aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp3459
1 files changed, 3459 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp
new file mode 100644
index 000000000000..1dc3172a6bdf
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp
@@ -0,0 +1,3459 @@
+//===- X86.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+#include "llvm/ADT/SmallBitVector.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+namespace {
+
+/// IsX86_MMXType - Return true if this is an MMX type.
+bool IsX86_MMXType(llvm::Type *IRType) {
+ // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
+ return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
+ cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
+ IRType->getScalarSizeInBits() != 64;
+}
+
+static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) {
+ bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
+ .Cases("y", "&y", "^Ym", true)
+ .Default(false);
+ if (IsMMXCons && Ty->isVectorTy()) {
+ if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
+ 64) {
+ // Invalid MMX constraint
+ return nullptr;
+ }
+
+ return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
+ }
+
+ if (Constraint == "k") {
+ llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
+ return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
+ }
+
+ // No operation needed
+ return Ty;
+}
+
+/// Returns true if this type can be passed in SSE registers with the
+/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
+ if (BT->getKind() == BuiltinType::LongDouble) {
+ if (&Context.getTargetInfo().getLongDoubleFormat() ==
+ &llvm::APFloat::x87DoubleExtended())
+ return false;
+ }
+ return true;
+ }
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
+ // registers specially.
+ unsigned VecSize = Context.getTypeSize(VT);
+ if (VecSize == 128 || VecSize == 256 || VecSize == 512)
+ return true;
+ }
+ return false;
+}
+
+/// Returns true if this aggregate is small enough to be passed in SSE registers
+/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
+ return NumMembers <= 4;
+}
+
+/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
+static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
+ auto AI = ABIArgInfo::getDirect(T);
+ AI.setInReg(true);
+ AI.setCanBeFlattened(false);
+ return AI;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-32 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+/// Similar to llvm::CCState, but for Clang.
+struct CCState {
+ CCState(CGFunctionInfo &FI)
+ : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
+ Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
+
+ llvm::SmallBitVector IsPreassigned;
+ unsigned CC = CallingConv::CC_C;
+ unsigned FreeRegs = 0;
+ unsigned FreeSSERegs = 0;
+ RequiredArgs Required;
+ bool IsDelegateCall = false;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+ enum Class {
+ Integer,
+ Float
+ };
+
+ static const unsigned MinABIStackAlignInBytes = 4;
+
+ bool IsDarwinVectorABI;
+ bool IsRetSmallStructInRegABI;
+ bool IsWin32StructABI;
+ bool IsSoftFloatABI;
+ bool IsMCUABI;
+ bool IsLinuxABI;
+ unsigned DefaultNumRegisterParameters;
+
+ static bool isRegisterSize(unsigned Size) {
+ return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+ }
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorTypeForVectorCall(getContext(), Ty);
+ }
+
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t NumMembers) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorCallAggregateSmallEnough(NumMembers);
+ }
+
+ bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+
+ ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
+
+ /// Return the alignment to use for the given type on the stack.
+ unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
+
+ Class classify(QualType Ty) const;
+ ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
+ unsigned ArgIndex) const;
+
+ /// Updates the number of available free registers, returns
+ /// true if any registers were allocated.
+ bool updateFreeRegs(QualType Ty, CCState &State) const;
+
+ bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
+ bool &NeedsPadding) const;
+ bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
+
+ bool canExpandIndirectArgument(QualType Ty) const;
+
+ /// Rewrite the function info so that all memory arguments use
+ /// inalloca.
+ void rewriteWithInAlloca(CGFunctionInfo &FI) const;
+
+ void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ CharUnits &StackOffset, ABIArgInfo &Info,
+ QualType Type) const;
+ void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
+
+public:
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
+ bool RetSmallStructInRegABI, bool Win32StructABI,
+ unsigned NumRegisterParameters, bool SoftFloatABI)
+ : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
+ IsRetSmallStructInRegABI(RetSmallStructInRegABI),
+ IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
+ IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
+ IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
+ CGT.getTarget().getTriple().isOSCygMing()),
+ DefaultNumRegisterParameters(NumRegisterParameters) {}
+};
+
+class X86_32SwiftABIInfo : public SwiftABIInfo {
+public:
+ explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
+ : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
+
+ bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
+ bool AsReturnValue) const override {
+ // LLVM's x86-32 lowering currently only assigns up to three
+ // integer registers and three fp registers. Oddly, it'll use up to
+ // four vector registers for vectors, but those can overlap with the
+ // scalar registers.
+ return occupiesMoreThan(ComponentTys, /*total=*/3);
+ }
+};
+
+class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
+ bool RetSmallStructInRegABI, bool Win32StructABI,
+ unsigned NumRegisterParameters, bool SoftFloatABI)
+ : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
+ CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+ NumRegisterParameters, SoftFloatABI)) {
+ SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
+ }
+
+ static bool isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts);
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ // Darwin uses different dwarf register numbers for EH.
+ if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
+ return 4;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
+ std::string &Constraints,
+ std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<LValue> &ResultRegDests,
+ std::string &AsmString,
+ unsigned NumOutputs) const override;
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "movl\t%ebp, %ebp"
+ "\t\t// marker for objc_retainAutoreleaseReturnValue";
+ }
+};
+
+}
+
+/// Rewrite input constraint references after adding some output constraints.
+/// In the case where there is one output and one input and we add one output,
+/// we need to replace all operand references greater than or equal to 1:
+/// mov $0, $1
+/// mov eax, $1
+/// The result will be:
+/// mov $0, $2
+/// mov eax, $2
+static void rewriteInputConstraintReferences(unsigned FirstIn,
+ unsigned NumNewOuts,
+ std::string &AsmString) {
+ std::string Buf;
+ llvm::raw_string_ostream OS(Buf);
+ size_t Pos = 0;
+ while (Pos < AsmString.size()) {
+ size_t DollarStart = AsmString.find('$', Pos);
+ if (DollarStart == std::string::npos)
+ DollarStart = AsmString.size();
+ size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
+ if (DollarEnd == std::string::npos)
+ DollarEnd = AsmString.size();
+ OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
+ Pos = DollarEnd;
+ size_t NumDollars = DollarEnd - DollarStart;
+ if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
+ // We have an operand reference.
+ size_t DigitStart = Pos;
+ if (AsmString[DigitStart] == '{') {
+ OS << '{';
+ ++DigitStart;
+ }
+ size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
+ if (DigitEnd == std::string::npos)
+ DigitEnd = AsmString.size();
+ StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
+ unsigned OperandIndex;
+ if (!OperandStr.getAsInteger(10, OperandIndex)) {
+ if (OperandIndex >= FirstIn)
+ OperandIndex += NumNewOuts;
+ OS << OperandIndex;
+ } else {
+ OS << OperandStr;
+ }
+ Pos = DigitEnd;
+ }
+ }
+ AsmString = std::move(OS.str());
+}
+
+/// Add output constraints for EAX:EDX because they are return registers.
+void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
+ CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
+ std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<LValue> &ResultRegDests, std::string &AsmString,
+ unsigned NumOutputs) const {
+ uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
+
+ // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
+ // larger.
+ if (!Constraints.empty())
+ Constraints += ',';
+ if (RetWidth <= 32) {
+ Constraints += "={eax}";
+ ResultRegTypes.push_back(CGF.Int32Ty);
+ } else {
+ // Use the 'A' constraint for EAX:EDX.
+ Constraints += "=A";
+ ResultRegTypes.push_back(CGF.Int64Ty);
+ }
+
+ // Truncate EAX or EAX:EDX to an integer of the appropriate size.
+ llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
+ ResultTruncRegTypes.push_back(CoerceTy);
+
+ // Coerce the integer by bitcasting the return slot pointer.
+ ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
+ ResultRegDests.push_back(ReturnSlot);
+
+ rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
+}
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// returned in a register (for the Darwin and MCU ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+ ASTContext &Context) const {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // For i386, type must be register sized.
+ // For the MCU ABI, it only needs to be <= 8-byte
+ if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
+ return false;
+
+ if (Ty->isVectorType()) {
+ // 64- and 128- bit vectors inside structures are not returned in
+ // registers.
+ if (Size == 64 || Size == 128)
+ return false;
+
+ return true;
+ }
+
+ // If this is a builtin, pointer, enum, complex type, member pointer, or
+ // member function pointer it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
+ Ty->isAnyComplexType() || Ty->isEnumeralType() ||
+ Ty->isBlockPointerType() || Ty->isMemberPointerType())
+ return true;
+
+ // Arrays are treated like records.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+ return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // FIXME: Traverse bases here too.
+
+ // Structure types are passed in register if all fields would be
+ // passed in a register.
+ for (const auto *FD : RT->getDecl()->fields()) {
+ // Empty fields are ignored.
+ if (isEmptyField(Context, FD, true))
+ continue;
+
+ // Check fields recursively.
+ if (!shouldReturnTypeInRegister(FD->getType(), Context))
+ return false;
+ }
+ return true;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+ // Treat complex types as the element type.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ // Check for a type which we know has a simple scalar argument-passing
+ // convention without any padding. (We're specifically looking for 32
+ // and 64-bit integer and integer-equivalents, float, and double.)
+ if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
+ !Ty->isEnumeralType() && !Ty->isBlockPointerType())
+ return false;
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ return Size == 32 || Size == 64;
+}
+
+static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
+ uint64_t &Size) {
+ for (const auto *FD : RD->fields()) {
+ // Scalar arguments on the stack get 4 byte alignment on x86. If the
+ // argument is smaller than 32-bits, expanding the struct will create
+ // alignment padding.
