
+ // assignment of the form `template<class U> optional& operator=(U &&)`
+ // (where `T` is assignable / constructible from `U`)?
+ // We recognize this because the number of optionals in the optional being
+ // assigned to is different from the function argument type.
+ if (DestTypeOptionalWrappersCount != ArgTypeOptionalWrappersCount)
+ return State.Env.getBoolLiteralValue(true);
+
+ // Otherwise, this must be a constructor of the form
+ // `template <class U> optional<optional<U> &&)` / assignment of the form
+ // `template <class U> optional& operator=(optional<U> &&)
+ // (where, again, `T` is assignable / constructible from `U`).
+ auto *Loc = State.Env.get<RecordStorageLocation>(E);
+ if (auto *HasValueVal = getHasValue(State.Env, Loc))
+ return *HasValueVal;
+ return State.Env.makeAtomicBoolValue();
+}
+
+void transferValueOrConversionConstructor(
+ const CXXConstructExpr *E, const MatchFinder::MatchResult &MatchRes,
+ LatticeTransferState &State) {
+ assert(E->getNumArgs() > 0);
+
+ constructOptionalValue(
+ *E, State.Env,
+ valueOrConversionHasValue(
+ E->getConstructor()->getThisType()->getPointeeType(), *E->getArg(0),
+ MatchRes, State));
+}
+
+void transferAssignment(const CXXOperatorCallExpr *E, BoolValue &HasValueVal,
+ LatticeTransferState &State) {
+ assert(E->getNumArgs() > 0);
+
+ if (auto *Loc = State.Env.get<RecordStorageLocation>(*E->getArg(0))) {
+ setHasValue(*Loc, HasValueVal, State.Env);
+
+ // Assign a storage location for the whole expression.
+ State.Env.setStorageLocation(*E, *Loc);
+ }
+}
+
+void transferValueOrConversionAssignment(
+ const CXXOperatorCallExpr *E, const MatchFinder::MatchResult &MatchRes,
+ LatticeTransferState &State) {
+ assert(E->getNumArgs() > 1);
+ transferAssignment(
+ E,
+ valueOrConversionHasValue(E->getArg(0)->getType().getNonReferenceType(),
+ *E->getArg(1), MatchRes, State),
+ State);
+}
+
+void transferNulloptAssignment(const CXXOperatorCallExpr *E,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ transferAssignment(E, State.Env.getBoolLiteralValue(false), State);
+}
+
+void transferSwap(RecordStorageLocation *Loc1, RecordStorageLocation *Loc2,
+ Environment &Env) {
+ // We account for cases where one or both of the optionals are not modeled,
+ // either lacking associated storage locations, or lacking values associated
+ // to such storage locations.
+
+ if (Loc1 == nullptr) {
+ if (Loc2 != nullptr)
+ setHasValue(*Loc2, Env.makeAtomicBoolValue(), Env);
+ return;
+ }
+ if (Loc2 == nullptr) {
+ setHasValue(*Loc1, Env.makeAtomicBoolValue(), Env);
+ return;
+ }
+
+ // Both expressions have locations, though they may not have corresponding
+ // values. In that case, we create a fresh value at this point. Note that if
+ // two branches both do this, they will not share the value, but it at least
+ // allows for local reasoning about the value. To avoid the above, we would
+ // need *lazy* value allocation.
+ // FIXME: allocate values lazily, instead of just creating a fresh value.
+ BoolValue *BoolVal1 = getHasValue(Env, Loc1);
+ if (BoolVal1 == nullptr)
+ BoolVal1 = &Env.makeAtomicBoolValue();
+
+ BoolValue *BoolVal2 = getHasValue(Env, Loc2);
+ if (BoolVal2 == nullptr)
+ BoolVal2 = &Env.makeAtomicBoolValue();
+
+ setHasValue(*Loc1, *BoolVal2, Env);
+ setHasValue(*Loc2, *BoolVal1, Env);
+}
+
+void transferSwapCall(const CXXMemberCallExpr *E,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ assert(E->getNumArgs() == 1);
+ auto *OtherLoc = State.Env.get<RecordStorageLocation>(*E->getArg(0));
+ transferSwap(getImplicitObjectLocation(*E, State.Env), OtherLoc, State.Env);
+}
+
+void transferStdSwapCall(const CallExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ assert(E->getNumArgs() == 2);
+ auto *Arg0Loc = State.Env.get<RecordStorageLocation>(*E->getArg(0));
+ auto *Arg1Loc = State.Env.get<RecordStorageLocation>(*E->getArg(1));
+ transferSwap(Arg0Loc, Arg1Loc, State.Env);
+}
+
+void transferStdForwardCall(const CallExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ assert(E->getNumArgs() == 1);
+
+ if (auto *Loc = State.Env.getStorageLocation(*E->getArg(0)))
+ State.Env.setStorageLocation(*E, *Loc);
+}
+
+const Formula &evaluateEquality(Arena &A, const Formula &EqVal,
+ const Formula &LHS, const Formula &RHS) {
+ // Logically, an optional<T> object is composed of two values - a `has_value`
+ // bit and a value of type T. Equality of optional objects compares both
+ // values. Therefore, merely comparing the `has_value` bits isn't sufficient:
+ // when two optional objects are engaged, the equality of their respective
+ // values of type T matters. Since we only track the `has_value` bits, we
+ // can't make any conclusions about equality when we know that two optional
+ // objects are engaged.
+ //
+ // We express this as two facts about the equality:
+ // a) EqVal => (LHS & RHS) v (!RHS & !LHS)
+ // If they are equal, then either both are set or both are unset.
+ // b) (!LHS & !RHS) => EqVal
+ // If neither is set, then they are equal.
+ // We rewrite b) as !EqVal => (LHS v RHS), for a more compact formula.
+ return A.makeAnd(
+ A.makeImplies(EqVal, A.makeOr(A.makeAnd(LHS, RHS),
+ A.makeAnd(A.makeNot(LHS), A.makeNot(RHS)))),
+ A.makeImplies(A.makeNot(EqVal), A.makeOr(LHS, RHS)));
+}
+
+void transferOptionalAndOptionalCmp(const clang::CXXOperatorCallExpr *CmpExpr,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ Environment &Env = State.Env;
+ auto &A = Env.arena();
+ auto *CmpValue = &forceBoolValue(Env, *CmpExpr);
+ auto *Arg0Loc = Env.get<RecordStorageLocation>(*CmpExpr->getArg(0));
+ if (auto *LHasVal = getHasValue(Env, Arg0Loc)) {
+ auto *Arg1Loc = Env.get<RecordStorageLocation>(*CmpExpr->getArg(1));
+ if (auto *RHasVal = getHasValue(Env, Arg1Loc)) {
+ if (CmpExpr->getOperator() == clang::OO_ExclaimEqual)
+ CmpValue = &A.makeNot(*CmpValue);
+ Env.assume(evaluateEquality(A, *CmpValue, LHasVal->formula(),
+ RHasVal->formula()));
+ }
+ }
+}
+
+void transferOptionalAndValueCmp(const clang::CXXOperatorCallExpr *CmpExpr,
+ const clang::Expr *E, Environment &Env) {
+ auto &A = Env.arena();
+ auto *CmpValue = &forceBoolValue(Env, *CmpExpr);
+ auto *Loc = Env.get<RecordStorageLocation>(*E);
+ if (auto *HasVal = getHasValue(Env, Loc)) {
+ if (CmpExpr->getOperator() == clang::OO_ExclaimEqual)
+ CmpValue = &A.makeNot(*CmpValue);
+ Env.assume(
+ evaluateEquality(A, *CmpValue, HasVal->formula(), A.makeLiteral(true)));
+ }
+}
+
+void transferOptionalAndNulloptCmp(const clang::CXXOperatorCallExpr *CmpExpr,
+ const clang::Expr *E, Environment &Env) {
+ auto &A = Env.arena();
+ auto *CmpValue = &forceBoolValue(Env, *CmpExpr);
+ auto *Loc = Env.get<RecordStorageLocation>(*E);
+ if (auto *HasVal = getHasValue(Env, Loc)) {
+ if (CmpExpr->getOperator() == clang::OO_ExclaimEqual)
+ CmpValue = &A.makeNot(*CmpValue);
+ Env.assume(evaluateEquality(A, *CmpValue, HasVal->formula(),
+ A.makeLiteral(false)));
+ }
+}
+
+std::optional<StatementMatcher>
+ignorableOptional(const UncheckedOptionalAccessModelOptions &Options) {
+ if (Options.IgnoreSmartPointerDereference) {
+ auto SmartPtrUse = expr(ignoringParenImpCasts(cxxOperatorCallExpr(
+ anyOf(hasOverloadedOperatorName("->"), hasOverloadedOperatorName("*")),
+ unless(hasArgument(0, expr(hasOptionalType()))))));
+ return expr(
+ anyOf(SmartPtrUse, memberExpr(hasObjectExpression(SmartPtrUse))));
+ }
+ return std::nullopt;
+}
+
+StatementMatcher
+valueCall(const std::optional<StatementMatcher> &IgnorableOptional) {
+ return isOptionalMemberCallWithNameMatcher(hasName("value"),
+ IgnorableOptional);
+}
+
+StatementMatcher
+valueOperatorCall(const std::optional<StatementMatcher> &IgnorableOptional) {
+ return expr(anyOf(isOptionalOperatorCallWithName("*", IgnorableOptional),
+ isOptionalOperatorCallWithName("->", IgnorableOptional)));
+}
+
+auto buildTransferMatchSwitch() {
+ // FIXME: Evaluate the efficiency of matchers. If using matchers results in a
+ // lot of duplicated work (e.g. string comparisons), consider providing APIs
+ // that avoid it through memoization.
+ return CFGMatchSwitchBuilder<LatticeTransferState>()
+ // make_optional
+ .CaseOfCFGStmt<CallExpr>(isMakeOptionalCall(), transferMakeOptionalCall)
+
+ // optional::optional (in place)
+ .CaseOfCFGStmt<CXXConstructExpr>(
+ isOptionalInPlaceConstructor(),
+ [](const CXXConstructExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ constructOptionalValue(*E, State.Env,
+ State.Env.getBoolLiteralValue(true));
+ })
+ // optional::optional(nullopt_t)
+ .CaseOfCFGStmt<CXXConstructExpr>(
+ isOptionalNulloptConstructor(),
+ [](const CXXConstructExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ constructOptionalValue(*E, State.Env,
+ State.Env.getBoolLiteralValue(false));
+ })
+ // optional::optional (value/conversion)
+ .CaseOfCFGStmt<CXXConstructExpr>(isOptionalValueOrConversionConstructor(),
+ transferValueOrConversionConstructor)
+
+ // optional::operator=
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(
+ isOptionalValueOrConversionAssignment(),
+ transferValueOrConversionAssignment)
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(isOptionalNulloptAssignment(),
+ transferNulloptAssignment)
+
+ // optional::value
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ valueCall(std::nullopt),
+ [](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ transferUnwrapCall(E, E->getImplicitObjectArgument(), State);
+ })
+
+ // optional::operator*
+ .CaseOfCFGStmt<CallExpr>(isOptionalOperatorCallWithName("*"),
+ [](const CallExpr *E,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ transferUnwrapCall(E, E->getArg(0), State);
+ })
+
+ // optional::operator->
+ .CaseOfCFGStmt<CallExpr>(isOptionalOperatorCallWithName("->"),
+ [](const CallExpr *E,
+ const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ transferArrowOpCall(E, E->getArg(0), State);
+ })
+
+ // optional::has_value, optional::hasValue
+ // Of the supported optionals only folly::Optional uses hasValue, but this
+ // will also pass for other types
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ isOptionalMemberCallWithNameMatcher(
+ hasAnyName("has_value", "hasValue")),
+ transferOptionalHasValueCall)
+
+ // optional::operator bool
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ isOptionalMemberCallWithNameMatcher(hasName("operator bool")),
+ transferOptionalHasValueCall)
+
+ // optional::emplace
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ isOptionalMemberCallWithNameMatcher(hasName("emplace")),
+ [](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ if (RecordStorageLocation *Loc =
+ getImplicitObjectLocation(*E, State.Env)) {
+ setHasValue(*Loc, State.Env.getBoolLiteralValue(true), State.Env);
+ }
+ })
+
+ // optional::reset
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ isOptionalMemberCallWithNameMatcher(hasName("reset")),
+ [](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
+ LatticeTransferState &State) {
+ if (RecordStorageLocation *Loc =
+ getImplicitObjectLocation(*E, State.Env)) {
+ setHasValue(*Loc, State.Env.getBoolLiteralValue(false),
+ State.Env);
+ }
+ })
+
+ // optional::swap
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ isOptionalMemberCallWithNameMatcher(hasName("swap")),
+ transferSwapCall)
+
+ // std::swap
+ .CaseOfCFGStmt<CallExpr>(isStdSwapCall(), transferStdSwapCall)
+
+ // std::forward
+ .CaseOfCFGStmt<CallExpr>(isStdForwardCall(), transferStdForwardCall)
+
+ // opt.value_or("").empty()
+ .CaseOfCFGStmt<Expr>(isValueOrStringEmptyCall(),
+ transferValueOrStringEmptyCall)
+
+ // opt.value_or(X) != X
+ .CaseOfCFGStmt<Expr>(isValueOrNotEqX(), transferValueOrNotEqX)
+
+ // Comparisons (==, !=):
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(
+ isComparisonOperatorCall(hasOptionalType(), hasOptionalType()),
+ transferOptionalAndOptionalCmp)
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(
+ isComparisonOperatorCall(hasOptionalType(), hasNulloptType()),
+ [](const clang::CXXOperatorCallExpr *Cmp,
+ const MatchFinder::MatchResult &, LatticeTransferState &State) {
+ transferOptionalAndNulloptCmp(Cmp, Cmp->getArg(0), State.Env);
+ })
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(
+ isComparisonOperatorCall(hasNulloptType(), hasOptionalType()),
+ [](const clang::CXXOperatorCallExpr *Cmp,
+ const MatchFinder::MatchResult &, LatticeTransferState &State) {
+ transferOptionalAndNulloptCmp(Cmp, Cmp->getArg(1), State.Env);
+ })
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(
+ isComparisonOperatorCall(
+ hasOptionalType(),
+ unless(anyOf(hasOptionalType(), hasNulloptType()))),
+ [](const clang::CXXOperatorCallExpr *Cmp,
+ const MatchFinder::MatchResult &, LatticeTransferState &State) {
+ transferOptionalAndValueCmp(Cmp, Cmp->getArg(0), State.Env);
+ })
+ .CaseOfCFGStmt<CXXOperatorCallExpr>(
+ isComparisonOperatorCall(
+ unless(anyOf(hasOptionalType(), hasNulloptType())),
+ hasOptionalType()),
+ [](const clang::CXXOperatorCallExpr *Cmp,
+ const MatchFinder::MatchResult &, LatticeTransferState &State) {
+ transferOptionalAndValueCmp(Cmp, Cmp->getArg(1), State.Env);
+ })
+
+ // returns optional
+ .CaseOfCFGStmt<CallExpr>(isCallReturningOptional(),
+ transferCallReturningOptional)
+
+ .Build();
+}
+
+llvm::SmallVector<SourceLocation> diagnoseUnwrapCall(const Expr *ObjectExpr,
+ const Environment &Env) {
+ if (auto *OptionalLoc = cast_or_null<RecordStorageLocation>(
+ getLocBehindPossiblePointer(*ObjectExpr, Env))) {
+ auto *Prop = Env.getValue(locForHasValue(*OptionalLoc));
+ if (auto *HasValueVal = cast_or_null<BoolValue>(Prop)) {
+ if (Env.proves(HasValueVal->formula()))
+ return {};
+ }
+ }
+
+ // Record that this unwrap is *not* provably safe.
+ // FIXME: include either the name of the optional (if applicable) or a source
+ // range of the access for easier interpretation of the result.
+ return {ObjectExpr->getBeginLoc()};
+}
+
+auto buildDiagnoseMatchSwitch(
+ const UncheckedOptionalAccessModelOptions &Options) {
+ // FIXME: Evaluate the efficiency of matchers. If using matchers results in a
+ // lot of duplicated work (e.g. string comparisons), consider providing APIs
+ // that avoid it through memoization.
+ auto IgnorableOptional = ignorableOptional(Options);
+ return CFGMatchSwitchBuilder<const Environment,
+ llvm::SmallVector<SourceLocation>>()
+ // optional::value
+ .CaseOfCFGStmt<CXXMemberCallExpr>(
+ valueCall(IgnorableOptional),
+ [](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
+ const Environment &Env) {
+ return diagnoseUnwrapCall(E->getImplicitObjectArgument(), Env);
+ })
+
+ // optional::operator*, optional::operator->
+ .CaseOfCFGStmt<CallExpr>(valueOperatorCall(IgnorableOptional),
+ [](const CallExpr *E,
+ const MatchFinder::MatchResult &,
+ const Environment &Env) {
+ return diagnoseUnwrapCall(E->getArg(0), Env);
+ })
+ .Build();
+}
+
+} // namespace
+
+ast_matchers::DeclarationMatcher
+UncheckedOptionalAccessModel::optionalClassDecl() {
+ return cxxRecordDecl(optionalClass());
+}
+
+UncheckedOptionalAccessModel::UncheckedOptionalAccessModel(ASTContext &Ctx,
+ Environment &Env)
+ : DataflowAnalysis<UncheckedOptionalAccessModel, NoopLattice>(Ctx),
+ TransferMatchSwitch(buildTransferMatchSwitch()) {
+ Env.getDataflowAnalysisContext().setSyntheticFieldCallback(
+ [&Ctx](QualType Ty) -> llvm::StringMap<QualType> {
+ const CXXRecordDecl *Optional =
+ getOptionalBaseClass(Ty->getAsCXXRecordDecl());
+ if (Optional == nullptr)
+ return {};
+ return {{"value", valueTypeFromOptionalDecl(*Optional)},
+ {"has_value", Ctx.BoolTy}};
+ });
+}
+
+void UncheckedOptionalAccessModel::transfer(const CFGElement &Elt,
+ NoopLattice &L, Environment &Env) {
+ LatticeTransferState State(L, Env);
+ TransferMatchSwitch(Elt, getASTContext(), State);
+}
+
+UncheckedOptionalAccessDiagnoser::UncheckedOptionalAccessDiagnoser(
+ UncheckedOptionalAccessModelOptions Options)
+ : DiagnoseMatchSwitch(buildDiagnoseMatchSwitch(Options)) {}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/RecordOps.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/RecordOps.cpp
new file mode 100644
index 000000000000..b8401230a83d
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/RecordOps.cpp
@@ -0,0 +1,133 @@
+//===-- RecordOps.cpp -------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Operations on records (structs, classes, and unions).
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/RecordOps.h"
+
+#define DEBUG_TYPE "dataflow"
+
+namespace clang::dataflow {
+
+static void copyField(const ValueDecl &Field, StorageLocation *SrcFieldLoc,
+ StorageLocation *DstFieldLoc, RecordStorageLocation &Dst,
+ Environment &Env) {
+ assert(Field.getType()->isReferenceType() ||
+ (SrcFieldLoc != nullptr && DstFieldLoc != nullptr));
+
+ if (Field.getType()->isRecordType()) {
+ copyRecord(cast<RecordStorageLocation>(*SrcFieldLoc),
+ cast<RecordStorageLocation>(*DstFieldLoc), Env);
+ } else if (Field.getType()->isReferenceType()) {
+ Dst.setChild(Field, SrcFieldLoc);
+ } else {
+ if (Value *Val = Env.getValue(*SrcFieldLoc))
+ Env.setValue(*DstFieldLoc, *Val);
+ else
+ Env.clearValue(*DstFieldLoc);
+ }
+}
+
+static void copySyntheticField(QualType FieldType, StorageLocation &SrcFieldLoc,
+ StorageLocation &DstFieldLoc, Environment &Env) {
+ if (FieldType->isRecordType()) {
+ copyRecord(cast<RecordStorageLocation>(SrcFieldLoc),
+ cast<RecordStorageLocation>(DstFieldLoc), Env);
+ } else {
+ if (Value *Val = Env.getValue(SrcFieldLoc))
+ Env.setValue(DstFieldLoc, *Val);
+ else
+ Env.clearValue(DstFieldLoc);
+ }
+}
+
+void copyRecord(RecordStorageLocation &Src, RecordStorageLocation &Dst,
+ Environment &Env) {
+ auto SrcType = Src.getType().getCanonicalType().getUnqualifiedType();
+ auto DstType = Dst.getType().getCanonicalType().getUnqualifiedType();
+
+ auto SrcDecl = SrcType->getAsCXXRecordDecl();
+ auto DstDecl = DstType->getAsCXXRecordDecl();
+
+ [[maybe_unused]] bool compatibleTypes =
+ SrcType == DstType ||
+ (SrcDecl != nullptr && DstDecl != nullptr &&
+ (SrcDecl->isDerivedFrom(DstDecl) || DstDecl->isDerivedFrom(SrcDecl)));
+
+ LLVM_DEBUG({
+ if (!compatibleTypes) {
+ llvm::dbgs() << "Source type " << Src.getType() << "\n";
+ llvm::dbgs() << "Destination type " << Dst.getType() << "\n";
+ }
+ });
+ assert(compatibleTypes);
+
+ if (SrcType == DstType || (SrcDecl != nullptr && DstDecl != nullptr &&
+ SrcDecl->isDerivedFrom(DstDecl))) {
+ for (auto [Field, DstFieldLoc] : Dst.children())
+ copyField(*Field, Src.getChild(*Field), DstFieldLoc, Dst, Env);
+ for (const auto &[Name, DstFieldLoc] : Dst.synthetic_fields())
+ copySyntheticField(DstFieldLoc->getType(), Src.getSyntheticField(Name),
+ *DstFieldLoc, Env);
+ } else {
+ for (auto [Field, SrcFieldLoc] : Src.children())
+ copyField(*Field, SrcFieldLoc, Dst.getChild(*Field), Dst, Env);
+ for (const auto &[Name, SrcFieldLoc] : Src.synthetic_fields())
+ copySyntheticField(SrcFieldLoc->getType(), *SrcFieldLoc,
+ Dst.getSyntheticField(Name), Env);
+ }
+}
+
+bool recordsEqual(const RecordStorageLocation &Loc1, const Environment &Env1,
+ const RecordStorageLocation &Loc2, const Environment &Env2) {
+ LLVM_DEBUG({
+ if (Loc2.getType().getCanonicalType().getUnqualifiedType() !=
+ Loc1.getType().getCanonicalType().getUnqualifiedType()) {
+ llvm::dbgs() << "Loc1 type " << Loc1.getType() << "\n";
+ llvm::dbgs() << "Loc2 type " << Loc2.getType() << "\n";
+ }
+ });
+ assert(Loc2.getType().getCanonicalType().getUnqualifiedType() ==
+ Loc1.getType().getCanonicalType().getUnqualifiedType());
+
+ for (auto [Field, FieldLoc1] : Loc1.children()) {
+ StorageLocation *FieldLoc2 = Loc2.getChild(*Field);
+
+ assert(Field->getType()->isReferenceType() ||
+ (FieldLoc1 != nullptr && FieldLoc2 != nullptr));
+
+ if (Field->getType()->isRecordType()) {
+ if (!recordsEqual(cast<RecordStorageLocation>(*FieldLoc1), Env1,
+ cast<RecordStorageLocation>(*FieldLoc2), Env2))
+ return false;
+ } else if (Field->getType()->isReferenceType()) {
+ if (FieldLoc1 != FieldLoc2)
+ return false;
+ } else if (Env1.getValue(*FieldLoc1) != Env2.getValue(*FieldLoc2)) {
+ return false;
+ }
+ }
+
+ for (const auto &[Name, SynthFieldLoc1] : Loc1.synthetic_fields()) {
+ if (SynthFieldLoc1->getType()->isRecordType()) {
+ if (!recordsEqual(
+ *cast<RecordStorageLocation>(SynthFieldLoc1), Env1,
+ cast<RecordStorageLocation>(Loc2.getSyntheticField(Name)), Env2))
+ return false;
+ } else if (Env1.getValue(*SynthFieldLoc1) !=
+ Env2.getValue(Loc2.getSyntheticField(Name))) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+} // namespace clang::dataflow
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/SimplifyConstraints.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/SimplifyConstraints.cpp
new file mode 100644
index 000000000000..cc20202768b9
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/SimplifyConstraints.cpp
@@ -0,0 +1,180 @@
+//===-- SimplifyConstraints.cpp ---------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/SimplifyConstraints.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+
+namespace clang {
+namespace dataflow {
+
+// Substitutes all occurrences of a given atom in `F` by a given formula and
+// returns the resulting formula.
+static const Formula &
+substitute(const Formula &F,
+ const llvm::DenseMap<Atom, const Formula *> &Substitutions,
+ Arena &arena) {
+ switch (F.kind()) {
+ case Formula::AtomRef:
+ if (auto iter = Substitutions.find(F.getAtom());
+ iter != Substitutions.end())
+ return *iter->second;
+ return F;
+ case Formula::Literal:
+ return F;
+ case Formula::Not:
+ return arena.makeNot(substitute(*F.operands()[0], Substitutions, arena));
+ case Formula::And:
+ return arena.makeAnd(substitute(*F.operands()[0], Substitutions, arena),
+ substitute(*F.operands()[1], Substitutions, arena));
+ case Formula::Or:
+ return arena.makeOr(substitute(*F.operands()[0], Substitutions, arena),
+ substitute(*F.operands()[1], Substitutions, arena));
+ case Formula::Implies:
+ return arena.makeImplies(
+ substitute(*F.operands()[0], Substitutions, arena),
+ substitute(*F.operands()[1], Substitutions, arena));
+ case Formula::Equal:
+ return arena.makeEquals(substitute(*F.operands()[0], Substitutions, arena),
+ substitute(*F.operands()[1], Substitutions, arena));
+ }
+ llvm_unreachable("Unknown formula kind");
+}
+
+// Returns the result of replacing atoms in `Atoms` with the leader of their
+// equivalence class in `EquivalentAtoms`.