+ if (!is32Or64BitBasicType(FD->getType(), Context))
+ return false;
+
+ // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+ // how to expand them yet, and the predicate for telling if a bitfield still
+ // counts as "basic" is more complicated than what we were doing previously.
+ if (FD->isBitField())
+ return false;
+
+ Size += Context.getTypeSize(FD->getType());
+ }
+ return true;
+}
+
+static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
+ uint64_t &Size) {
+ // Don't do this if there are any non-empty bases.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
+ Size))
+ return false;
+ }
+ if (!addFieldSizes(Context, RD, Size))
+ return false;
+ return true;
+}
+
+/// Test whether an argument type which is to be passed indirectly (on the
+/// stack) would have the equivalent layout if it was expanded into separate
+/// arguments. If so, we prefer to do the latter to avoid inhibiting
+/// optimizations.
+bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
+ // We can only expand structure types.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT)
+ return false;
+ const RecordDecl *RD = RT->getDecl();
+ uint64_t Size = 0;
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!IsWin32StructABI) {
+ // On non-Windows, we have to conservatively match our old bitcode
+ // prototypes in order to be ABI-compatible at the bitcode level.
+ if (!CXXRD->isCLike())
+ return false;
+ } else {
+ // Don't do this for dynamic classes.
+ if (CXXRD->isDynamicClass())
+ return false;
+ }
+ if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
+ return false;
+ } else {
+ if (!addFieldSizes(getContext(), RD, Size))
+ return false;
+ }
+
+ // We can do this if there was no alignment padding.
+ return Size == getContext().getTypeSize(Ty);
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (State.CC != llvm::CallingConv::X86_FastCall &&
+ State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
+ --State.FreeRegs;
+ if (!IsMCUABI)
+ return getNaturalAlignIndirectInReg(RetTy);
+ }
+ return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
+ CCState &State) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if ((State.CC == llvm::CallingConv::X86_VectorCall ||
+ State.CC == llvm::CallingConv::X86_RegCall) &&
+ isHomogeneousAggregate(RetTy, Base, NumElts)) {
+ // The LLVM struct type for such an aggregate should lower properly.
+ return ABIArgInfo::getDirect();
+ }
+
+ if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+ // On Darwin, some vectors are returned in registers.
+ if (IsDarwinVectorABI) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // 128-bit vectors are a special case; they are returned in
+ // registers and we need to make sure to pick a type the LLVM
+ // backend will like.
+ if (Size == 128)
+ return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2));
+
+ // Always return in register if it fits in a general purpose
+ // register, or if it is 64 bits and has a single element.
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+
+ return getIndirectReturnResult(RetTy, State);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ if (isAggregateTypeForABI(RetTy)) {
+ if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+ // Structures with flexible arrays are always indirect.
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectReturnResult(RetTy, State);
+ }
+
+ // If specified, structs and unions are always indirect.
+ if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
+ return getIndirectReturnResult(RetTy, State);
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
+ if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
+ QualType ET = getContext().getCanonicalType(CT->getElementType());
+ if (ET->isFloat16Type())
+ return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+ llvm::Type::getHalfTy(getVMContext()), 2));
+ }
+
+ // Small structures which are register sized are generally returned
+ // in a register.
+ if (shouldReturnTypeInRegister(RetTy, getContext())) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // As a special-case, if the struct is a "single-element" struct, and
+ // the field is of type "float" or "double", return it in a
+ // floating-point register. (MSVC does not apply this special case.)
+ // We apply a similar transformation for pointer types to improve the
+ // quality of the generated IR.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+ if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
+ || SeltTy->hasPointerRepresentation())
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ // FIXME: We should be able to narrow this integer in cases with dead
+ // padding.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
+ }
+
+ return getIndirectReturnResult(RetTy, State);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > 64)
+ return getIndirectReturnResult(RetTy, State);
+
+ return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
+ unsigned Align) const {
+ // Otherwise, if the alignment is less than or equal to the minimum ABI
+ // alignment, just use the default; the backend will handle this.
+ if (Align <= MinABIStackAlignInBytes)
+ return 0; // Use default alignment.
+
+ if (IsLinuxABI) {
+ // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
+ // want to spend any effort dealing with the ramifications of ABI breaks.
+ //
+ // If the vector type is __m128/__m256/__m512, return the default alignment.
+ if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
+ return Align;
+ }
+ // On non-Darwin, the stack type alignment is always 4.
+ if (!IsDarwinVectorABI) {
+ // Set explicit alignment, since we may need to realign the top.
+ return MinABIStackAlignInBytes;
+ }
+
+ // Otherwise, if the type contains an SSE vector type, the alignment is 16.
+ if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
+ isRecordWithSIMDVectorType(getContext(), Ty)))
+ return 16;
+
+ return MinABIStackAlignInBytes;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+ CCState &State) const {
+ if (!ByVal) {
+ if (State.FreeRegs) {
+ --State.FreeRegs; // Non-byval indirects just use one pointer.
+ if (!IsMCUABI)
+ return getNaturalAlignIndirectInReg(Ty);
+ }
+ return getNaturalAlignIndirect(Ty, false);
+ }
+
+ // Compute the byval alignment.
+ unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
+ if (StackAlign == 0)
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
+
+ // If the stack alignment is less than the type alignment, realign the
+ // argument.
+ bool Realign = TypeAlign > StackAlign;
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
+ /*ByVal=*/true, Realign);
+}
+
+X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
+ const Type *T = isSingleElementStruct(Ty, getContext());
+ if (!T)
+ T = Ty.getTypePtr();
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+ BuiltinType::Kind K = BT->getKind();
+ if (K == BuiltinType::Float || K == BuiltinType::Double)
+ return Float;
+ }
+ return Integer;
+}
+
+bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
+ if (!IsSoftFloatABI) {
+ Class C = classify(Ty);
+ if (C == Float)
+ return false;
+ }
+
+ unsigned Size = getContext().getTypeSize(Ty);
+ unsigned SizeInRegs = (Size + 31) / 32;
+
+ if (SizeInRegs == 0)
+ return false;
+
+ if (!IsMCUABI) {
+ if (SizeInRegs > State.FreeRegs) {
+ State.FreeRegs = 0;
+ return false;
+ }
+ } else {
+ // The MCU psABI allows passing parameters in-reg even if there are
+ // earlier parameters that are passed on the stack. Also,
+ // it does not allow passing >8-byte structs in-register,
+ // even if there are 3 free registers available.
+ if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
+ return false;
+ }
+
+ State.FreeRegs -= SizeInRegs;
+ return true;
+}
+
+bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
+ bool &InReg,
+ bool &NeedsPadding) const {
+ // On Windows, aggregates other than HFAs are never passed in registers, and
+ // they do not consume register slots. Homogenous floating-point aggregates
+ // (HFAs) have already been dealt with at this point.
+ if (IsWin32StructABI && isAggregateTypeForABI(Ty))
+ return false;
+
+ NeedsPadding = false;
+ InReg = !IsMCUABI;
+
+ if (!updateFreeRegs(Ty, State))
+ return false;
+
+ if (IsMCUABI)
+ return true;
+
+ if (State.CC == llvm::CallingConv::X86_FastCall ||
+ State.CC == llvm::CallingConv::X86_VectorCall ||
+ State.CC == llvm::CallingConv::X86_RegCall) {
+ if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
+ NeedsPadding = true;
+
+ return false;
+ }
+
+ return true;
+}
+
+bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
+ bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
+ (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
+ Ty->isReferenceType());
+
+ if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
+ State.CC == llvm::CallingConv::X86_VectorCall))
+ return false;
+
+ if (!updateFreeRegs(Ty, State))
+ return false;
+
+ if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
+ return false;
+
+ // Return true to apply inreg to all legal parameters except for MCU targets.
+ return !IsMCUABI;
+}
+
+void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
+ // Vectorcall x86 works subtly different than in x64, so the format is
+ // a bit different than the x64 version. First, all vector types (not HVAs)
+ // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
+ // This differs from the x64 implementation, where the first 6 by INDEX get
+ // registers.
+ // In the second pass over the arguments, HVAs are passed in the remaining
+ // vector registers if possible, or indirectly by address. The address will be
+ // passed in ECX/EDX if available. Any other arguments are passed according to
+ // the usual fastcall rules.
+ MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
+ for (int I = 0, E = Args.size(); I < E; ++I) {
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ const QualType &Ty = Args[I].type;
+ if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (State.FreeSSERegs >= NumElts) {
+ State.FreeSSERegs -= NumElts;
+ Args[I].info = ABIArgInfo::getDirectInReg();
+ State.IsPreassigned.set(I);
+ }
+ }
+ }
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
+ unsigned ArgIndex) const {
+ // FIXME: Set alignment on indirect arguments.
+ bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
+ bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
+ bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
+
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+ TypeInfo TI = getContext().getTypeInfo(Ty);
+
+ // Check with the C++ ABI first.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+ if (RAA == CGCXXABI::RAA_Indirect) {
+ return getIndirectResult(Ty, false, State);
+ } else if (State.IsDelegateCall) {
+ // Avoid having different alignments on delegate call args by always
+ // setting the alignment to 4, which is what we do for inallocas.