+// Atoms that don't have an equivalence class in `EquivalentAtoms` are inserted
+// into it as single-member equivalence classes.
+static llvm::DenseSet<Atom>
+projectToLeaders(const llvm::DenseSet<Atom> &Atoms,
+ llvm::EquivalenceClasses<Atom> &EquivalentAtoms) {
+ llvm::DenseSet<Atom> Result;
+
+ for (Atom Atom : Atoms)
+ Result.insert(EquivalentAtoms.getOrInsertLeaderValue(Atom));
+
+ return Result;
+}
+
+// Returns the atoms in the equivalence class for the leader identified by
+// `LeaderIt`.
+static llvm::SmallVector<Atom>
+atomsInEquivalenceClass(const llvm::EquivalenceClasses<Atom> &EquivalentAtoms,
+ llvm::EquivalenceClasses<Atom>::iterator LeaderIt) {
+ llvm::SmallVector<Atom> Result;
+ for (auto MemberIt = EquivalentAtoms.member_begin(LeaderIt);
+ MemberIt != EquivalentAtoms.member_end(); ++MemberIt)
+ Result.push_back(*MemberIt);
+ return Result;
+}
+
+void simplifyConstraints(llvm::SetVector<const Formula *> &Constraints,
+ Arena &arena, SimplifyConstraintsInfo *Info) {
+ auto contradiction = [&]() {
+ Constraints.clear();
+ Constraints.insert(&arena.makeLiteral(false));
+ };
+
+ llvm::EquivalenceClasses<Atom> EquivalentAtoms;
+ llvm::DenseSet<Atom> TrueAtoms;
+ llvm::DenseSet<Atom> FalseAtoms;
+
+ while (true) {
+ for (const auto *Constraint : Constraints) {
+ switch (Constraint->kind()) {
+ case Formula::AtomRef:
+ TrueAtoms.insert(Constraint->getAtom());
+ break;
+ case Formula::Not:
+ if (Constraint->operands()[0]->kind() == Formula::AtomRef)
+ FalseAtoms.insert(Constraint->operands()[0]->getAtom());
+ break;
+ case Formula::Equal: {
+ ArrayRef<const Formula *> operands = Constraint->operands();
+ if (operands[0]->kind() == Formula::AtomRef &&
+ operands[1]->kind() == Formula::AtomRef) {
+ EquivalentAtoms.unionSets(operands[0]->getAtom(),
+ operands[1]->getAtom());
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ TrueAtoms = projectToLeaders(TrueAtoms, EquivalentAtoms);
+ FalseAtoms = projectToLeaders(FalseAtoms, EquivalentAtoms);
+
+ llvm::DenseMap<Atom, const Formula *> Substitutions;
+ for (auto It = EquivalentAtoms.begin(); It != EquivalentAtoms.end(); ++It) {
+ Atom TheAtom = It->getData();
+ Atom Leader = EquivalentAtoms.getLeaderValue(TheAtom);
+ if (TrueAtoms.contains(Leader)) {
+ if (FalseAtoms.contains(Leader)) {
+ contradiction();
+ return;
+ }
+ Substitutions.insert({TheAtom, &arena.makeLiteral(true)});
+ } else if (FalseAtoms.contains(Leader)) {
+ Substitutions.insert({TheAtom, &arena.makeLiteral(false)});
+ } else if (TheAtom != Leader) {
+ Substitutions.insert({TheAtom, &arena.makeAtomRef(Leader)});
+ }
+ }
+
+ llvm::SetVector<const Formula *> NewConstraints;
+ for (const auto *Constraint : Constraints) {
+ const Formula &NewConstraint =
+ substitute(*Constraint, Substitutions, arena);
+ if (NewConstraint.isLiteral(true))
+ continue;
+ if (NewConstraint.isLiteral(false)) {
+ contradiction();
+ return;
+ }
+ if (NewConstraint.kind() == Formula::And) {
+ NewConstraints.insert(NewConstraint.operands()[0]);
+ NewConstraints.insert(NewConstraint.operands()[1]);
+ continue;
+ }
+ NewConstraints.insert(&NewConstraint);
+ }
+
+ if (NewConstraints == Constraints)
+ break;
+ Constraints = std::move(NewConstraints);
+ }
+
+ if (Info) {
+ for (auto It = EquivalentAtoms.begin(), End = EquivalentAtoms.end();
+ It != End; ++It) {
+ if (!It->isLeader())
+ continue;
+ Atom At = *EquivalentAtoms.findLeader(It);
+ if (TrueAtoms.contains(At) || FalseAtoms.contains(At))
+ continue;
+ llvm::SmallVector<Atom> Atoms =
+ atomsInEquivalenceClass(EquivalentAtoms, It);
+ if (Atoms.size() == 1)
+ continue;
+ std::sort(Atoms.begin(), Atoms.end());
+ Info->EquivalentAtoms.push_back(std::move(Atoms));
+ }
+ for (Atom At : TrueAtoms)
+ Info->TrueAtoms.append(atomsInEquivalenceClass(
+ EquivalentAtoms, EquivalentAtoms.findValue(At)));
+ std::sort(Info->TrueAtoms.begin(), Info->TrueAtoms.end());
+ for (Atom At : FalseAtoms)
+ Info->FalseAtoms.append(atomsInEquivalenceClass(
+ EquivalentAtoms, EquivalentAtoms.findValue(At)));
+ std::sort(Info->FalseAtoms.begin(), Info->FalseAtoms.end());
+ }
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Transfer.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Transfer.cpp
new file mode 100644
index 000000000000..3c896d373a21
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Transfer.cpp
@@ -0,0 +1,897 @@
+//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines transfer functions that evaluate program statements and
+// update an environment accordingly.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Transfer.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/FlowSensitive/ASTOps.h"
+#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
+#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
+#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
+#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
+#include "clang/Analysis/FlowSensitive/RecordOps.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/OperatorKinds.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include <assert.h>
+#include <cassert>
+
+#define DEBUG_TYPE "dataflow"
+
+namespace clang {
+namespace dataflow {
+
+const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const {
+ auto BlockIt = ACFG.getStmtToBlock().find(&ignoreCFGOmittedNodes(S));
+ if (BlockIt == ACFG.getStmtToBlock().end()) {
+ assert(false);
+ // Return null to avoid dereferencing the end iterator in non-assert builds.
+ return nullptr;
+ }
+ if (!ACFG.isBlockReachable(*BlockIt->getSecond()))
+ return nullptr;
+ if (BlockIt->getSecond()->getBlockID() == CurBlockID)
+ return &CurState.Env;
+ const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()];
+ if (!(State))
+ return nullptr;
+ return &State->Env;
+}
+
+static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
+ Environment &Env) {
+ Value *LHSValue = Env.getValue(LHS);
+ Value *RHSValue = Env.getValue(RHS);
+
+ if (LHSValue == RHSValue)
+ return Env.getBoolLiteralValue(true);
+
+ if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue))
+ if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue))
+ return Env.makeIff(*LHSBool, *RHSBool);
+
+ if (auto *LHSPtr = dyn_cast_or_null<PointerValue>(LHSValue))
+ if (auto *RHSPtr = dyn_cast_or_null<PointerValue>(RHSValue))
+ // If the storage locations are the same, the pointers definitely compare
+ // the same. If the storage locations are different, they may still alias,
+ // so we fall through to the case below that returns an atom.
+ if (&LHSPtr->getPointeeLoc() == &RHSPtr->getPointeeLoc())
+ return Env.getBoolLiteralValue(true);
+
+ return Env.makeAtomicBoolValue();
+}
+
+static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
+ if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) {
+ auto &A = Env.getDataflowAnalysisContext().arena();
+ return A.makeBoolValue(A.makeAtomRef(Top->getAtom()));
+ }
+ return V;
+}
+
+// Unpacks the value (if any) associated with `E` and updates `E` to the new
+// value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion,
+// by skipping past the reference.
+static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
+ auto *Loc = Env.getStorageLocation(E);
+ if (Loc == nullptr)
+ return nullptr;
+ auto *Val = Env.getValue(*Loc);
+
+ auto *B = dyn_cast_or_null<BoolValue>(Val);
+ if (B == nullptr)
+ return Val;
+
+ auto &UnpackedVal = unpackValue(*B, Env);
+ if (&UnpackedVal == Val)
+ return Val;
+ Env.setValue(*Loc, UnpackedVal);
+ return &UnpackedVal;
+}
+
+static void propagateValue(const Expr &From, const Expr &To, Environment &Env) {
+ if (From.getType()->isRecordType())
+ return;
+ if (auto *Val = Env.getValue(From))
+ Env.setValue(To, *Val);
+}
+
+static void propagateStorageLocation(const Expr &From, const Expr &To,
+ Environment &Env) {
+ if (auto *Loc = Env.getStorageLocation(From))
+ Env.setStorageLocation(To, *Loc);
+}
+
+// Propagates the value or storage location of `From` to `To` in cases where
+// `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff
+// `From` is a glvalue.
+static void propagateValueOrStorageLocation(const Expr &From, const Expr &To,
+ Environment &Env) {
+ assert(From.isGLValue() == To.isGLValue());
+ if (From.isGLValue())
+ propagateStorageLocation(From, To, Env);
+ else
+ propagateValue(From, To, Env);
+}
+
+namespace {
+
+class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
+public:
+ TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env,
+ Environment::ValueModel &Model)
+ : StmtToEnv(StmtToEnv), Env(Env), Model(Model) {}
+
+ void VisitBinaryOperator(const BinaryOperator *S) {
+ const Expr *LHS = S->getLHS();
+ assert(LHS != nullptr);
+
+ const Expr *RHS = S->getRHS();
+ assert(RHS != nullptr);
+
+ // Do compound assignments up-front, as there are so many of them and we
+ // don't want to list all of them in the switch statement below.
+ // To avoid generating unnecessary values, we don't create a new value but
+ // instead leave it to the specific analysis to do this if desired.
+ if (S->isCompoundAssignmentOp())
+ propagateStorageLocation(*S->getLHS(), *S, Env);
+
+ switch (S->getOpcode()) {
+ case BO_Assign: {
+ auto *LHSLoc = Env.getStorageLocation(*LHS);
+ if (LHSLoc == nullptr)
+ break;
+
+ auto *RHSVal = Env.getValue(*RHS);
+ if (RHSVal == nullptr)
+ break;
+
+ // Assign a value to the storage location of the left-hand side.
+ Env.setValue(*LHSLoc, *RHSVal);
+
+ // Assign a storage location for the whole expression.
+ Env.setStorageLocation(*S, *LHSLoc);
+ break;
+ }
+ case BO_LAnd:
+ case BO_LOr: {
+ BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
+ BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
+
+ if (S->getOpcode() == BO_LAnd)
+ Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal));
+ else
+ Env.setValue(*S, Env.makeOr(LHSVal, RHSVal));
+ break;
+ }
+ case BO_NE:
+ case BO_EQ: {
+ auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
+ Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue
+ : Env.makeNot(LHSEqRHSValue));
+ break;
+ }
+ case BO_Comma: {
+ propagateValueOrStorageLocation(*RHS, *S, Env);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ void VisitDeclRefExpr(const DeclRefExpr *S) {
+ const ValueDecl *VD = S->getDecl();
+ assert(VD != nullptr);
+
+ // Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a
+ // `StorageLocation`, and there's also no sensible `Value` that we can
+ // assign to them. Examples:
+ // - Non-static member variables
+ // - Non static member functions
+ // Note: Member operators are an exception to this, but apparently only
+ // if the `DeclRefExpr` is used within the callee of a
+ // `CXXOperatorCallExpr`. In other cases, for example when applying the
+ // address-of operator, the `DeclRefExpr` is a prvalue.
+ if (!S->isGLValue())
+ return;
+
+ auto *DeclLoc = Env.getStorageLocation(*VD);
+ if (DeclLoc == nullptr)
+ return;
+
+ Env.setStorageLocation(*S, *DeclLoc);
+ }
+
+ void VisitDeclStmt(const DeclStmt *S) {
+ // Group decls are converted into single decls in the CFG so the cast below
+ // is safe.
+ const auto &D = *cast<VarDecl>(S->getSingleDecl());
+
+ ProcessVarDecl(D);
+ }
+
+ void ProcessVarDecl(const VarDecl &D) {
+ // Static local vars are already initialized in `Environment`.
+ if (D.hasGlobalStorage())
+ return;
+
+ // If this is the holding variable for a `BindingDecl`, we may already
+ // have a storage location set up -- so check. (See also explanation below
+ // where we process the `BindingDecl`.)
+ if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr)
+ return;
+
+ assert(Env.getStorageLocation(D) == nullptr);
+
+ Env.setStorageLocation(D, Env.createObject(D));
+
+ // `DecompositionDecl` must be handled after we've interpreted the loc
+ // itself, because the binding expression refers back to the
+ // `DecompositionDecl` (even though it has no written name).
+ if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
+ // If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
+ // needs to be evaluated after initializing the values in the storage for
+ // VarDecl, as the bindings refer to them.
+ // FIXME: Add support for ArraySubscriptExpr.
+ // FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
+ for (const auto *B : Decomp->bindings()) {
+ if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
+ auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
+ if (DE == nullptr)
+ continue;
+
+ // ME and its base haven't been visited because they aren't included
+ // in the statements of the CFG basic block.
+ VisitDeclRefExpr(DE);
+ VisitMemberExpr(ME);
+
+ if (auto *Loc = Env.getStorageLocation(*ME))
+ Env.setStorageLocation(*B, *Loc);
+ } else if (auto *VD = B->getHoldingVar()) {
+ // Holding vars are used to back the `BindingDecl`s of tuple-like
+ // types. The holding var declarations appear after the
+ // `DecompositionDecl`, so we have to explicitly process them here
+ // to know their storage location. They will be processed a second
+ // time when we visit their `VarDecl`s, so we have code that protects
+ // against this above.
+ ProcessVarDecl(*VD);
+ auto *VDLoc = Env.getStorageLocation(*VD);
+ assert(VDLoc != nullptr);
+ Env.setStorageLocation(*B, *VDLoc);
+ }
+ }
+ }
+ }
+
+ void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
+ const Expr *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+
+ switch (S->getCastKind()) {
+ case CK_IntegralToBoolean: {
+ // This cast creates a new, boolean value from the integral value. We
+ // model that with a fresh value in the environment, unless it's already a
+ // boolean.
+ if (auto *SubExprVal =
+ dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)))
+ Env.setValue(*S, *SubExprVal);
+ else
+ // FIXME: If integer modeling is added, then update this code to create
+ // the boolean based on the integer model.
+ Env.setValue(*S, Env.makeAtomicBoolValue());
+ break;
+ }
+
+ case CK_LValueToRValue: {
+ // When an L-value is used as an R-value, it may result in sharing, so we
+ // need to unpack any nested `Top`s.
+ auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
+ if (SubExprVal == nullptr)
+ break;
+
+ Env.setValue(*S, *SubExprVal);
+ break;
+ }
+
+ case CK_IntegralCast:
+ // FIXME: This cast creates a new integral value from the
+ // subexpression. But, because we don't model integers, we don't
+ // distinguish between this new value and the underlying one. If integer
+ // modeling is added, then update this code to create a fresh location and
+ // value.
+ case CK_UncheckedDerivedToBase:
+ case CK_ConstructorConversion:
+ case CK_UserDefinedConversion:
+ // FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
+ // CK_ConstructorConversion, and CK_UserDefinedConversion.
+ case CK_NoOp: {
+ // FIXME: Consider making `Environment::getStorageLocation` skip noop
+ // expressions (this and other similar expressions in the file) instead
+ // of assigning them storage locations.
+ propagateValueOrStorageLocation(*SubExpr, *S, Env);
+ break;
+ }
+ case CK_NullToPointer: {
+ auto &NullPointerVal =
+ Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
+ Env.setValue(*S, NullPointerVal);
+ break;
+ }
+ case CK_NullToMemberPointer:
+ // FIXME: Implement pointers to members. For now, don't associate a value
+ // with this expression.
+ break;
+ case CK_FunctionToPointerDecay: {
+ StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr);
+ if (PointeeLoc == nullptr)
+ break;
+
+ Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
+ break;
+ }
+ case CK_BuiltinFnToFnPtr:
+ // Despite its name, the result type of `BuiltinFnToFnPtr` is a function,
+ // not a function pointer. In addition, builtin functions can only be
+ // called directly; it is not legal to take their address. We therefore
+ // don't need to create a value or storage location for them.
+ break;
+ default:
+ break;
+ }
+ }
+
+ void VisitUnaryOperator(const UnaryOperator *S) {
+ const Expr *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+
+ switch (S->getOpcode()) {
+ case UO_Deref: {
+ const auto *SubExprVal = Env.get<PointerValue>(*SubExpr);
+ if (SubExprVal == nullptr)
+ break;
+
+ Env.setStorageLocation(*S, SubExprVal->getPointeeLoc());
+ break;
+ }
+ case UO_AddrOf: {
+ // FIXME: Model pointers to members.
+ if (S->getType()->isMemberPointerType())
+ break;
+
+ if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr))
+ Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
+ break;
+ }
+ case UO_LNot: {
+ auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr));
+ if (SubExprVal == nullptr)
+ break;
+
+ Env.setValue(*S, Env.makeNot(*SubExprVal));
+ break;
+ }
+ case UO_PreInc:
+ case UO_PreDec:
+ // Propagate the storage location and clear out any value associated with
+ // it (to represent the fact that the value has definitely changed).
+ // To avoid generating unnecessary values, we leave it to the specific
+ // analysis to create a new value if desired.
+ propagateStorageLocation(*S->getSubExpr(), *S, Env);
+ if (StorageLocation *Loc = Env.getStorageLocation(*S->getSubExpr()))
+ Env.clearValue(*Loc);
+ break;
+ case UO_PostInc:
+ case UO_PostDec:
+ // Propagate the old value, then clear out any value associated with the
+ // storage location (to represent the fact that the value has definitely
+ // changed). See above for rationale.
+ propagateValue(*S->getSubExpr(), *S, Env);
+ if (StorageLocation *Loc = Env.getStorageLocation(*S->getSubExpr()))
+ Env.clearValue(*Loc);
+ break;
+ default:
+ break;
+ }
+ }
+
+ void VisitCXXThisExpr(const CXXThisExpr *S) {
+ auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
+ if (ThisPointeeLoc == nullptr)
+ // Unions are not supported yet, and will not have a location for the
+ // `this` expression's pointee.
+ return;
+
+ Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc));
+ }
+
+ void VisitCXXNewExpr(const CXXNewExpr *S) {
+ if (Value *Val = Env.createValue(S->getType()))
+ Env.setValue(*S, *Val);
+ }
+
+ void VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
+ // Empty method.
+ // We consciously don't do anything on deletes. Diagnosing double deletes
+ // (for example) should be done by a specific analysis, not by the
+ // framework.
+ }
+
+ void VisitReturnStmt(const ReturnStmt *S) {
+ if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts)
+ return;
+
+ auto *Ret = S->getRetValue();
+ if (Ret == nullptr)
+ return;
+
+ if (Ret->isPRValue()) {
+ if (Ret->getType()->isRecordType())
+ return;
+
+ auto *Val = Env.getValue(*Ret);
+ if (Val == nullptr)
+ return;
+
+ // FIXME: Model NRVO.
+ Env.setReturnValue(Val);
+ } else {
+ auto *Loc = Env.getStorageLocation(*Ret);
+ if (Loc == nullptr)
+ return;
+
+ // FIXME: Model NRVO.
+ Env.setReturnStorageLocation(Loc);
+ }
+ }
+
+ void VisitMemberExpr(const MemberExpr *S) {
+ ValueDecl *Member = S->getMemberDecl();
+ assert(Member != nullptr);
+
+ // FIXME: Consider assigning pointer values to function member expressions.
+ if (Member->isFunctionOrFunctionTemplate())
+ return;
+
+ // FIXME: if/when we add support for modeling enums, use that support here.
+ if (isa<EnumConstantDecl>(Member))
+ return;
+
+ if (auto *D = dyn_cast<VarDecl>(Member)) {
+ if (D->hasGlobalStorage()) {
+ auto *VarDeclLoc = Env.getStorageLocation(*D);
+ if (VarDeclLoc == nullptr)
+ return;
+
+ Env.setStorageLocation(*S, *VarDeclLoc);
+ return;
+ }
+ }
+
+ RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env);
+ if (BaseLoc == nullptr)
+ return;
+
+ auto *MemberLoc = BaseLoc->getChild(*Member);
+ if (MemberLoc == nullptr)
+ return;
+ Env.setStorageLocation(*S, *MemberLoc);
+ }
+
+ void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) {
+ const Expr *ArgExpr = S->getExpr();
+ assert(ArgExpr != nullptr);
+ propagateValueOrStorageLocation(*ArgExpr, *S, Env);
+
+ if (S->isPRValue() && S->getType()->isRecordType()) {
+ auto &Loc = Env.getResultObjectLocation(*S);
+ Env.initializeFieldsWithValues(Loc);
+ }
+ }
+
+ void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
+ const Expr *InitExpr = S->getExpr();
+ assert(InitExpr != nullptr);
+
+ // If this is a prvalue of record type, the handler for `*InitExpr` (if one
+ // exists) will initialize the result object; there is no value to propgate
+ // here.
+ if (S->getType()->isRecordType() && S->isPRValue())
+ return;
+
+ propagateValueOrStorageLocation(*InitExpr, *S, Env);
+ }
+
+ void VisitCXXConstructExpr(const CXXConstructExpr *S) {
+ const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
+ assert(ConstructorDecl != nullptr);
+
+ // `CXXConstructExpr` can have array type if default-initializing an array
+ // of records. We don't handle this specifically beyond potentially inlining
+ // the call.
+ if (!S->getType()->isRecordType()) {
+ transferInlineCall(S, ConstructorDecl);
+ return;
+ }
+
+ RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
+
+ if (ConstructorDecl->isCopyOrMoveConstructor()) {
+ // It is permissible for a copy/move constructor to have additional
+ // parameters as long as they have default arguments defined for them.
+ assert(S->getNumArgs() != 0);
+
+ const Expr *Arg = S->getArg(0);
+ assert(Arg != nullptr);
+
+ auto *ArgLoc = Env.get<RecordStorageLocation>(*Arg);
+ if (ArgLoc == nullptr)
+ return;
+
+ // Even if the copy/move constructor call is elidable, we choose to copy
+ // the record in all cases (which isn't wrong, just potentially not
+ // optimal).
+ copyRecord(*ArgLoc, Loc, Env);
+ return;
+ }
+
+ Env.initializeFieldsWithValues(Loc, S->getType());
+
+ transferInlineCall(S, ConstructorDecl);
+ }
+
+ void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
+ if (S->getOperator() == OO_Equal) {
+ assert(S->getNumArgs() == 2);
+
+ const Expr *Arg0 = S->getArg(0);
+ assert(Arg0 != nullptr);
+
+ const Expr *Arg1 = S->getArg(1);
+ assert(Arg1 != nullptr);
+
+ // Evaluate only copy and move assignment operators.
+ const auto *Method =
+ dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee());
+ if (!Method)
+ return;
+ if (!Method->isCopyAssignmentOperator() &&
+ !Method->isMoveAssignmentOperator())
+ return;
+
+ RecordStorageLocation *LocSrc = nullptr;
+ if (Arg1->isPRValue()) {
+ LocSrc = &Env.getResultObjectLocation(*Arg1);
+ } else {
+ LocSrc = Env.get<RecordStorageLocation>(*Arg1);
+ }
+ auto *LocDst = Env.get<RecordStorageLocation>(*Arg0);
+
+ if (LocSrc == nullptr || LocDst == nullptr)
+ return;
+
+ copyRecord(*LocSrc, *LocDst, Env);
+
+ // The assignment operator can have an arbitrary return type. We model the
+ // return value only if the return type is the same as or a base class of
+ // the destination type.
+ if (S->getType().getCanonicalType().getUnqualifiedType() !=
+ LocDst->getType().getCanonicalType().getUnqualifiedType()) {
+ auto ReturnDecl = S->getType()->getAsCXXRecordDecl();
+ auto DstDecl = LocDst->getType()->getAsCXXRecordDecl();
+ if (ReturnDecl == nullptr || DstDecl == nullptr)
+ return;
+ if (!DstDecl->isDerivedFrom(ReturnDecl))
+ return;
+ }
+
+ if (S->isGLValue())
+ Env.setStorageLocation(*S, *LocDst);
+ else
+ copyRecord(*LocDst, Env.getResultObjectLocation(*S), Env);
+
+ return;
+ }
+
+ // `CXXOperatorCallExpr` can be a prvalue. Call `VisitCallExpr`() to
+ // initialize the prvalue's fields with values.
+ VisitCallExpr(S);
+ }
+
+ void VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
+ propagateValue(*RBO->getSemanticForm(), *RBO, Env);
+ }
+
+ void VisitCallExpr(const CallExpr *S) {
+ // Of clang's builtins, only `__builtin_expect` is handled explicitly, since
+ // others (like trap, debugtrap, and unreachable) are handled by CFG
+ // construction.
+ if (S->isCallToStdMove()) {
+ assert(S->getNumArgs() == 1);
+
+ const Expr *Arg = S->getArg(0);
+ assert(Arg != nullptr);
+
+ auto *ArgLoc = Env.getStorageLocation(*Arg);
+ if (ArgLoc == nullptr)
+ return;
+
+ Env.setStorageLocation(*S, *ArgLoc);
+ } else if (S->getDirectCallee() != nullptr &&
+ S->getDirectCallee()->getBuiltinID() ==
+ Builtin::BI__builtin_expect) {
+ assert(S->getNumArgs() > 0);
+ assert(S->getArg(0) != nullptr);
+ auto *ArgVal = Env.getValue(*S->getArg(0));
+ if (ArgVal == nullptr)
+ return;
+ Env.setValue(*S, *ArgVal);
+ } else if (const FunctionDecl *F = S->getDirectCallee()) {
+ transferInlineCall(S, F);
+
+ // If this call produces a prvalue of record type, initialize its fields
+ // with values.