+ ABIArgInfo Res = getIndirectResult(Ty, false, State);
+ Res.setIndirectAlign(CharUnits::fromQuantity(4));
+ return Res;
+ } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+ // The field index doesn't matter, we'll fix it up later.
+ return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
+ }
+ }
+
+ // Regcall uses the concept of a homogenous vector aggregate, similar
+ // to other targets.
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if ((IsRegCall || IsVectorCall) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (State.FreeSSERegs >= NumElts) {
+ State.FreeSSERegs -= NumElts;
+
+ // Vectorcall passes HVAs directly and does not flatten them, but regcall
+ // does.
+ if (IsVectorCall)
+ return getDirectX86Hva();
+
+ if (Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ if (IsVectorCall && Ty->isBuiltinType())
+ return ABIArgInfo::getDirect();
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Structures with flexible arrays are always indirect.
+ // FIXME: This should not be byval!
+ if (RT && RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectResult(Ty, true, State);
+
+ // Ignore empty structs/unions on non-Windows.
+ if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ llvm::LLVMContext &LLVMContext = getVMContext();
+ llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+ bool NeedsPadding = false;
+ bool InReg;
+ if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
+ unsigned SizeInRegs = (TI.Width + 31) / 32;
+ SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
+ llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+ if (InReg)
+ return ABIArgInfo::getDirectInReg(Result);
+ else
+ return ABIArgInfo::getDirect(Result);
+ }
+ llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
+
+ // Pass over-aligned aggregates to non-variadic functions on Windows
+ // indirectly. This behavior was added in MSVC 2015. Use the required
+ // alignment from the record layout, since that may be less than the
+ // regular type alignment, and types with required alignment of less than 4
+ // bytes are not passed indirectly.
+ if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
+ unsigned AlignInBits = 0;
+ if (RT) {
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(RT->getDecl());
+ AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
+ } else if (TI.isAlignRequired()) {
+ AlignInBits = TI.Align;
+ }
+ if (AlignInBits > 32)
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ // Expand small (<= 128-bit) record types when we know that the stack layout
+ // of those arguments will match the struct. This is important because the
+ // LLVM backend isn't smart enough to remove byval, which inhibits many
+ // optimizations.
+ // Don't do this for the MCU if there are still free integer registers
+ // (see X86_64 ABI for full explanation).
+ if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
+ canExpandIndirectArgument(Ty))
+ return ABIArgInfo::getExpandWithPadding(
+ IsFastCall || IsVectorCall || IsRegCall, PaddingType);
+
+ return getIndirectResult(Ty, true, State);
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // On Windows, vectors are passed directly if registers are available, or
+ // indirectly if not. This avoids the need to align argument memory. Pass
+ // user-defined vector types larger than 512 bits indirectly for simplicity.
+ if (IsWin32StructABI) {
+ if (TI.Width <= 512 && State.FreeSSERegs > 0) {
+ --State.FreeSSERegs;
+ return ABIArgInfo::getDirectInReg();
+ }
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ // On Darwin, some vectors are passed in memory, we handle this by passing
+ // it as an i8/i16/i32/i64.
+ if (IsDarwinVectorABI) {
+ if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
+ (TI.Width == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), TI.Width));
+ }
+
+ if (IsX86_MMXType(CGT.ConvertType(Ty)))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
+
+ return ABIArgInfo::getDirect();
+ }
+
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ bool InReg = shouldPrimitiveUseInReg(Ty, State);
+
+ if (isPromotableIntegerTypeForABI(Ty)) {
+ if (InReg)
+ return ABIArgInfo::getExtendInReg(Ty);
+ return ABIArgInfo::getExtend(Ty);
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ if (EIT->getNumBits() <= 64) {
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+ }
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+}
+
+void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ CCState State(FI);
+ if (IsMCUABI)
+ State.FreeRegs = 3;
+ else if (State.CC == llvm::CallingConv::X86_FastCall) {
+ State.FreeRegs = 2;
+ State.FreeSSERegs = 3;
+ } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
+ State.FreeRegs = 2;
+ State.FreeSSERegs = 6;
+ } else if (FI.getHasRegParm())
+ State.FreeRegs = FI.getRegParm();
+ else if (State.CC == llvm::CallingConv::X86_RegCall) {
+ State.FreeRegs = 5;
+ State.FreeSSERegs = 8;
+ } else if (IsWin32StructABI) {
+ // Since MSVC 2015, the first three SSE vectors have been passed in
+ // registers. The rest are passed indirectly.
+ State.FreeRegs = DefaultNumRegisterParameters;
+ State.FreeSSERegs = 3;
+ } else
+ State.FreeRegs = DefaultNumRegisterParameters;
+
+ if (!::classifyReturnType(getCXXABI(), FI, *this)) {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
+ } else if (FI.getReturnInfo().isIndirect()) {
+ // The C++ ABI is not aware of register usage, so we have to check if the
+ // return value was sret and put it in a register ourselves if appropriate.
+ if (State.FreeRegs) {
+ --State.FreeRegs; // The sret parameter consumes a register.
+ if (!IsMCUABI)
+ FI.getReturnInfo().setInReg(true);
+ }
+ }
+
+ // The chain argument effectively gives us another free register.
+ if (FI.isChainCall())
+ ++State.FreeRegs;
+
+ // For vectorcall, do a first pass over the arguments, assigning FP and vector
+ // arguments to XMM registers as available.
+ if (State.CC == llvm::CallingConv::X86_VectorCall)
+ runVectorCallFirstPass(FI, State);
+
+ bool UsedInAlloca = false;
+ MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
+ for (unsigned I = 0, E = Args.size(); I < E; ++I) {
+ // Skip arguments that have already been assigned.
+ if (State.IsPreassigned.test(I))
+ continue;
+
+ Args[I].info =
+ classifyArgumentType(Args[I].type, State, I);
+ UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
+ }
+
+ // If we needed to use inalloca for any argument, do a second pass and rewrite
+ // all the memory arguments to use inalloca.
+ if (UsedInAlloca)
+ rewriteWithInAlloca(FI);
+}
+
+void
+X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ CharUnits &StackOffset, ABIArgInfo &Info,
+ QualType Type) const {
+ // Arguments are always 4-byte-aligned.
+ CharUnits WordSize = CharUnits::fromQuantity(4);
+ assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
+
+ // sret pointers and indirect things will require an extra pointer
+ // indirection, unless they are byval. Most things are byval, and will not
+ // require this indirection.
+ bool IsIndirect = false;
+ if (Info.isIndirect() && !Info.getIndirectByVal())
+ IsIndirect = true;
+ Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
+ llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
+ if (IsIndirect)
+ LLTy = llvm::PointerType::getUnqual(getVMContext());
+ FrameFields.push_back(LLTy);
+ StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
+
+ // Insert padding bytes to respect alignment.
+ CharUnits FieldEnd = StackOffset;
+ StackOffset = FieldEnd.alignTo(WordSize);
+ if (StackOffset != FieldEnd) {
+ CharUnits NumBytes = StackOffset - FieldEnd;
+ llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
+ Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
+ FrameFields.push_back(Ty);
+ }
+}
+
+static bool isArgInAlloca(const ABIArgInfo &Info) {
+ // Leave ignored and inreg arguments alone.
+ switch (Info.getKind()) {
+ case ABIArgInfo::InAlloca:
+ return true;
+ case ABIArgInfo::Ignore:
+ case ABIArgInfo::IndirectAliased:
+ return false;
+ case ABIArgInfo::Indirect:
+ case ABIArgInfo::Direct:
+ case ABIArgInfo::Extend:
+ return !Info.getInReg();
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::CoerceAndExpand:
+ // These are aggregate types which are never passed in registers when
+ // inalloca is involved.
+ return true;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
+ assert(IsWin32StructABI && "inalloca only supported on win32");
+
+ // Build a packed struct type for all of the arguments in memory.
+ SmallVector<llvm::Type *, 6> FrameFields;
+
+ // The stack alignment is always 4.
+ CharUnits StackAlign = CharUnits::fromQuantity(4);
+
+ CharUnits StackOffset;
+ CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
+
+ // Put 'this' into the struct before 'sret', if necessary.
+ bool IsThisCall =
+ FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
+ ABIArgInfo &Ret = FI.getReturnInfo();
+ if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
+ isArgInAlloca(I->info)) {
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ ++I;
+ }
+
+ // Put the sret parameter into the inalloca struct if it's in memory.
+ if (Ret.isIndirect() && !Ret.getInReg()) {
+ addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
+ // On Windows, the hidden sret parameter is always returned in eax.
+ Ret.setInAllocaSRet(IsWin32StructABI);
+ }
+
+ // Skip the 'this' parameter in ecx.
+ if (IsThisCall)
+ ++I;
+
+ // Put arguments passed in memory into the struct.
+ for (; I != E; ++I) {
+ if (isArgInAlloca(I->info))
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ }
+
+ FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
+ /*isPacked=*/true),
+ StackAlign);
+}
+
+RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+
+ auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+
+ CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
+ ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
+ // Empty records are ignored for parameter passing purposes.
+ if (AI.isIgnore())
+ return Slot.asRValue();
+
+ // x86-32 changes the alignment of certain arguments on the stack.
+ //
+ // Just messing with TypeInfo like this works because we never pass
+ // anything indirectly.
+ TypeInfo.Align = CharUnits::fromQuantity(
+ getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
+ CharUnits::fromQuantity(4),
+ /*AllowHigherAlign*/ true, Slot);
+}
+
+bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+ assert(Triple.getArch() == llvm::Triple::x86);
+
+ switch (Opts.getStructReturnConvention()) {
+ case CodeGenOptions::SRCK_Default:
+ break;
+ case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
+ return false;
+ case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
+ return true;
+ }
+
+ if (Triple.isOSDarwin() || Triple.isOSIAMCU())
+ return true;
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::DragonFly:
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::OpenBSD:
+ case llvm::Triple::Win32:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) {
+ if (!FD->hasAttr<AnyX86InterruptAttr>())
+ return;
+
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->setCallingConv(llvm::CallingConv::X86_INTR);
+ if (FD->getNumParams() == 0)
+ return;
+
+ auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
+ llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
+ llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
+ Fn->getContext(), ByValTy);
+ Fn->addParamAttr(0, NewAttr);
+}
+
+void X86_32TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->addFnAttr("stackrealign");
+ }
+
+ addX86InterruptAttrs(FD, GV, CGM);
+ }
+}
+
+bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-7 are the eight integer registers; the order is different
+ // on Darwin (for EH), but the range is the same.
+ // 8 is %eip.
+ AssignToArrayRange(Builder, Address, Four8, 0, 8);
+
+ if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
+ // 12-16 are st(0..4). Not sure why we stop at 4.
+ // These have size 16, which is sizeof(long double) on
+ // platforms with 8-byte alignment for that type.
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
+ AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
+
+ } else {
+ // 9 is %eflags, which doesn't get a size on Darwin for some
+ // reason.
+ Builder.CreateAlignedStore(
+ Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
+ CharUnits::One());
+
+ // 11-16 are st(0..5). Not sure why we stop at 5.
+ // These have size 12, which is sizeof(long double) on
+ // platforms with 4-byte alignment for that type.
+ llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
+ AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+
+namespace {
+
+/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
+static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
+ switch (AVXLevel) {
+ case X86AVXABILevel::AVX512:
+ return 512;
+ case X86AVXABILevel::AVX:
+ return 256;
+ case X86AVXABILevel::None:
+ return 128;
+ }
+ llvm_unreachable("Unknown AVXLevel");
+}
+
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+ enum Class {
+ Integer = 0,
+ SSE,
+ SSEUp,
+ X87,
+ X87Up,
+ ComplexX87,
+ NoClass,
+ Memory
+ };
+
+ /// merge - Implement the X86_64 ABI merging algorithm.
+ ///
+ /// Merge an accumulating classification \arg Accum with a field
+ /// classification \arg Field.
+ ///
+ /// \param Accum - The accumulating classification. This should
+ /// always be either NoClass or the result of a previous merge
+ /// call. In addition, this should never be Memory (the caller
+ /// should just return Memory for the aggregate).
+ static Class merge(Class Accum, Class Field);
+
+ /// postMerge - Implement the X86_64 ABI post merging algorithm.
+ ///
+ /// Post merger cleanup, reduces a malformed Hi and Lo pair to
+ /// final MEMORY or SSE classes when necessary.
+ ///
+ /// \param AggregateSize - The size of the current aggregate in
+ /// the classification process.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the higher words of the containing object.
+ ///
+ void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+ /// classify - Determine the x86_64 register classes in which the
+ /// given type T should be passed.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the high word of the containing object.
+ ///
+ /// \param OffsetBase - The bit offset of this type in the
+ /// containing object. Some parameters are classified different
+ /// depending on whether they straddle an eightbyte boundary.
+ ///
+ /// \param isNamedArg - Whether the argument in question is a "named"
+ /// argument, as used in AMD64-ABI 3.5.7.
+ ///
+ /// \param IsRegCall - Whether the calling conversion is regcall.
+ ///
+ /// If a word is unused its result will be NoClass; if a type should
+ /// be passed in Memory then at least the classification of \arg Lo
+ /// will be Memory.
+ ///
+ /// The \arg Lo class will be NoClass iff the argument is ignored.
+ ///
+ /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+ /// also be ComplexX87.
+ void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+ bool isNamedArg, bool IsRegCall = false) const;
+
+ llvm::Type *GetByteVectorType(QualType Ty) const;
+ llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+ llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be returned in memory.
+ ABIArgInfo getIndirectReturnResult(QualType Ty) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ///
+ /// \param freeIntRegs - The number of free integer registers remaining
+ /// available.
+ ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
+ unsigned &neededInt, unsigned &neededSSE,
+ bool isNamedArg,
+ bool IsRegCall = false) const;
+
+ ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const;
+
+ ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const;
+
+ bool IsIllegalVectorType(QualType Ty) const;
+
+ /// The 0.98 ABI revision clarified a lot of ambiguities,
+ /// unfortunately in ways that were not always consistent with
+ /// certain previous compilers. In particular, platforms which
+ /// required strict binary compatibility with older versions of GCC
+ /// may need to exempt themselves.
+ bool honorsRevision0_98() const {
+ return !getTarget().getTriple().isOSDarwin();
+ }
+
+ /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
+ /// classify it as INTEGER (for compatibility with older clang compilers).
+ bool classifyIntegerMMXAsSSE() const {
+ // Clang <= 3.8 did not do this.
+ if (getContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver3_8)
+ return false;
+
+ const llvm::Triple &Triple = getTarget().getTriple();
+ if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
+ return false;
+ return true;
+ }
+
+ // GCC classifies vectors of __int128 as memory.
+ bool passInt128VectorsInMem() const {
+ // Clang <= 9.0 did not do this.
+ if (getContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver9)
+ return false;
+
+ const llvm::Triple &T = getTarget().getTriple();
+ return T.isOSLinux() || T.isOSNetBSD();
+ }
+
+ X86AVXABILevel AVXLevel;
+ // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
+ // 64-bit hardware.
+ bool Has64BitPointers;
+
+public:
+ X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+ : ABIInfo(CGT), AVXLevel(AVXLevel),
+ Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
+
+ bool isPassedUsingAVXType(QualType type) const {
+ unsigned neededInt, neededSSE;
+ // The freeIntRegs argument doesn't matter here.
+ ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
+ /*isNamedArg*/true);
+ if (info.isDirect()) {
+ llvm::Type *ty = info.getCoerceToType();
+ if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
+ return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
+ }
+ return false;
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+ RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ bool has64BitPointers() const {
+ return Has64BitPointers;
+ }
+};
+
+/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
+class WinX86_64ABIInfo : public ABIInfo {
+public:
+ WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+ : ABIInfo(CGT), AVXLevel(AVXLevel),
+ IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorTypeForVectorCall(getContext(), Ty);
+ }
+
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t NumMembers) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorCallAggregateSmallEnough(NumMembers);
+ }
+
+private:
+ ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
+ bool IsVectorCall, bool IsRegCall) const;
+ ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
+ const ABIArgInfo &current) const;
+
+ X86AVXABILevel AVXLevel;
+
+ bool IsMingw64;
+};
+
+class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+ : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
+ }
+
+ /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
+ /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
+ bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ bool isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const override {
+ // The default CC on x86-64 sets %al to the number of SSA
+ // registers used, and GCC sets this when calling an unprototyped
+ // function, so we override the default behavior. However, don't do
+ // that when AVX types are involved: the ABI explicitly states it is
+ // undefined, and it doesn't work in practice because of how the ABI
+ // defines varargs anyway.
+ if (fnType->getCallConv() == CC_C) {
+ bool HasAVXType = false;
+ for (CallArgList::const_iterator
+ it = args.begin(), ie = args.end(); it != ie; ++it) {
+ if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
+ HasAVXType = true;
+ break;
+ }
+ }
+
+ if (!HasAVXType)
+ return true;
+ }
+
+ return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->addFnAttr("stackrealign");
+ }
+
+ addX86InterruptAttrs(FD, GV, CGM);
+ }
+ }
+
+ void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee, const CallArgList &Args,
+ QualType ReturnType) const override;
+};
+} // namespace
+
+static void initFeatureMaps(const ASTContext &Ctx,
+ llvm::StringMap<bool> &CallerMap,
+ const FunctionDecl *Caller,
+ llvm::StringMap<bool> &CalleeMap,
+ const FunctionDecl *Callee) {
+ if (CalleeMap.empty() && CallerMap.empty()) {
+ // The caller is potentially nullptr in the case where the call isn't in a
+ // function. In this case, the getFunctionFeatureMap ensures we just get
+ // the TU level setting (since it cannot be modified by 'target'..
+ Ctx.getFunctionFeatureMap(CallerMap, Caller);
+ Ctx.getFunctionFeatureMap(CalleeMap, Callee);
+ }
+}
+
+static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
+ SourceLocation CallLoc,
+ const llvm::StringMap<bool> &CallerMap,
+ const llvm::StringMap<bool> &CalleeMap,
+ QualType Ty, StringRef Feature,
+ bool IsArgument) {
+ bool CallerHasFeat = CallerMap.lookup(Feature);
+ bool CalleeHasFeat = CalleeMap.lookup(Feature);
+ if (!CallerHasFeat && !CalleeHasFeat)
+ return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
+ << IsArgument << Ty << Feature;
+
+ // Mixing calling conventions here is very clearly an error.