+ if (S->getType()->isRecordType() && S->isPRValue()) {
+ RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
+ Env.initializeFieldsWithValues(Loc);
+ }
+ }
+ }
+
+ void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
+ const Expr *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+
+ StorageLocation &Loc = Env.createStorageLocation(*S);
+ Env.setStorageLocation(*S, Loc);
+
+ if (SubExpr->getType()->isRecordType())
+ // Nothing else left to do -- we initialized the record when transferring
+ // `SubExpr`.
+ return;
+
+ if (Value *SubExprVal = Env.getValue(*SubExpr))
+ Env.setValue(Loc, *SubExprVal);
+ }
+
+ void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
+ const Expr *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+
+ propagateValue(*SubExpr, *S, Env);
+ }
+
+ void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
+ if (S->getCastKind() == CK_NoOp) {
+ const Expr *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+
+ propagateValueOrStorageLocation(*SubExpr, *S, Env);
+ }
+ }
+
+ void VisitConditionalOperator(const ConditionalOperator *S) {
+ const Environment *TrueEnv = StmtToEnv.getEnvironment(*S->getTrueExpr());
+ const Environment *FalseEnv = StmtToEnv.getEnvironment(*S->getFalseExpr());
+
+ if (TrueEnv == nullptr || FalseEnv == nullptr) {
+ // If the true or false branch is dead, we may not have an environment for
+ // it. We could handle this specifically by forwarding the value or
+ // location of the live branch, but this case is rare enough that this
+ // probably isn't worth the additional complexity.
+ return;
+ }
+
+ if (S->isGLValue()) {
+ StorageLocation *TrueLoc = TrueEnv->getStorageLocation(*S->getTrueExpr());
+ StorageLocation *FalseLoc =
+ FalseEnv->getStorageLocation(*S->getFalseExpr());
+ if (TrueLoc == FalseLoc && TrueLoc != nullptr)
+ Env.setStorageLocation(*S, *TrueLoc);
+ } else if (!S->getType()->isRecordType()) {
+ // The conditional operator can evaluate to either of the values of the
+ // two branches. To model this, join these two values together to yield
+ // the result of the conditional operator.
+ // Note: Most joins happen in `computeBlockInputState()`, but this case is
+ // different:
+ // - `computeBlockInputState()` (which in turn calls `Environment::join()`
+ // joins values associated with the _same_ expression or storage
+ // location, then associates the joined value with that expression or
+ // storage location. This join has nothing to do with transfer --
+ // instead, it joins together the results of performing transfer on two
+ // different blocks.
+ // - Here, we join values associated with _different_ expressions (the
+ // true and false branch), then associate the joined value with a third
+ // expression (the conditional operator itself). This join is what it
+ // means to perform transfer on the conditional operator.
+ if (Value *Val = Environment::joinValues(
+ S->getType(), TrueEnv->getValue(*S->getTrueExpr()), *TrueEnv,
+ FalseEnv->getValue(*S->getFalseExpr()), *FalseEnv, Env, Model))
+ Env.setValue(*S, *Val);
+ }
+ }
+
+ void VisitInitListExpr(const InitListExpr *S) {
+ QualType Type = S->getType();
+
+ if (!Type->isRecordType()) {
+ // Until array initialization is implemented, we skip arrays and don't
+ // need to care about cases where `getNumInits() > 1`.
+ if (!Type->isArrayType() && S->getNumInits() == 1)
+ propagateValueOrStorageLocation(*S->getInit(0), *S, Env);
+ return;
+ }
+
+ // If the initializer list is transparent, there's nothing to do.
+ if (S->isSemanticForm() && S->isTransparent())
+ return;
+
+ RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
+
+ // Initialization of base classes and fields of record type happens when we
+ // visit the nested `CXXConstructExpr` or `InitListExpr` for that base class
+ // or field. We therefore only need to deal with fields of non-record type
+ // here.
+
+ RecordInitListHelper InitListHelper(S);
+
+ for (auto [Field, Init] : InitListHelper.field_inits()) {
+ if (Field->getType()->isRecordType())
+ continue;
+ if (Field->getType()->isReferenceType()) {
+ assert(Field->getType().getCanonicalType()->getPointeeType() ==
+ Init->getType().getCanonicalType());
+ Loc.setChild(*Field, &Env.createObject(Field->getType(), Init));
+ continue;
+ }
+ assert(Field->getType().getCanonicalType().getUnqualifiedType() ==
+ Init->getType().getCanonicalType().getUnqualifiedType());
+ StorageLocation *FieldLoc = Loc.getChild(*Field);
+ // Locations for non-reference fields must always be non-null.
+ assert(FieldLoc != nullptr);
+ Value *Val = Env.getValue(*Init);
+ if (Val == nullptr && isa<ImplicitValueInitExpr>(Init) &&
+ Init->getType()->isPointerType())
+ Val =
+ &Env.getOrCreateNullPointerValue(Init->getType()->getPointeeType());
+ if (Val == nullptr)
+ Val = Env.createValue(Field->getType());
+ if (Val != nullptr)
+ Env.setValue(*FieldLoc, *Val);
+ }
+
+ for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) {
+ QualType FieldType = FieldLoc->getType();
+ if (FieldType->isRecordType()) {
+ Env.initializeFieldsWithValues(*cast<RecordStorageLocation>(FieldLoc));
+ } else {
+ if (Value *Val = Env.createValue(FieldType))
+ Env.setValue(*FieldLoc, *Val);
+ }
+ }
+
+ // FIXME: Implement array initialization.
+ }
+
+ void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
+ Env.setValue(*S, Env.getBoolLiteralValue(S->getValue()));
+ }
+
+ void VisitIntegerLiteral(const IntegerLiteral *S) {
+ Env.setValue(*S, Env.getIntLiteralValue(S->getValue()));
+ }
+
+ void VisitParenExpr(const ParenExpr *S) {
+ // The CFG does not contain `ParenExpr` as top-level statements in basic
+ // blocks, however manual traversal to sub-expressions may encounter them.
+ // Redirect to the sub-expression.
+ auto *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+ Visit(SubExpr);
+ }
+
+ void VisitExprWithCleanups(const ExprWithCleanups *S) {
+ // The CFG does not contain `ExprWithCleanups` as top-level statements in
+ // basic blocks, however manual traversal to sub-expressions may encounter
+ // them. Redirect to the sub-expression.
+ auto *SubExpr = S->getSubExpr();
+ assert(SubExpr != nullptr);
+ Visit(SubExpr);
+ }
+
+private:
+ /// Returns the value for the sub-expression `SubExpr` of a logic operator.
+ BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
+ // `SubExpr` and its parent logic operator might be part of different basic
+ // blocks. We try to access the value that is assigned to `SubExpr` in the
+ // corresponding environment.
+ if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr))
+ if (auto *Val =
+ dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr)))
+ return *Val;
+
+ // The sub-expression may lie within a basic block that isn't reachable,
+ // even if we need it to evaluate the current (reachable) expression
+ // (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr`
+ // within the current environment and then try to get the value that gets
+ // assigned to it.
+ if (Env.getValue(SubExpr) == nullptr)
+ Visit(&SubExpr);
+ if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr)))
+ return *Val;
+
+ // If the value of `SubExpr` is still unknown, we create a fresh symbolic
+ // boolean value for it.
+ return Env.makeAtomicBoolValue();
+ }
+
+ // If context sensitivity is enabled, try to analyze the body of the callee
+ // `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
+ template <typename E>
+ void transferInlineCall(const E *S, const FunctionDecl *F) {
+ const auto &Options = Env.getDataflowAnalysisContext().getOptions();
+ if (!(Options.ContextSensitiveOpts &&
+ Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
+ return;
+
+ const AdornedCFG *ACFG = Env.getDataflowAnalysisContext().getAdornedCFG(F);
+ if (!ACFG)
+ return;
+
+ // FIXME: We don't support context-sensitive analysis of recursion, so
+ // we should return early here if `F` is the same as the `FunctionDecl`
+ // holding `S` itself.
+
+ auto ExitBlock = ACFG->getCFG().getExit().getBlockID();
+
+ auto CalleeEnv = Env.pushCall(S);
+
+ // FIXME: Use the same analysis as the caller for the callee. Note,
+ // though, that doing so would require support for changing the analysis's
+ // ASTContext.
+ auto Analysis = NoopAnalysis(ACFG->getDecl().getASTContext(),
+ DataflowAnalysisOptions{Options});
+
+ auto BlockToOutputState =
+ dataflow::runDataflowAnalysis(*ACFG, Analysis, CalleeEnv);
+ assert(BlockToOutputState);
+ assert(ExitBlock < BlockToOutputState->size());
+
+ auto &ExitState = (*BlockToOutputState)[ExitBlock];
+ assert(ExitState);
+
+ Env.popCall(S, ExitState->Env);
+ }
+
+ const StmtToEnvMap &StmtToEnv;
+ Environment &Env;
+ Environment::ValueModel &Model;
+};
+
+} // namespace
+
+void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env,
+ Environment::ValueModel &Model) {
+ TransferVisitor(StmtToEnv, Env, Model).Visit(&S);
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.cpp
new file mode 100644
index 000000000000..200682faafd6
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.cpp
@@ -0,0 +1,571 @@
+//===- TypeErasedDataflowAnalysis.cpp -------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines type-erased base types and functions for building dataflow
+// analyses that run over Control-Flow Graphs (CFGs).
+//
+//===----------------------------------------------------------------------===//
+
+#include <optional>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+#include "clang/AST/ASTDumper.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Analysis/Analyses/PostOrderCFGView.h"
+#include "clang/Analysis/CFG.h"
+#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
+#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
+#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
+#include "clang/Analysis/FlowSensitive/RecordOps.h"
+#include "clang/Analysis/FlowSensitive/Transfer.h"
+#include "clang/Analysis/FlowSensitive/TypeErasedDataflowAnalysis.h"
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Error.h"
+
+#define DEBUG_TYPE "clang-dataflow"
+
+namespace clang {
+namespace dataflow {
+
+/// Returns the index of `Block` in the successors of `Pred`.
+static int blockIndexInPredecessor(const CFGBlock &Pred,
+ const CFGBlock &Block) {
+ auto BlockPos = llvm::find_if(
+ Pred.succs(), [&Block](const CFGBlock::AdjacentBlock &Succ) {
+ return Succ && Succ->getBlockID() == Block.getBlockID();
+ });
+ return BlockPos - Pred.succ_begin();
+}
+
+// A "backedge" node is a block introduced in the CFG exclusively to indicate a
+// loop backedge. They are exactly identified by the presence of a non-null
+// pointer to the entry block of the loop condition. Note that this is not
+// necessarily the block with the loop statement as terminator, because
+// short-circuit operators will result in multiple blocks encoding the loop
+// condition, only one of which will contain the loop statement as terminator.
+static bool isBackedgeNode(const CFGBlock &B) {
+ return B.getLoopTarget() != nullptr;
+}
+
+namespace {
+
+/// Extracts the terminator's condition expression.
+class TerminatorVisitor
+ : public ConstStmtVisitor<TerminatorVisitor, const Expr *> {
+public:
+ TerminatorVisitor() = default;
+ const Expr *VisitIfStmt(const IfStmt *S) { return S->getCond(); }
+ const Expr *VisitWhileStmt(const WhileStmt *S) { return S->getCond(); }
+ const Expr *VisitDoStmt(const DoStmt *S) { return S->getCond(); }
+ const Expr *VisitForStmt(const ForStmt *S) { return S->getCond(); }
+ const Expr *VisitCXXForRangeStmt(const CXXForRangeStmt *) {
+ // Don't do anything special for CXXForRangeStmt, because the condition
+ // (being implicitly generated) isn't visible from the loop body.
+ return nullptr;
+ }
+ const Expr *VisitBinaryOperator(const BinaryOperator *S) {
+ assert(S->getOpcode() == BO_LAnd || S->getOpcode() == BO_LOr);
+ return S->getLHS();
+ }
+ const Expr *VisitConditionalOperator(const ConditionalOperator *S) {
+ return S->getCond();
+ }
+};
+
+/// Holds data structures required for running dataflow analysis.
+struct AnalysisContext {
+ AnalysisContext(const AdornedCFG &ACFG, TypeErasedDataflowAnalysis &Analysis,
+ const Environment &InitEnv,
+ llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>>
+ BlockStates)
+ : ACFG(ACFG), Analysis(Analysis), InitEnv(InitEnv),
+ Log(*InitEnv.getDataflowAnalysisContext().getOptions().Log),
+ BlockStates(BlockStates) {
+ Log.beginAnalysis(ACFG, Analysis);
+ }
+ ~AnalysisContext() { Log.endAnalysis(); }
+
+ /// Contains the CFG being analyzed.
+ const AdornedCFG &ACFG;
+ /// The analysis to be run.
+ TypeErasedDataflowAnalysis &Analysis;
+ /// Initial state to start the analysis.