+ if (!CallerHasFeat || !CalleeHasFeat)
+ return Diag.Report(CallLoc, diag::err_avx_calling_convention)
+ << IsArgument << Ty << Feature;
+
+ // Else, both caller and callee have the required feature, so there is no need
+ // to diagnose.
+ return false;
+}
+
+static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
+ SourceLocation CallLoc,
+ const llvm::StringMap<bool> &CallerMap,
+ const llvm::StringMap<bool> &CalleeMap,
+ QualType Ty, bool IsArgument) {
+ bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
+ bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
+
+ // Forbid 512-bit or larger vector pass or return when we disabled ZMM
+ // instructions.
+ if (Caller256 || Callee256)
+ return Diag.Report(CallLoc, diag::err_avx_calling_convention)
+ << IsArgument << Ty << "evex512";
+
+ return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
+ "avx512f", IsArgument);
+}
+
+static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
+ SourceLocation CallLoc,
+ const llvm::StringMap<bool> &CallerMap,
+ const llvm::StringMap<bool> &CalleeMap, QualType Ty,
+ bool IsArgument) {
+ uint64_t Size = Ctx.getTypeSize(Ty);
+ if (Size > 256)
+ return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
+ IsArgument);
+
+ if (Size > 128)
+ return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
+ IsArgument);
+
+ return false;
+}
+
+void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
+ SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee,
+ const CallArgList &Args,
+ QualType ReturnType) const {
+ if (!Callee)
+ return;
+
+ llvm::StringMap<bool> CallerMap;
+ llvm::StringMap<bool> CalleeMap;
+ unsigned ArgIndex = 0;
+
+ // We need to loop through the actual call arguments rather than the
+ // function's parameters, in case this variadic.
+ for (const CallArg &Arg : Args) {
+ // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
+ // additionally changes how vectors >256 in size are passed. Like GCC, we
+ // warn when a function is called with an argument where this will change.
+ // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
+ // the caller and callee features are mismatched.
+ // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
+ // change its ABI with attribute-target after this call.
+ if (Arg.getType()->isVectorType() &&
+ CGM.getContext().getTypeSize(Arg.getType()) > 128) {
+ initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
+ QualType Ty = Arg.getType();
+ // The CallArg seems to have desugared the type already, so for clearer
+ // diagnostics, replace it with the type in the FunctionDecl if possible.
+ if (ArgIndex < Callee->getNumParams())
+ Ty = Callee->getParamDecl(ArgIndex)->getType();
+
+ if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
+ CalleeMap, Ty, /*IsArgument*/ true))
+ return;
+ }
+ ++ArgIndex;
+ }
+
+ // Check return always, as we don't have a good way of knowing in codegen
+ // whether this value is used, tail-called, etc.
+ if (Callee->getReturnType()->isVectorType() &&
+ CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
+ initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
+ checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
+ CalleeMap, Callee->getReturnType(),
+ /*IsArgument*/ false);
+ }
+}
+
+std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
+ // If the argument does not end in .lib, automatically add the suffix.
+ // If the argument contains a space, enclose it in quotes.
+ // This matches the behavior of MSVC.
+ bool Quote = Lib.contains(' ');
+ std::string ArgStr = Quote ? "\"" : "";
+ ArgStr += Lib;
+ if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
+ ArgStr += ".lib";
+ ArgStr += Quote ? "\"" : "";
+ return ArgStr;
+}
+
+namespace {
+class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
+public:
+ WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
+ unsigned NumRegisterParameters)
+ : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
+ Win32StructABI, NumRegisterParameters, false) {}
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+} // namespace
+
+void WinX86_32TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (GV->isDeclaration())
+ return;
+ addStackProbeTargetAttributes(D, GV, CGM);
+}
+
+namespace {
+class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ X86AVXABILevel AVXLevel)
+ : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+} // namespace
+
+void WinX86_64TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->addFnAttr("stackrealign");
+ }
+
+ addX86InterruptAttrs(FD, GV, CGM);
+ }
+
+ addStackProbeTargetAttributes(D, GV, CGM);
+}
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+ Class &Hi) const {
+ // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+ //
+ // (a) If one of the classes is Memory, the whole argument is passed in
+ // memory.
+ //
+ // (b) If X87UP is not preceded by X87, the whole argument is passed in
+ // memory.
+ //
+ // (c) If the size of the aggregate exceeds two eightbytes and the first
+ // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+ // argument is passed in memory. NOTE: This is necessary to keep the
+ // ABI working for processors that don't support the __m256 type.
+ //
+ // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+ //
+ // Some of these are enforced by the merging logic. Others can arise
+ // only with unions; for example:
+ // union { _Complex double; unsigned; }
+ //
+ // Note that clauses (b) and (c) were added in 0.98.
+ //
+ if (Hi == Memory)
+ Lo = Memory;
+ if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
+ Lo = Memory;
+ if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+ Lo = Memory;
+ if (Hi == SSEUp && Lo != SSE)
+ Hi = SSE;
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+ // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+ // classified recursively so that always two fields are
+ // considered. The resulting class is calculated according to
+ // the classes of the fields in the eightbyte:
+ //
+ // (a) If both classes are equal, this is the resulting class.
+ //
+ // (b) If one of the classes is NO_CLASS, the resulting class is
+ // the other class.
+ //
+ // (c) If one of the classes is MEMORY, the result is the MEMORY
+ // class.
+ //
+ // (d) If one of the classes is INTEGER, the result is the
+ // INTEGER.
+ //
+ // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ // MEMORY is used as class.
+ //
+ // (f) Otherwise class SSE is used.
+
+ // Accum should never be memory (we should have returned) or
+ // ComplexX87 (because this cannot be passed in a structure).
+ assert((Accum != Memory && Accum != ComplexX87) &&
+ "Invalid accumulated classification during merge.");
+ if (Accum == Field || Field == NoClass)
+ return Accum;
+ if (Field == Memory)
+ return Memory;
+ if (Accum == NoClass)
+ return Field;
+ if (Accum == Integer || Field == Integer)
+ return Integer;
+ if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+ Accum == X87 || Accum == X87Up)
+ return Memory;
+ return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
+ Class &Hi, bool isNamedArg, bool IsRegCall) const {
+ // FIXME: This code can be simplified by introducing a simple value class for
+ // Class pairs with appropriate constructor methods for the various
+ // situations.
+
+ // FIXME: Some of the split computations are wrong; unaligned vectors
+ // shouldn't be passed in registers for example, so there is no chance they
+ // can straddle an eightbyte. Verify & simplify.
+
+ Lo = Hi = NoClass;
+
+ Class &Current = OffsetBase < 64 ? Lo : Hi;
+ Current = Memory;
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ BuiltinType::Kind k = BT->getKind();
+
+ if (k == BuiltinType::Void) {
+ Current = NoClass;
+ } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+ Lo = Integer;
+ Hi = Integer;
+ } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+ Current = Integer;
+ } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
+ k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
+ Current = SSE;
+ } else if (k == BuiltinType::Float128) {
+ Lo = SSE;
+ Hi = SSEUp;
+ } else if (k == BuiltinType::LongDouble) {
+ const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+ if (LDF == &llvm::APFloat::IEEEquad()) {
+ Lo = SSE;
+ Hi = SSEUp;
+ } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
+ Lo = X87;
+ Hi = X87Up;
+ } else if (LDF == &llvm::APFloat::IEEEdouble()) {
+ Current = SSE;
+ } else
+ llvm_unreachable("unexpected long double representation!");
+ }
+ // FIXME: _Decimal32 and _Decimal64 are SSE.
+ // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+ return;
+ }
+
+ if (const EnumType *ET = Ty->getAs<EnumType>()) {
+ // Classify the underlying integer type.
+ classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
+ return;
+ }
+
+ if (Ty->hasPointerRepresentation()) {
+ Current = Integer;
+ return;
+ }
+
+ if (Ty->isMemberPointerType()) {
+ if (Ty->isMemberFunctionPointerType()) {
+ if (Has64BitPointers) {
+ // If Has64BitPointers, this is an {i64, i64}, so classify both
+ // Lo and Hi now.
+ Lo = Hi = Integer;
+ } else {
+ // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
+ // straddles an eightbyte boundary, Hi should be classified as well.
+ uint64_t EB_FuncPtr = (OffsetBase) / 64;
+ uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
+ if (EB_FuncPtr != EB_ThisAdj) {
+ Lo = Hi = Integer;
+ } else {
+ Current = Integer;
+ }
+ }
+ } else {
+ Current = Integer;
+ }
+ return;
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VT);
+ if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
+ // gcc passes the following as integer:
+ // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
+ // 2 bytes - <2 x char>, <1 x short>
+ // 1 byte - <1 x char>
+ Current = Integer;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ uint64_t EB_Lo = (OffsetBase) / 64;
+ uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
+ if (EB_Lo != EB_Hi)
+ Hi = Lo;
+ } else if (Size == 64) {
+ QualType ElementType = VT->getElementType();
+
+ // gcc passes <1 x double> in memory. :(
+ if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
+ return;
+
+ // gcc passes <1 x long long> as SSE but clang used to unconditionally
+ // pass them as integer. For platforms where clang is the de facto
+ // platform compiler, we must continue to use integer.