+ const Environment &InitEnv;
+ Logger &Log;
+ /// Stores the state of a CFG block if it has been evaluated by the analysis.
+ /// The indices correspond to the block IDs.
+ llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>> BlockStates;
+};
+
+class PrettyStackTraceAnalysis : public llvm::PrettyStackTraceEntry {
+public:
+ PrettyStackTraceAnalysis(const AdornedCFG &ACFG, const char *Message)
+ : ACFG(ACFG), Message(Message) {}
+
+ void print(raw_ostream &OS) const override {
+ OS << Message << "\n";
+ OS << "Decl:\n";
+ ACFG.getDecl().dump(OS);
+ OS << "CFG:\n";
+ ACFG.getCFG().print(OS, LangOptions(), false);
+ }
+
+private:
+ const AdornedCFG &ACFG;
+ const char *Message;
+};
+
+class PrettyStackTraceCFGElement : public llvm::PrettyStackTraceEntry {
+public:
+ PrettyStackTraceCFGElement(const CFGElement &Element, int BlockIdx,
+ int ElementIdx, const char *Message)
+ : Element(Element), BlockIdx(BlockIdx), ElementIdx(ElementIdx),
+ Message(Message) {}
+
+ void print(raw_ostream &OS) const override {
+ OS << Message << ": Element [B" << BlockIdx << "." << ElementIdx << "]\n";
+ if (auto Stmt = Element.getAs<CFGStmt>()) {
+ OS << "Stmt:\n";
+ ASTDumper Dumper(OS, false);
+ Dumper.Visit(Stmt->getStmt());
+ }
+ }
+
+private:
+ const CFGElement &Element;
+ int BlockIdx;
+ int ElementIdx;
+ const char *Message;
+};
+
+// Builds a joined TypeErasedDataflowAnalysisState from 0 or more sources,
+// each of which may be owned (built as part of the join) or external (a
+// reference to an Environment that will outlive the builder).
+// Avoids unneccesary copies of the environment.
+class JoinedStateBuilder {
+ AnalysisContext &AC;
+ Environment::ExprJoinBehavior JoinBehavior;
+ std::vector<const TypeErasedDataflowAnalysisState *> All;
+ std::deque<TypeErasedDataflowAnalysisState> Owned;
+
+ TypeErasedDataflowAnalysisState
+ join(const TypeErasedDataflowAnalysisState &L,
+ const TypeErasedDataflowAnalysisState &R) {
+ return {AC.Analysis.joinTypeErased(L.Lattice, R.Lattice),
+ Environment::join(L.Env, R.Env, AC.Analysis, JoinBehavior)};
+ }
+
+public:
+ JoinedStateBuilder(AnalysisContext &AC,
+ Environment::ExprJoinBehavior JoinBehavior)
+ : AC(AC), JoinBehavior(JoinBehavior) {}
+
+ void addOwned(TypeErasedDataflowAnalysisState State) {
+ Owned.push_back(std::move(State));
+ All.push_back(&Owned.back());
+ }
+ void addUnowned(const TypeErasedDataflowAnalysisState &State) {
+ All.push_back(&State);
+ }
+ TypeErasedDataflowAnalysisState take() && {
+ if (All.empty())
+ // FIXME: Consider passing `Block` to Analysis.typeErasedInitialElement
+ // to enable building analyses like computation of dominators that
+ // initialize the state of each basic block differently.
+ return {AC.Analysis.typeErasedInitialElement(), AC.InitEnv.fork()};
+ if (All.size() == 1)
+ // Join the environment with itself so that we discard expression state if
+ // desired.
+ // FIXME: We could consider writing special-case code for this that only
+ // does the discarding, but it's not clear if this is worth it.
+ return {All[0]->Lattice, Environment::join(All[0]->Env, All[0]->Env,
+ AC.Analysis, JoinBehavior)};
+
+ auto Result = join(*All[0], *All[1]);
+ for (unsigned I = 2; I < All.size(); ++I)
+ Result = join(Result, *All[I]);
+ return Result;
+ }
+};
+} // namespace
+
+static const Expr *getTerminatorCondition(const Stmt *TerminatorStmt) {
+ return TerminatorStmt == nullptr ? nullptr
+ : TerminatorVisitor().Visit(TerminatorStmt);
+}
+
+/// Computes the input state for a given basic block by joining the output
+/// states of its predecessors.
+///
+/// Requirements:
+///
+/// All predecessors of `Block` except those with loop back edges must have
+/// already been transferred. States in `AC.BlockStates` that are set to
+/// `std::nullopt` represent basic blocks that are not evaluated yet.
+static TypeErasedDataflowAnalysisState
+computeBlockInputState(const CFGBlock &Block, AnalysisContext &AC) {
+ std::vector<const CFGBlock *> Preds(Block.pred_begin(), Block.pred_end());
+ if (Block.getTerminator().isTemporaryDtorsBranch()) {
+ // This handles a special case where the code that produced the CFG includes
+ // a conditional operator with a branch that constructs a temporary and
+ // calls a destructor annotated as noreturn. The CFG models this as follows:
+ //
+ // B1 (contains the condition of the conditional operator) - succs: B2, B3
+ // B2 (contains code that does not call a noreturn destructor) - succs: B4
+ // B3 (contains code that calls a noreturn destructor) - succs: B4
+ // B4 (has temporary destructor terminator) - succs: B5, B6
+ // B5 (noreturn block that is associated with the noreturn destructor call)
+ // B6 (contains code that follows the conditional operator statement)
+ //
+ // The first successor (B5 above) of a basic block with a temporary
+ // destructor terminator (B4 above) is the block that evaluates the
+ // destructor. If that block has a noreturn element then the predecessor
+ // block that constructed the temporary object (B3 above) is effectively a
+ // noreturn block and its state should not be used as input for the state
+ // of the block that has a temporary destructor terminator (B4 above). This
+ // holds regardless of which branch of the ternary operator calls the
+ // noreturn destructor. However, it doesn't cases where a nested ternary
+ // operator includes a branch that contains a noreturn destructor call.
+ //
+ // See `NoreturnDestructorTest` for concrete examples.
+ if (Block.succ_begin()->getReachableBlock() != nullptr &&
+ Block.succ_begin()->getReachableBlock()->hasNoReturnElement()) {
+ auto &StmtToBlock = AC.ACFG.getStmtToBlock();
+ auto StmtBlock = StmtToBlock.find(Block.getTerminatorStmt());
+ assert(StmtBlock != StmtToBlock.end());
+ llvm::erase(Preds, StmtBlock->getSecond());
+ }
+ }
+
+ // If any of the predecessor blocks contains an expression consumed in a
+ // different block, we need to keep expression state.
+ // Note that in this case, we keep expression state for all predecessors,
+ // rather than only those predecessors that actually contain an expression
+ // consumed in a different block. While this is potentially suboptimal, it's
+ // actually likely, if we have control flow within a full expression, that
+ // all predecessors have expression state consumed in a different block.
+ Environment::ExprJoinBehavior JoinBehavior = Environment::DiscardExprState;
+ for (const CFGBlock *Pred : Preds) {
+ if (Pred && AC.ACFG.containsExprConsumedInDifferentBlock(*Pred)) {
+ JoinBehavior = Environment::KeepExprState;
+ break;
+ }
+ }
+
+ JoinedStateBuilder Builder(AC, JoinBehavior);
+ for (const CFGBlock *Pred : Preds) {
+ // Skip if the `Block` is unreachable or control flow cannot get past it.
+ if (!Pred || Pred->hasNoReturnElement())
+ continue;
+
+ // Skip if `Pred` was not evaluated yet. This could happen if `Pred` has a
+ // loop back edge to `Block`.
+ const std::optional<TypeErasedDataflowAnalysisState> &MaybePredState =
+ AC.BlockStates[Pred->getBlockID()];
+ if (!MaybePredState)
+ continue;
+
+ const TypeErasedDataflowAnalysisState &PredState = *MaybePredState;
+ const Expr *Cond = getTerminatorCondition(Pred->getTerminatorStmt());
+ if (Cond == nullptr) {
+ Builder.addUnowned(PredState);
+ continue;
+ }
+
+ bool BranchVal = blockIndexInPredecessor(*Pred, Block) == 0;
+
+ // `transferBranch` may need to mutate the environment to describe the
+ // dynamic effect of the terminator for a given branch. Copy now.
+ TypeErasedDataflowAnalysisState Copy = MaybePredState->fork();
+ if (AC.Analysis.builtinOptions()) {
+ auto *CondVal = Copy.Env.get<BoolValue>(*Cond);
+ // In transferCFGBlock(), we ensure that we always have a `Value`
+ // for the terminator condition, so assert this. We consciously
+ // assert ourselves instead of asserting via `cast()` so that we get
+ // a more meaningful line number if the assertion fails.
+ assert(CondVal != nullptr);
+ BoolValue *AssertedVal =
+ BranchVal ? CondVal : &Copy.Env.makeNot(*CondVal);
+ Copy.Env.assume(AssertedVal->formula());
+ }
+ AC.Analysis.transferBranchTypeErased(BranchVal, Cond, Copy.Lattice,
+ Copy.Env);
+ Builder.addOwned(std::move(Copy));
+ }
+ return std::move(Builder).take();
+}
+
+/// Built-in transfer function for `CFGStmt`.
+static void
+builtinTransferStatement(unsigned CurBlockID, const CFGStmt &Elt,
+ TypeErasedDataflowAnalysisState &InputState,
+ AnalysisContext &AC) {
+ const Stmt *S = Elt.getStmt();
+ assert(S != nullptr);
+ transfer(StmtToEnvMap(AC.ACFG, AC.BlockStates, CurBlockID, InputState), *S,
+ InputState.Env, AC.Analysis);
+}
+
+/// Built-in transfer function for `CFGInitializer`.
+static void
+builtinTransferInitializer(const CFGInitializer &Elt,
+ TypeErasedDataflowAnalysisState &InputState) {
+ const CXXCtorInitializer *Init = Elt.getInitializer();
+ assert(Init != nullptr);
+
+ auto &Env = InputState.Env;
+ auto &ThisLoc = *Env.getThisPointeeStorageLocation();
+
+ if (!Init->isAnyMemberInitializer())
+ // FIXME: Handle base initialization
+ return;
+
+ auto *InitExpr = Init->getInit();
+ assert(InitExpr != nullptr);
+
+ const FieldDecl *Member = nullptr;
+ RecordStorageLocation *ParentLoc = &ThisLoc;
+ StorageLocation *MemberLoc = nullptr;
+ if (Init->isMemberInitializer()) {
+ Member = Init->getMember();
+ MemberLoc = ThisLoc.getChild(*Member);
+ } else {
+ IndirectFieldDecl *IndirectField = Init->getIndirectMember();
+ assert(IndirectField != nullptr);
+ MemberLoc = &ThisLoc;
+ for (const auto *I : IndirectField->chain()) {
+ Member = cast<FieldDecl>(I);
+ ParentLoc = cast<RecordStorageLocation>(MemberLoc);
+ MemberLoc = ParentLoc->getChild(*Member);
+ }
+ }
+ assert(Member != nullptr);
+
+ // FIXME: Instead of these case distinctions, we would ideally want to be able
+ // to simply use `Environment::createObject()` here, the same way that we do
+ // this in `TransferVisitor::VisitInitListExpr()`. However, this would require
+ // us to be able to build a list of fields that we then use to initialize an
+ // `RecordStorageLocation` -- and the problem is that, when we get here,
+ // the `RecordStorageLocation` already exists. We should explore if there's
+ // anything that we can do to change this.
+ if (Member->getType()->isReferenceType()) {
+ auto *InitExprLoc = Env.getStorageLocation(*InitExpr);
+ if (InitExprLoc == nullptr)
+ return;
+
+ ParentLoc->setChild(*Member, InitExprLoc);
+ // Record-type initializers construct themselves directly into the result
+ // object, so there is no need to handle them here.
+ } else if (!Member->getType()->isRecordType()) {
+ assert(MemberLoc != nullptr);
+ if (auto *InitExprVal = Env.getValue(*InitExpr))
+ Env.setValue(*MemberLoc, *InitExprVal);
+ }
+}
+
+static void builtinTransfer(unsigned CurBlockID, const CFGElement &Elt,
+ TypeErasedDataflowAnalysisState &State,
+ AnalysisContext &AC) {
+ switch (Elt.getKind()) {
+ case CFGElement::Statement:
+ builtinTransferStatement(CurBlockID, Elt.castAs<CFGStmt>(), State, AC);
+ break;
+ case CFGElement::Initializer:
+ builtinTransferInitializer(Elt.castAs<CFGInitializer>(), State);
+ break;
+ case CFGElement::LifetimeEnds:
+ // Removing declarations when their lifetime ends serves two purposes:
+ // - Eliminate unnecessary clutter from `Environment::DeclToLoc`
+ // - Allow us to assert that, when joining two `Environment`s, the two
+ // `DeclToLoc` maps never contain entries that map the same declaration to
+ // different storage locations.
+ if (const ValueDecl *VD = Elt.castAs<CFGLifetimeEnds>().getVarDecl())
+ State.Env.removeDecl(*VD);
+ break;
+ default:
+ // FIXME: Evaluate other kinds of `CFGElement`
+ break;
+ }
+}
+
+/// Transfers `State` by evaluating each element in the `Block` based on the
+/// `AC.Analysis` specified.
+///
+/// Built-in transfer functions (if the option for `ApplyBuiltinTransfer` is set
+/// by the analysis) will be applied to the element before evaluation by the
+/// user-specified analysis.
+/// `PostVisitCFG` (if provided) will be applied to the element after evaluation
+/// by the user-specified analysis.
+static TypeErasedDataflowAnalysisState
+transferCFGBlock(const CFGBlock &Block, AnalysisContext &AC,
+ const CFGEltCallbacksTypeErased &PostAnalysisCallbacks = {}) {
+ AC.Log.enterBlock(Block, PostAnalysisCallbacks.Before != nullptr ||
+ PostAnalysisCallbacks.After != nullptr);
+ auto State = computeBlockInputState(Block, AC);
+ AC.Log.recordState(State);
+ int ElementIdx = 1;
+ for (const auto &Element : Block) {
+ PrettyStackTraceCFGElement CrashInfo(Element, Block.getBlockID(),
+ ElementIdx++, "transferCFGBlock");
+
+ AC.Log.enterElement(Element);
+
+ if (PostAnalysisCallbacks.Before) {
+ PostAnalysisCallbacks.Before(Element, State);
+ }
+
+ // Built-in analysis
+ if (AC.Analysis.builtinOptions()) {
+ builtinTransfer(Block.getBlockID(), Element, State, AC);
+ }
+
+ // User-provided analysis
+ AC.Analysis.transferTypeErased(Element, State.Lattice, State.Env);
+
+ if (PostAnalysisCallbacks.After) {
+ PostAnalysisCallbacks.After(Element, State);
+ }
+
+ AC.Log.recordState(State);
+ }
+
+ // If we have a terminator, evaluate its condition.
+ // This `Expr` may not appear as a `CFGElement` anywhere else, and it's
+ // important that we evaluate it here (rather than while processing the
+ // terminator) so that we put the corresponding value in the right
+ // environment.
+ if (const Expr *TerminatorCond =
+ dyn_cast_or_null<Expr>(Block.getTerminatorCondition())) {
+ if (State.Env.getValue(*TerminatorCond) == nullptr)
+ // FIXME: This only runs the builtin transfer, not the analysis-specific
+ // transfer. Fixing this isn't trivial, as the analysis-specific transfer
+ // takes a `CFGElement` as input, but some expressions only show up as a
+ // terminator condition, but not as a `CFGElement`. The condition of an if
+ // statement is one such example.
+ transfer(StmtToEnvMap(AC.ACFG, AC.BlockStates, Block.getBlockID(), State),
+ *TerminatorCond, State.Env, AC.Analysis);
+
+ // If the transfer function didn't produce a value, create an atom so that
+ // we have *some* value for the condition expression. This ensures that
+ // when we extend the flow condition, it actually changes.
+ if (State.Env.getValue(*TerminatorCond) == nullptr)
+ State.Env.setValue(*TerminatorCond, State.Env.makeAtomicBoolValue());
+ AC.Log.recordState(State);
+ }
+
+ return State;
+}
+
+llvm::Expected<std::vector<std::optional<TypeErasedDataflowAnalysisState>>>
+runTypeErasedDataflowAnalysis(
+ const AdornedCFG &ACFG, TypeErasedDataflowAnalysis &Analysis,
+ const Environment &InitEnv,
+ const CFGEltCallbacksTypeErased &PostAnalysisCallbacks,
+ std::int32_t MaxBlockVisits) {
+ PrettyStackTraceAnalysis CrashInfo(ACFG, "runTypeErasedDataflowAnalysis");
+
+ std::optional<Environment> MaybeStartingEnv;
+ if (InitEnv.callStackSize() == 0) {
+ MaybeStartingEnv = InitEnv.fork();
+ MaybeStartingEnv->initialize();
+ }
+ const Environment &StartingEnv =
+ MaybeStartingEnv ? *MaybeStartingEnv : InitEnv;
+
+ const clang::CFG &CFG = ACFG.getCFG();
+ PostOrderCFGView POV(&CFG);
+ ForwardDataflowWorklist Worklist(CFG, &POV);
+
+ std::vector<std::optional<TypeErasedDataflowAnalysisState>> BlockStates(
+ CFG.size());
+
+ // The entry basic block doesn't contain statements so it can be skipped.
+ const CFGBlock &Entry = CFG.getEntry();
+ BlockStates[Entry.getBlockID()] = {Analysis.typeErasedInitialElement(),
+ StartingEnv.fork()};
+ Worklist.enqueueSuccessors(&Entry);
+
+ AnalysisContext AC(ACFG, Analysis, StartingEnv, BlockStates);
+ std::int32_t BlockVisits = 0;
+ while (const CFGBlock *Block = Worklist.dequeue()) {
+ LLVM_DEBUG(llvm::dbgs()
+ << "Processing Block " << Block->getBlockID() << "\n");
+ if (++BlockVisits > MaxBlockVisits) {
+ return llvm::createStringError(std::errc::timed_out,
+ "maximum number of blocks processed");
+ }
+
+ const std::optional<TypeErasedDataflowAnalysisState> &OldBlockState =
+ BlockStates[Block->getBlockID()];
+ TypeErasedDataflowAnalysisState NewBlockState =
+ transferCFGBlock(*Block, AC);
+ LLVM_DEBUG({
+ llvm::errs() << "New Env:\n";
+ NewBlockState.Env.dump();
+ });
+
+ if (OldBlockState) {
+ LLVM_DEBUG({
+ llvm::errs() << "Old Env:\n";
+ OldBlockState->Env.dump();
+ });
+ if (isBackedgeNode(*Block)) {
+ LatticeJoinEffect Effect1 = Analysis.widenTypeErased(
+ NewBlockState.Lattice, OldBlockState->Lattice);
+ LatticeJoinEffect Effect2 =
+ NewBlockState.Env.widen(OldBlockState->Env, Analysis);
+ if (Effect1 == LatticeJoinEffect::Unchanged &&
+ Effect2 == LatticeJoinEffect::Unchanged) {
+ // The state of `Block` didn't change from widening so there's no need
+ // to revisit its successors.
+ AC.Log.blockConverged();
+ continue;
+ }
+ } else if (Analysis.isEqualTypeErased(OldBlockState->Lattice,
+ NewBlockState.Lattice) &&
+ OldBlockState->Env.equivalentTo(NewBlockState.Env, Analysis)) {
+ // The state of `Block` didn't change after transfer so there's no need
+ // to revisit its successors.
+ AC.Log.blockConverged();
+ continue;
+ }
+ }
+
+ BlockStates[Block->getBlockID()] = std::move(NewBlockState);
+
+ // Do not add unreachable successor blocks to `Worklist`.
+ if (Block->hasNoReturnElement())
+ continue;
+
+ Worklist.enqueueSuccessors(Block);
+ }
+ // FIXME: Consider evaluating unreachable basic blocks (those that have a
+ // state set to `std::nullopt` at this point) to also analyze dead code.
+
+ if (PostAnalysisCallbacks.Before || PostAnalysisCallbacks.After) {
+ for (const CFGBlock *Block : ACFG.getCFG()) {
+ // Skip blocks that were not evaluated.
+ if (!BlockStates[Block->getBlockID()])
+ continue;
+ transferCFGBlock(*Block, AC, PostAnalysisCallbacks);
+ }
+ }
+
+ return std::move(BlockStates);
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Value.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Value.cpp
new file mode 100644
index 000000000000..d70e5a82ea23
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/Value.cpp
@@ -0,0 +1,60 @@
+//===-- Value.cpp -----------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines support functions for the `Value` type.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/FlowSensitive/Value.h"
+#include "clang/Analysis/FlowSensitive/DebugSupport.h"
+#include "llvm/Support/Casting.h"
+
+namespace clang {
+namespace dataflow {
+
+static bool areEquivalentIndirectionValues(const Value &Val1,
+ const Value &Val2) {
+ if (auto *IndVal1 = dyn_cast<PointerValue>(&Val1)) {
+ auto *IndVal2 = cast<PointerValue>(&Val2);
+ return &IndVal1->getPointeeLoc() == &IndVal2->getPointeeLoc();
+ }
+ return false;
+}
+
+bool areEquivalentValues(const Value &Val1, const Value &Val2) {
+ if (&Val1 == &Val2)
+ return true;
+ if (Val1.getKind() != Val2.getKind())
+ return false;
+ // If values are distinct and have properties, we don't consider them equal,
+ // leaving equality up to the user model.
+ if (!Val1.properties().empty() || !Val2.properties().empty())
+ return false;
+ if (isa<TopBoolValue>(&Val1))
+ return true;
+ return areEquivalentIndirectionValues(Val1, Val2);
+}
+
+raw_ostream &operator<<(raw_ostream &OS, const Value &Val) {
+ switch (Val.getKind()) {
+ case Value::Kind::Integer:
+ return OS << "Integer(@" << &Val << ")";
+ case Value::Kind::Pointer:
+ return OS << "Pointer(" << &cast<PointerValue>(Val).getPointeeLoc() << ")";
+ case Value::Kind::TopBool:
+ return OS << "TopBool(" << cast<TopBoolValue>(Val).getAtom() << ")";
+ case Value::Kind::AtomicBool:
+ return OS << "AtomicBool(" << cast<AtomicBoolValue>(Val).getAtom() << ")";
+ case Value::Kind::FormulaBool:
+ return OS << "FormulaBool(" << cast<FormulaBoolValue>(Val).formula() << ")";
+ }
+ llvm_unreachable("Unknown clang::dataflow::Value::Kind enum");
+}
+
+} // namespace dataflow
+} // namespace clang
diff --git a/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp
new file mode 100644
index 000000000000..a39f0e0b29ad
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Analysis/FlowSensitive/WatchedLiteralsSolver.cpp
@@ -0,0 +1,418 @@
+//===- WatchedLiteralsSolver.cpp --------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a SAT solver implementation that can be used by dataflow
+// analyses.
+//
+//===----------------------------------------------------------------------===//
+
+#include <cassert>
+#include <vector>
+
+#include "clang/Analysis/FlowSensitive/CNFFormula.h"
+#include "clang/Analysis/FlowSensitive/Formula.h"
+#include "clang/Analysis/FlowSensitive/Solver.h"
+#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+
+
+namespace clang {
+namespace dataflow {
+
+namespace {
+
+class WatchedLiteralsSolverImpl {
+ /// Stores the variable identifier and Atom for atomic booleans in the
+ /// formula.
+ llvm::DenseMap<Variable, Atom> Atomics;
+
+ /// A boolean formula in conjunctive normal form that the solver will attempt
+ /// to prove satisfiable. The formula will be modified in the process.
+ CNFFormula CNF;
+
+ /// Maps literals (indices of the vector) to clause identifiers (elements of
+ /// the vector) that watch the respective literals.
+ ///
+ /// For a given clause, its watched literal is always its first literal in
+ /// `Clauses`. This invariant is maintained when watched literals change.
+ std::vector<ClauseID> WatchedHead;
+
+ /// Maps clause identifiers (elements of the vector) to identifiers of other
+ /// clauses that watch the same literals, forming a set of linked lists.
+ ///
+ /// The element at index 0 stands for the identifier of the clause that
+ /// follows the null clause. It is set to 0 and isn't used. Identifiers of
+ /// clauses in the formula start from the element at index 1.
+ std::vector<ClauseID> NextWatched;
+
+ /// The search for a satisfying assignment of the variables in `Formula` will
+ /// proceed in levels, starting from 1 and going up to `Formula.LargestVar`
+ /// (inclusive). The current level is stored in `Level`. At each level the
+ /// solver will assign a value to an unassigned variable. If this leads to a
+ /// consistent partial assignment, `Level` will be incremented. Otherwise, if
+ /// it results in a conflict, the solver will backtrack by decrementing
+ /// `Level` until it reaches the most recent level where a decision was made.
+ size_t Level = 0;
+
+ /// Maps levels (indices of the vector) to variables (elements of the vector)
+ /// that are assigned values at the respective levels.
+ ///
+ /// The element at index 0 isn't used. Variables start from the element at
+ /// index 1.
+ std::vector<Variable> LevelVars;
+
+ /// State of the solver at a particular level.
+ enum class State : uint8_t {
+ /// Indicates that the solver made a decision.
+ Decision = 0,
+
+ /// Indicates that the solver made a forced move.
+ Forced = 1,
+ };
+
+ /// State of the solver at a particular level. It keeps track of previous
+ /// decisions that the solver can refer to when backtracking.
+ ///
+ /// The element at index 0 isn't used. States start from the element at index
+ /// 1.
+ std::vector<State> LevelStates;
+
+ enum class Assignment : int8_t {
+ Unassigned = -1,
+ AssignedFalse = 0,
+ AssignedTrue = 1
+ };
+
+ /// Maps variables (indices of the vector) to their assignments (elements of
+ /// the vector).
+ ///
+ /// The element at index 0 isn't used. Variable assignments start from the
+ /// element at index 1.