+ if (!classifyIntegerMMXAsSSE() &&
+ (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
+ Current = Integer;
+ else
+ Current = SSE;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ if (OffsetBase && OffsetBase != 64)
+ Hi = Lo;
+ } else if (Size == 128 ||
+ (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
+ QualType ElementType = VT->getElementType();
+
+ // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
+ if (passInt128VectorsInMem() && Size != 128 &&
+ (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
+ return;
+
+ // Arguments of 256-bits are split into four eightbyte chunks. The
+ // least significant one belongs to class SSE and all the others to class
+ // SSEUP. The original Lo and Hi design considers that types can't be
+ // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+ // This design isn't correct for 256-bits, but since there're no cases
+ // where the upper parts would need to be inspected, avoid adding
+ // complexity and just consider Hi to match the 64-256 part.
+ //
+ // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+ // registers if they are "named", i.e. not part of the "..." of a
+ // variadic function.
+ //
+ // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
+ // split into eight eightbyte chunks, one SSE and seven SSEUP.
+ Lo = SSE;
+ Hi = SSEUp;
+ }
+ return;
+ }
+
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ QualType ET = getContext().getCanonicalType(CT->getElementType());
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (ET->isIntegralOrEnumerationType()) {
+ if (Size <= 64)
+ Current = Integer;
+ else if (Size <= 128)
+ Lo = Hi = Integer;
+ } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
+ ET->isBFloat16Type()) {
+ Current = SSE;
+ } else if (ET == getContext().DoubleTy) {
+ Lo = Hi = SSE;
+ } else if (ET == getContext().LongDoubleTy) {
+ const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+ if (LDF == &llvm::APFloat::IEEEquad())
+ Current = Memory;
+ else if (LDF == &llvm::APFloat::x87DoubleExtended())
+ Current = ComplexX87;
+ else if (LDF == &llvm::APFloat::IEEEdouble())
+ Lo = Hi = SSE;
+ else
+ llvm_unreachable("unexpected long double representation!");
+ }
+
+ // If this complex type crosses an eightbyte boundary then it
+ // should be split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
+ if (Hi == NoClass && EB_Real != EB_Imag)
+ Hi = Lo;
+
+ return;
+ }
+
+ if (const auto *EITy = Ty->getAs<BitIntType>()) {
+ if (EITy->getNumBits() <= 64)
+ Current = Integer;
+ else if (EITy->getNumBits() <= 128)
+ Lo = Hi = Integer;
+ // Larger values need to get passed in memory.
+ return;
+ }
+
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ // Arrays are treated like structures.
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than eight eightbytes, ..., it has class MEMORY.
+ // regcall ABI doesn't have limitation to an object. The only limitation
+ // is the free registers, which will be checked in computeInfo.
+ if (!IsRegCall && Size > 512)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Only need to check alignment of array base.
+ if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
+ return;
+
+ // Otherwise implement simplified merge. We could be smarter about
+ // this, but it isn't worth it and would be harder to verify.
+ Current = NoClass;
+ uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
+ uint64_t ArraySize = AT->getZExtSize();
+
+ // The only case a 256-bit wide vector could be used is when the array
+ // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+ // to work for sizes wider than 128, early check and fallback to memory.
+ //
+ if (Size > 128 &&
+ (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
+ return;
+
+ for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+ Class FieldLo, FieldHi;
+ classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+ return;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than eight eightbytes, ..., it has class MEMORY.
+ if (Size > 512)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
+ // copy constructor or a non-trivial destructor, it is passed by invisible
+ // reference.
+ if (getRecordArgABI(RT, getCXXABI()))
+ return;
+
+ const RecordDecl *RD = RT->getDecl();
+
+ // Assume variable sized types are passed in memory.
+ if (RD->hasFlexibleArrayMember())
+ return;
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+ // Reset Lo class, this will be recomputed.
+ Current = NoClass;
+
+ // If this is a C++ record, classify the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const auto *Base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
+ // single eightbyte, each is classified separately. Each eightbyte gets
+ // initialized to class NO_CLASS.
+ Class FieldLo, FieldHi;
+ uint64_t Offset =
+ OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
+ classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory) {
+ postMerge(Size, Lo, Hi);
+ return;
+ }
+ }
+ }
+
+ // Classify the fields one at a time, merging the results.
+ unsigned idx = 0;
+ bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver11 ||
+ getContext().getTargetInfo().getTriple().isPS();
+ bool IsUnion = RT->isUnionType() && !UseClang11Compat;
+
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ bool BitField = i->isBitField();
+
+ // Ignore padding bit-fields.
+ if (BitField && i->isUnnamedBitField())
+ continue;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
+ // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
+ //
+ // The only case a 256-bit or a 512-bit wide vector could be used is when
+ // the struct contains a single 256-bit or 512-bit element. Early check
+ // and fallback to memory.
+ //
+ // FIXME: Extended the Lo and Hi logic properly to work for size wider
+ // than 128.
+ if (Size > 128 &&
+ ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
+ Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
+ Lo = Memory;
+ postMerge(Size, Lo, Hi);
+ return;
+ }
+
+ bool IsInMemory =
+ Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
+ // Note, skip this test for bit-fields, see below.
+ if (!BitField && IsInMemory) {
+ Lo = Memory;
+ postMerge(Size, Lo, Hi);
+ return;
+ }
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+ // exceeds a single eightbyte, each is classified
+ // separately. Each eightbyte gets initialized to class
+ // NO_CLASS.
+ Class FieldLo, FieldHi;
+
+ // Bit-fields require special handling, they do not force the
+ // structure to be passed in memory even if unaligned, and
+ // therefore they can straddle an eightbyte.
+ if (BitField) {
+ assert(!i->isUnnamedBitField());
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ uint64_t Size = i->getBitWidthValue(getContext());
+
+ uint64_t EB_Lo = Offset / 64;
+ uint64_t EB_Hi = (Offset + Size - 1) / 64;
+
+ if (EB_Lo) {
+ assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+ FieldLo = NoClass;
+ FieldHi = Integer;
+ } else {
+ FieldLo = Integer;
+ FieldHi = EB_Hi ? Integer : NoClass;
+ }
+ } else
+ classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ }
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isBitIntType())
+ return getNaturalAlignIndirect(Ty);
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ return getNaturalAlignIndirect(Ty);
+}
+
+bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VecTy);
+ unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
+ if (Size <= 64 || Size > LargestVector)
+ return true;
+ QualType EltTy = VecTy->getElementType();
+ if (passInt128VectorsInMem() &&
+ (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
+ EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
+ return true;
+ }
+
+ return false;
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+ unsigned freeIntRegs) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ //
+ // This assumption is optimistic, as there could be free registers available
+ // when we need to pass this argument in memory, and LLVM could try to pass
+ // the argument in the free register. This does not seem to happen currently,
+ // but this code would be much safer if we could mark the argument with
+ // 'onstack'. See PR12193.
+ if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
+ !Ty->isBitIntType()) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Compute the byval alignment. We specify the alignment of the byval in all
+ // cases so that the mid-level optimizer knows the alignment of the byval.
+ unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
+
+ // Attempt to avoid passing indirect results using byval when possible. This
+ // is important for good codegen.
+ //
+ // We do this by coercing the value into a scalar type which the backend can
+ // handle naturally (i.e., without using byval).
+ //
+ // For simplicity, we currently only do this when we have exhausted all of the
+ // free integer registers. Doing this when there are free integer registers
+ // would require more care, as we would have to ensure that the coerced value
+ // did not claim the unused register. That would require either reording the
+ // arguments to the function (so that any subsequent inreg values came first),
+ // or only doing this optimization when there were no following arguments that
+ // might be inreg.
+ //
+ // We currently expect it to be rare (particularly in well written code) for
+ // arguments to be passed on the stack when there are still free integer
+ // registers available (this would typically imply large structs being passed
+ // by value), so this seems like a fair tradeoff for now.
+ //
+ // We can revisit this if the backend grows support for 'onstack' parameter
+ // attributes. See PR12193.
+ if (freeIntRegs == 0) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // If this type fits in an eightbyte, coerce it into the matching integral
+ // type, which will end up on the stack (with alignment 8).
+ if (Align == 8 && Size <= 64)
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
+}
+
+/// The ABI specifies that a value should be passed in a full vector XMM/YMM
+/// register. Pick an LLVM IR type that will be passed as a vector register.
+llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
+ // Wrapper structs/arrays that only contain vectors are passed just like
+ // vectors; strip them off if present.
+ if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
+ Ty = QualType(InnerTy, 0);
+
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ if (isa<llvm::VectorType>(IRType)) {
+ // Don't pass vXi128 vectors in their native type, the backend can't
+ // legalize them.
+ if (passInt128VectorsInMem() &&
+ cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
+ // Use a vXi64 vector.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
+ Size / 64);
+ }
+
+ return IRType;
+ }
+
+ if (IRType->getTypeID() == llvm::Type::FP128TyID)
+ return IRType;
+
+ // We couldn't find the preferred IR vector type for 'Ty'.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
+
+
+ // Return a LLVM IR vector type based on the size of 'Ty'.
+ return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
+ Size / 64);
+}
+
+/// BitsContainNoUserData - Return true if the specified [start,end) bit range
+/// is known to either be off the end of the specified type or being in
+/// alignment padding. The user type specified is known to be at most 128 bits
+/// in size, and have passed through X86_64ABIInfo::classify with a successful
+/// classification that put one of the two halves in the INTEGER class.
+///
+/// It is conservatively correct to return false.