+ std::vector<Assignment> VarAssignments;
+
+ /// A set of unassigned variables that appear in watched literals in
+ /// `Formula`. The vector is guaranteed to contain unique elements.
+ std::vector<Variable> ActiveVars;
+
+public:
+ explicit WatchedLiteralsSolverImpl(
+ const llvm::ArrayRef<const Formula *> &Vals)
+ // `Atomics` needs to be initialized first so that we can use it as an
+ // output argument of `buildCNF()`.
+ : Atomics(), CNF(buildCNF(Vals, Atomics)),
+ LevelVars(CNF.largestVar() + 1), LevelStates(CNF.largestVar() + 1) {
+ assert(!Vals.empty());
+
+ // Skip initialization if the formula is known to be contradictory.
+ if (CNF.knownContradictory())
+ return;
+
+ // Initialize `NextWatched` and `WatchedHead`.
+ NextWatched.push_back(0);
+ const size_t NumLiterals = 2 * CNF.largestVar() + 1;
+ WatchedHead.resize(NumLiterals + 1, 0);
+ for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
+ // Designate the first literal as the "watched" literal of the clause.
+ Literal FirstLit = CNF.clauseLiterals(C).front();
+ NextWatched.push_back(WatchedHead[FirstLit]);
+ WatchedHead[FirstLit] = C;
+ }
+
+ // Initialize the state at the root level to a decision so that in
+ // `reverseForcedMoves` we don't have to check that `Level >= 0` on each
+ // iteration.
+ LevelStates[0] = State::Decision;
+
+ // Initialize all variables as unassigned.
+ VarAssignments.resize(CNF.largestVar() + 1, Assignment::Unassigned);
+
+ // Initialize the active variables.
+ for (Variable Var = CNF.largestVar(); Var != NullVar; --Var) {
+ if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
+ ActiveVars.push_back(Var);
+ }
+ }
+
+ // Returns the `Result` and the number of iterations "remaining" from
+ // `MaxIterations` (that is, `MaxIterations` - iterations in this call).
+ std::pair<Solver::Result, std::int64_t> solve(std::int64_t MaxIterations) && {
+ if (CNF.knownContradictory()) {
+ // Short-cut the solving process. We already found out at CNF
+ // construction time that the formula is unsatisfiable.
+ return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations);
+ }
+ size_t I = 0;
+ while (I < ActiveVars.size()) {
+ if (MaxIterations == 0)
+ return std::make_pair(Solver::Result::TimedOut(), 0);
+ --MaxIterations;
+
+ // Assert that the following invariants hold:
+ // 1. All active variables are unassigned.
+ // 2. All active variables form watched literals.
+ // 3. Unassigned variables that form watched literals are active.
+ // FIXME: Consider replacing these with test cases that fail if the any
+ // of the invariants is broken. That might not be easy due to the
+ // transformations performed by `buildCNF`.
+ assert(activeVarsAreUnassigned());
+ assert(activeVarsFormWatchedLiterals());
+ assert(unassignedVarsFormingWatchedLiteralsAreActive());
+
+ const Variable ActiveVar = ActiveVars[I];
+
+ // Look for unit clauses that contain the active variable.
+ const bool unitPosLit = watchedByUnitClause(posLit(ActiveVar));
+ const bool unitNegLit = watchedByUnitClause(negLit(ActiveVar));
+ if (unitPosLit && unitNegLit) {
+ // We found a conflict!
+
+ // Backtrack and rewind the `Level` until the most recent non-forced
+ // assignment.
+ reverseForcedMoves();
+
+ // If the root level is reached, then all possible assignments lead to
+ // a conflict.
+ if (Level == 0)
+ return std::make_pair(Solver::Result::Unsatisfiable(), MaxIterations);
+
+ // Otherwise, take the other branch at the most recent level where a
+ // decision was made.
+ LevelStates[Level] = State::Forced;
+ const Variable Var = LevelVars[Level];
+ VarAssignments[Var] = VarAssignments[Var] == Assignment::AssignedTrue
+ ? Assignment::AssignedFalse
+ : Assignment::AssignedTrue;
+
+ updateWatchedLiterals();
+ } else if (unitPosLit || unitNegLit) {
+ // We found a unit clause! The value of its unassigned variable is
+ // forced.
+ ++Level;
+
+ LevelVars[Level] = ActiveVar;
+ LevelStates[Level] = State::Forced;
+ VarAssignments[ActiveVar] =
+ unitPosLit ? Assignment::AssignedTrue : Assignment::AssignedFalse;
+
+ // Remove the variable that was just assigned from the set of active
+ // variables.
+ if (I + 1 < ActiveVars.size()) {
+ // Replace the variable that was just assigned with the last active
+ // variable for efficient removal.
+ ActiveVars[I] = ActiveVars.back();
+ } else {
+ // This was the last active variable. Repeat the process from the
+ // beginning.
+ I = 0;
+ }
+ ActiveVars.pop_back();
+
+ updateWatchedLiterals();
+ } else if (I + 1 == ActiveVars.size()) {
+ // There are no remaining unit clauses in the formula! Make a decision
+ // for one of the active variables at the current level.
+ ++Level;
+
+ LevelVars[Level] = ActiveVar;
+ LevelStates[Level] = State::Decision;
+ VarAssignments[ActiveVar] = decideAssignment(ActiveVar);
+
+ // Remove the variable that was just assigned from the set of active
+ // variables.
+ ActiveVars.pop_back();
+
+ updateWatchedLiterals();
+
+ // This was the last active variable. Repeat the process from the
+ // beginning.
+ I = 0;
+ } else {
+ ++I;
+ }
+ }
+ return std::make_pair(Solver::Result::Satisfiable(buildSolution()),
+ MaxIterations);
+ }
+
+private:
+ /// Returns a satisfying truth assignment to the atoms in the boolean formula.
+ llvm::DenseMap<Atom, Solver::Result::Assignment> buildSolution() {
+ llvm::DenseMap<Atom, Solver::Result::Assignment> Solution;
+ for (auto &Atomic : Atomics) {
+ // A variable may have a definite true/false assignment, or it may be
+ // unassigned indicating its truth value does not affect the result of
+ // the formula. Unassigned variables are assigned to true as a default.
+ Solution[Atomic.second] =
+ VarAssignments[Atomic.first] == Assignment::AssignedFalse
+ ? Solver::Result::Assignment::AssignedFalse
+ : Solver::Result::Assignment::AssignedTrue;
+ }
+ return Solution;
+ }
+
+ /// Reverses forced moves until the most recent level where a decision was
+ /// made on the assignment of a variable.
+ void reverseForcedMoves() {
+ for (; LevelStates[Level] == State::Forced; --Level) {
+ const Variable Var = LevelVars[Level];
+
+ VarAssignments[Var] = Assignment::Unassigned;
+
+ // If the variable that we pass through is watched then we add it to the
+ // active variables.
+ if (isWatched(posLit(Var)) || isWatched(negLit(Var)))
+ ActiveVars.push_back(Var);
+ }
+ }
+
+ /// Updates watched literals that are affected by a variable assignment.
+ void updateWatchedLiterals() {
+ const Variable Var = LevelVars[Level];
+
+ // Update the watched literals of clauses that currently watch the literal
+ // that falsifies `Var`.
+ const Literal FalseLit = VarAssignments[Var] == Assignment::AssignedTrue
+ ? negLit(Var)
+ : posLit(Var);
+ ClauseID FalseLitWatcher = WatchedHead[FalseLit];
+ WatchedHead[FalseLit] = NullClause;
+ while (FalseLitWatcher != NullClause) {
+ const ClauseID NextFalseLitWatcher = NextWatched[FalseLitWatcher];
+
+ // Pick the first non-false literal as the new watched literal.
+ const CNFFormula::Iterator FalseLitWatcherStart =
+ CNF.startOfClause(FalseLitWatcher);
+ CNFFormula::Iterator NewWatchedLitIter = FalseLitWatcherStart.next();
+ while (isCurrentlyFalse(*NewWatchedLitIter))
+ ++NewWatchedLitIter;
+ const Literal NewWatchedLit = *NewWatchedLitIter;
+ const Variable NewWatchedLitVar = var(NewWatchedLit);
+
+ // Swap the old watched literal for the new one in `FalseLitWatcher` to
+ // maintain the invariant that the watched literal is at the beginning of
+ // the clause.
+ *NewWatchedLitIter = FalseLit;
+ *FalseLitWatcherStart = NewWatchedLit;
+
+ // If the new watched literal isn't watched by any other clause and its
+ // variable isn't assigned we need to add it to the active variables.
+ if (!isWatched(NewWatchedLit) && !isWatched(notLit(NewWatchedLit)) &&
+ VarAssignments[NewWatchedLitVar] == Assignment::Unassigned)
+ ActiveVars.push_back(NewWatchedLitVar);
+
+ NextWatched[FalseLitWatcher] = WatchedHead[NewWatchedLit];
+ WatchedHead[NewWatchedLit] = FalseLitWatcher;
+
+ // Go to the next clause that watches `FalseLit`.
+ FalseLitWatcher = NextFalseLitWatcher;
+ }
+ }
+
+ /// Returns true if and only if one of the clauses that watch `Lit` is a unit
+ /// clause.
+ bool watchedByUnitClause(Literal Lit) const {
+ for (ClauseID LitWatcher = WatchedHead[Lit]; LitWatcher != NullClause;
+ LitWatcher = NextWatched[LitWatcher]) {
+ llvm::ArrayRef<Literal> Clause = CNF.clauseLiterals(LitWatcher);
+
+ // Assert the invariant that the watched literal is always the first one
+ // in the clause.
+ // FIXME: Consider replacing this with a test case that fails if the
+ // invariant is broken by `updateWatchedLiterals`. That might not be easy
+ // due to the transformations performed by `buildCNF`.
+ assert(Clause.front() == Lit);
+
+ if (isUnit(Clause))
+ return true;
+ }
+ return false;
+ }
+
+ /// Returns true if and only if `Clause` is a unit clause.
+ bool isUnit(llvm::ArrayRef<Literal> Clause) const {
+ return llvm::all_of(Clause.drop_front(),
+ [this](Literal L) { return isCurrentlyFalse(L); });
+ }
+
+ /// Returns true if and only if `Lit` evaluates to `false` in the current
+ /// partial assignment.
+ bool isCurrentlyFalse(Literal Lit) const {
+ return static_cast<int8_t>(VarAssignments[var(Lit)]) ==
+ static_cast<int8_t>(Lit & 1);
+ }
+
+ /// Returns true if and only if `Lit` is watched by a clause in `Formula`.
+ bool isWatched(Literal Lit) const { return WatchedHead[Lit] != NullClause; }
+
+ /// Returns an assignment for an unassigned variable.
+ Assignment decideAssignment(Variable Var) const {
+ return !isWatched(posLit(Var)) || isWatched(negLit(Var))
+ ? Assignment::AssignedFalse
+ : Assignment::AssignedTrue;
+ }
+
+ /// Returns a set of all watched literals.
+ llvm::DenseSet<Literal> watchedLiterals() const {
+ llvm::DenseSet<Literal> WatchedLiterals;
+ for (Literal Lit = 2; Lit < WatchedHead.size(); Lit++) {
+ if (WatchedHead[Lit] == NullClause)
+ continue;
+ WatchedLiterals.insert(Lit);
+ }
+ return WatchedLiterals;
+ }
+
+ /// Returns true if and only if all active variables are unassigned.
+ bool activeVarsAreUnassigned() const {
+ return llvm::all_of(ActiveVars, [this](Variable Var) {
+ return VarAssignments[Var] == Assignment::Unassigned;
+ });
+ }
+
+ /// Returns true if and only if all active variables form watched literals.
+ bool activeVarsFormWatchedLiterals() const {
+ const llvm::DenseSet<Literal> WatchedLiterals = watchedLiterals();
+ return llvm::all_of(ActiveVars, [&WatchedLiterals](Variable Var) {
+ return WatchedLiterals.contains(posLit(Var)) ||
+ WatchedLiterals.contains(negLit(Var));
+ });
+ }
+
+ /// Returns true if and only if all unassigned variables that are forming
+ /// watched literals are active.
+ bool unassignedVarsFormingWatchedLiteralsAreActive() const {
+ const llvm::DenseSet<Variable> ActiveVarsSet(ActiveVars.begin(),
+ ActiveVars.end());
+ for (Literal Lit : watchedLiterals()) {
+ const Variable Var = var(Lit);
+ if (VarAssignments[Var] != Assignment::Unassigned)
+ continue;
+ if (ActiveVarsSet.contains(Var))
+ continue;
+ return false;
+ }
+ return true;
+ }
+};
+
+} // namespace
+
+Solver::Result
+WatchedLiteralsSolver::solve(llvm::ArrayRef<const Formula *> Vals) {
+ if (Vals.empty())
+ return Solver::Result::Satisfiable({{}});
+ auto [Res, Iterations] = WatchedLiteralsSolverImpl(Vals).solve(MaxIterations);
+ MaxIterations = Iterations;
+ return Res;
+}
+
+} // namespace dataflow
+} // namespace clang