+static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
+ unsigned EndBit, ASTContext &Context) {
+ // If the bytes being queried are off the end of the type, there is no user
+ // data hiding here. This handles analysis of builtins, vectors and other
+ // types that don't contain interesting padding.
+ unsigned TySize = (unsigned)Context.getTypeSize(Ty);
+ if (TySize <= StartBit)
+ return true;
+
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
+ unsigned NumElts = (unsigned)AT->getZExtSize();
+
+ // Check each element to see if the element overlaps with the queried range.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If the element is after the span we care about, then we're done..
+ unsigned EltOffset = i*EltSize;
+ if (EltOffset >= EndBit) break;
+
+ unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
+ if (!BitsContainNoUserData(AT->getElementType(), EltStart,
+ EndBit-EltOffset, Context))
+ return false;
+ }
+ // If it overlaps no elements, then it is safe to process as padding.
+ return true;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const auto *Base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // If the base is after the span we care about, ignore it.
+ unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
+ if (BaseOffset >= EndBit) continue;
+
+ unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
+ if (!BitsContainNoUserData(I.getType(), BaseStart,
+ EndBit-BaseOffset, Context))
+ return false;
+ }
+ }
+
+ // Verify that no field has data that overlaps the region of interest. Yes
+ // this could be sped up a lot by being smarter about queried fields,
+ // however we're only looking at structs up to 16 bytes, so we don't care
+ // much.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
+
+ // If we found a field after the region we care about, then we're done.
+ if (FieldOffset >= EndBit) break;
+
+ unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
+ if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
+ Context))
+ return false;
+ }
+
+ // If nothing in this record overlapped the area of interest, then we're
+ // clean.
+ return true;
+ }
+
+ return false;
+}
+
+/// getFPTypeAtOffset - Return a floating point type at the specified offset.
+static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ const llvm::DataLayout &TD) {
+ if (IROffset == 0 && IRType->isFloatingPointTy())
+ return IRType;
+
+ // If this is a struct, recurse into the field at the specified offset.
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ if (!STy->getNumContainedTypes())
+ return nullptr;
+
+ const llvm::StructLayout *SL = TD.getStructLayout(STy);
+ unsigned Elt = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(Elt);
+ return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
+ }
+
+ // If this is an array, recurse into the field at the specified offset.
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = TD.getTypeAllocSize(EltTy);
+ IROffset -= IROffset / EltSize * EltSize;
+ return getFPTypeAtOffset(EltTy, IROffset, TD);
+ }
+
+ return nullptr;
+}
+
+/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
+/// low 8 bytes of an XMM register, corresponding to the SSE class.
+llvm::Type *X86_64ABIInfo::
+GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ const llvm::DataLayout &TD = getDataLayout();
+ unsigned SourceSize =
+ (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
+ llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
+ if (!T0 || T0->isDoubleTy())
+ return llvm::Type::getDoubleTy(getVMContext());
+
+ // Get the adjacent FP type.
+ llvm::Type *T1 = nullptr;
+ unsigned T0Size = TD.getTypeAllocSize(T0);
+ if (SourceSize > T0Size)
+ T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
+ if (T1 == nullptr) {
+ // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
+ // to its alignment.
+ if (T0->is16bitFPTy() && SourceSize > 4)
+ T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
+ // If we can't get a second FP type, return a simple half or float.
+ // avx512fp16-abi.c:pr51813_2 shows it works to return float for
+ // {float, i8} too.
+ if (T1 == nullptr)
+ return T0;
+ }
+
+ if (T0->isFloatTy() && T1->isFloatTy())
+ return llvm::FixedVectorType::get(T0, 2);
+
+ if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
+ llvm::Type *T2 = nullptr;
+ if (SourceSize > 4)
+ T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
+ if (T2 == nullptr)
+ return llvm::FixedVectorType::get(T0, 2);
+ return llvm::FixedVectorType::get(T0, 4);
+ }
+
+ if (T0->is16bitFPTy() || T1->is16bitFPTy())
+ return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
+
+ return llvm::Type::getDoubleTy(getVMContext());
+}
+
+
+/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
+/// an 8-byte GPR. This means that we either have a scalar or we are talking
+/// about the high or low part of an up-to-16-byte struct. This routine picks
+/// the best LLVM IR type to represent this, which may be i64 or may be anything
+/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
+/// etc).
+///
+/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
+/// the source type. IROffset is an offset in bytes into the LLVM IR type that
+/// the 8-byte value references. PrefType may be null.
+///
+/// SourceTy is the source-level type for the entire argument. SourceOffset is
+/// an offset into this that we're processing (which is always either 0 or 8).
+///
+llvm::Type *X86_64ABIInfo::
+GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ // If we're dealing with an un-offset LLVM IR type, then it means that we're
+ // returning an 8-byte unit starting with it. See if we can safely use it.
+ if (IROffset == 0) {
+ // Pointers and int64's always fill the 8-byte unit.
+ if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
+ IRType->isIntegerTy(64))
+ return IRType;
+
+ // If we have a 1/2/4-byte integer, we can use it only if the rest of the
+ // goodness in the source type is just tail padding. This is allowed to
+ // kick in for struct {double,int} on the int, but not on
+ // struct{double,int,int} because we wouldn't return the second int. We
+ // have to do this analysis on the source type because we can't depend on
+ // unions being lowered a specific way etc.
+ if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
+ IRType->isIntegerTy(32) ||
+ (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
+ unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
+ cast<llvm::IntegerType>(IRType)->getBitWidth();
+
+ if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
+ SourceOffset*8+64, getContext()))
+ return IRType;
+ }
+ }
+
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ // If this is a struct, recurse into the field at the specified offset.
+ const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
+ if (IROffset < SL->getSizeInBytes()) {
+ unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(FieldIdx);
+
+ return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
+ SourceTy, SourceOffset);
+ }
+ }
+
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
+ unsigned EltOffset = IROffset/EltSize*EltSize;
+ return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
+ SourceOffset);
+ }
+
+ // Okay, we don't have any better idea of what to pass, so we pass this in an
+ // integer register that isn't too big to fit the rest of the struct.
+ unsigned TySizeInBytes =
+ (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
+
+ assert(TySizeInBytes != SourceOffset && "Empty field?");
+
+ // It is always safe to classify this as an integer type up to i64 that
+ // isn't larger than the structure.
+ return llvm::IntegerType::get(getVMContext(),
+ std::min(TySizeInBytes-SourceOffset, 8U)*8);
+}
+
+
+/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
+/// be used as elements of a two register pair to pass or return, return a
+/// first class aggregate to represent them. For example, if the low part of
+/// a by-value argument should be passed as i32* and the high part as float,
+/// return {i32*, float}.
+static llvm::Type *
+GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
+ const llvm::DataLayout &TD) {
+ // In order to correctly satisfy the ABI, we need to the high part to start
+ // at offset 8. If the high and low parts we inferred are both 4-byte types
+ // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
+ // the second element at offset 8. Check for this:
+ unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
+ llvm::Align HiAlign = TD.getABITypeAlign(Hi);
+ unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
+ assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
+
+ // To handle this, we have to increase the size of the low part so that the
+ // second element will start at an 8 byte offset. We can't increase the size
+ // of the second element because it might make us access off the end of the
+ // struct.
+ if (HiStart != 8) {
+ // There are usually two sorts of types the ABI generation code can produce
+ // for the low part of a pair that aren't 8 bytes in size: half, float or
+ // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
+ // NaCl).
+ // Promote these to a larger type.
+ if (Lo->isHalfTy() || Lo->isFloatTy())
+ Lo = llvm::Type::getDoubleTy(Lo->getContext());
+ else {
+ assert((Lo->isIntegerTy() || Lo->isPointerTy())
+ && "Invalid/unknown lo type");
+ Lo = llvm::Type::getInt64Ty(Lo->getContext());
+ }
+ }
+
+ llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
+
+ // Verify that the second element is at an 8-byte offset.
+ assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
+ "Invalid x86-64 argument pair!");
+ return Result;
+}
+
+ABIArgInfo X86_64ABIInfo::
+classifyReturnType(QualType RetTy) const {
+ // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+ // classification algorithm.
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
+
+ // Check some invariants.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+ // hidden argument.
+ case Memory:
+ return getIndirectReturnResult(RetTy);
+
+ // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+ // available register of the sequence %rax, %rdx is used.
+ case Integer:
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (RetTy->isIntegralOrEnumerationType() &&
+ isPromotableIntegerTypeForABI(RetTy))
+ return ABIArgInfo::getExtend(RetTy);
+ }
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+ // available SSE register of the sequence %xmm0, %xmm1 is used.
+ case SSE:
+ ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+ // returned on the X87 stack in %st0 as 80-bit x87 number.
+ case X87:
+ ResType = llvm::Type::getX86_FP80Ty(getVMContext());
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+ // part of the value is returned in %st0 and the imaginary part in
+ // %st1.
+ case ComplexX87:
+ assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+ ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
+ llvm::Type::getX86_FP80Ty(getVMContext()));
+ break;
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously and X87 should
+ // never occur as a hi class.
+ case Memory:
+ case X87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case ComplexX87: // Previously handled.
+ case NoClass:
+ break;
+
+ case Integer:
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+ case SSE:
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+ // is passed in the next available eightbyte chunk if the last used
+ // vector register.
+ //
+ // SSEUP should always be preceded by SSE, just widen.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = GetByteVectorType(RetTy);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+ // returned together with the previous X87 value in %st0.
+ case X87Up:
+ // If X87Up is preceded by X87, we don't need to do
+ // anything. However, in some cases with unions it may not be
+ // preceded by X87. In such situations we follow gcc and pass the
+ // extra bits in an SSE reg.
+ if (Lo != X87) {
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ }
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
+ unsigned &neededInt, unsigned &neededSSE,
+ bool isNamedArg, bool IsRegCall) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
+
+ // Check some invariants.
+ // FIXME: Enforce these by construction.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ neededInt = 0;
+ neededSSE = 0;
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+ // on the stack.
+ case Memory:
+
+ // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+ // COMPLEX_X87, it is passed in memory.
+ case X87:
+ case ComplexX87:
+ if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
+ ++neededInt;
+ return getIndirectResult(Ty, freeIntRegs);
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+ // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+ // and %r9 is used.
+ case Integer:
+ ++neededInt;
+
+ // Pick an 8-byte type based on the preferred type.
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isIntegralOrEnumerationType() &&
+ isPromotableIntegerTypeForABI(Ty))
+ return ABIArgInfo::getExtend(Ty);
+ }
+
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+ // available SSE register is used, the registers are taken in the
+ // order from %xmm0 to %xmm7.
+ case SSE: {
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
+ ++neededSSE;
+ break;
+ }
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously, ComplexX87 and X87 should
+ // never occur as hi classes, and X87Up must be preceded by X87,
+ // which is passed in memory.
+ case Memory:
+ case X87:
+ case ComplexX87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case NoClass: break;
+
+ case Integer:
+ ++neededInt;
+ // Pick an 8-byte type based on the preferred type.
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // X87Up generally doesn't occur here (long double is passed in
+ // memory), except in situations involving unions.
+ case X87Up:
+ case SSE:
+ ++neededSSE;
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+ // eightbyte is passed in the upper half of the last used SSE
+ // register. This only happens when 128-bit vectors are passed.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification");
+ ResType = GetByteVectorType(Ty);
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const {
+ auto RT = Ty->getAs<RecordType>();
+ assert(RT && "classifyRegCallStructType only valid with struct types");
+
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectReturnResult(Ty);
+
+ // Sum up bases
+ if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ if (CXXRD->isDynamicClass()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+
+ for (const auto &I : CXXRD->bases())
+ if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
+ MaxVectorWidth)
+ .isIndirect()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+ }
+
+ // Sum up members
+ for (const auto *FD : RT->getDecl()->fields()) {
+ QualType MTy = FD->getType();
+ if (MTy->isRecordType() && !MTy->isUnionType()) {
+ if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
+ MaxVectorWidth)
+ .isIndirect()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+ } else {
+ unsigned LocalNeededInt, LocalNeededSSE;
+ if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
+ true, true)
+ .isIndirect()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+ if (const auto *AT = getContext().getAsConstantArrayType(MTy))
+ MTy = AT->getElementType();
+ if (const auto *VT = MTy->getAs<VectorType>())
+ if (getContext().getTypeSize(VT) > MaxVectorWidth)
+ MaxVectorWidth = getContext().getTypeSize(VT);
+ NeededInt += LocalNeededInt;
+ NeededSSE += LocalNeededSSE;
+ }
+ }
+
+ return ABIArgInfo::getDirect();
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const {
+
+ NeededInt = 0;
+ NeededSSE = 0;
+ MaxVectorWidth = 0;
+
+ return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
+ MaxVectorWidth);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+ const unsigned CallingConv = FI.getCallingConvention();
+ // It is possible to force Win64 calling convention on any x86_64 target by
+ // using __attribute__((ms_abi)). In such case to correctly emit Win64
+ // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
+ if (CallingConv == llvm::CallingConv::Win64) {
+ WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
+ Win64ABIInfo.computeInfo(FI);
+ return;
+ }
+
+ bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
+
+ // Keep track of the number of assigned registers.
+ unsigned FreeIntRegs = IsRegCall ? 11 : 6;
+ unsigned FreeSSERegs = IsRegCall ? 16 : 8;
+ unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
+
+ if (!::classifyReturnType(getCXXABI(), FI, *this)) {
+ if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
+ !FI.getReturnType()->getTypePtr()->isUnionType()) {
+ FI.getReturnInfo() = classifyRegCallStructType(
+ FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
+ if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
+ FreeIntRegs -= NeededInt;
+ FreeSSERegs -= NeededSSE;
+ } else {
+ FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
+ }
+ } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
+ getContext().getCanonicalType(FI.getReturnType()
+ ->getAs<ComplexType>()
+ ->getElementType()) ==
+ getContext().LongDoubleTy)
+ // Complex Long Double Type is passed in Memory when Regcall
+ // calling convention is used.
+ FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
+ else
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ }
+
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (FI.getReturnInfo().isIndirect())
+ --FreeIntRegs;
+ else if (NeededSSE && MaxVectorWidth > 0)
+ FI.setMaxVectorWidth(MaxVectorWidth);
+
+ // The chain argument effectively gives us another free register.
+ if (FI.isChainCall())
+ ++FreeIntRegs;
+
+ unsigned NumRequiredArgs = FI.getNumRequiredArgs();
+ // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+ // get assigned (in left-to-right order) for passing as follows...
+ unsigned ArgNo = 0;
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it, ++ArgNo) {
+ bool IsNamedArg = ArgNo < NumRequiredArgs;
+
+ if (IsRegCall && it->type->isStructureOrClassType())
+ it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
+ MaxVectorWidth);
+ else
+ it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
+ NeededSSE, IsNamedArg);
+
+ // AMD64-ABI 3.2.3p3: If there are no registers available for any
+ // eightbyte of an argument, the whole argument is passed on the
+ // stack. If registers have already been assigned for some
+ // eightbytes of such an argument, the assignments get reverted.
+ if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
+ FreeIntRegs -= NeededInt;
+ FreeSSERegs -= NeededSSE;
+ if (MaxVectorWidth > FI.getMaxVectorWidth())
+ FI.setMaxVectorWidth(MaxVectorWidth);
+ } else {
+ it->info = getIndirectResult(it->type, FreeIntRegs);
+ }
+ }
+}
+
+static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
+ Address VAListAddr, QualType Ty) {
+ Address overflow_arg_area_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+ llvm::Value *overflow_arg_area =
+ CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+ // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+ // byte boundary if alignment needed by type exceeds 8 byte boundary.
+ // It isn't stated explicitly in the standard, but in practice we use
+ // alignment greater than 16 where necessary.
+ CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
+ if (Align > CharUnits::fromQuantity(8)) {
+ overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
+ Align);
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Res = overflow_arg_area;
+
+ // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+ // l->overflow_arg_area + sizeof(type).
+ // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+ // an 8 byte boundary.
+
+ uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
+ overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
+ Offset, "overflow_arg_area.next");
+ CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+ // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+ return Address(Res, LTy, Align);
+}
+
+RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i32 gp_offset;
+ // i32 fp_offset;
+ // i8* overflow_arg_area;
+ // i8* reg_save_area;
+ // };
+ unsigned neededInt, neededSSE;
+
+ Ty = getContext().getCanonicalType(Ty);
+ ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
+ /*isNamedArg*/false);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (AI.isIgnore())
+ return Slot.asRValue();
+
+ // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+ // in the registers. If not go to step 7.
+ if (!neededInt && !neededSSE)
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
+ Slot);
+
+ // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+ // general purpose registers needed to pass type and num_fp to hold
+ // the number of floating point registers needed.
+
+ // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+ // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+ // l->fp_offset > 304 - num_fp * 16 go to step 7.
+ //
+ // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+ // register save space).
+
+ llvm::Value *InRegs = nullptr;
+ Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
+ llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
+ if (neededInt) {
+ gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+ gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+ InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
+ InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
+ }
+
+ if (neededSSE) {
+ fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+ fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+ llvm::Value *FitsInFP =
+ llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
+ FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
+ InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+ }
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+
+ CGF.EmitBlock(InRegBlock);
+
+ // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+ // an offset of l->gp_offset and/or l->fp_offset. This may require
+ // copying to a temporary location in case the parameter is passed
+ // in different register classes or requires an alignment greater
+ // than 8 for general purpose registers and 16 for XMM registers.
+ //
+ // FIXME: This really results in shameful code when we end up needing to
+ // collect arguments from different places; often what should result in a
+ // simple assembling of a structure from scattered addresses has many more
+ // loads than necessary. Can we clean this up?
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
+ CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
+
+ Address RegAddr = Address::invalid();
+ if (neededInt && neededSSE) {
+ // FIXME: Cleanup.
+ assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
+ llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+ Address Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = Tmp.withElementType(ST);
+ assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+ llvm::Type *TyLo = ST->getElementType(0);
+ llvm::Type *TyHi = ST->getElementType(1);
+ assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
+ "Unexpected ABI info for mixed regs");
+ llvm::Value *GPAddr =
+ CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
+ llvm::Value *FPAddr =
+ CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
+ llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
+ llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
+
+ // Copy the first element.
+ // FIXME: Our choice of alignment here and below is probably pessimistic.
+ llvm::Value *V = CGF.Builder.CreateAlignedLoad(
+ TyLo, RegLoAddr,
+ CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+
+ // Copy the second element.
+ V = CGF.Builder.CreateAlignedLoad(
+ TyHi, RegHiAddr,
+ CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = Tmp.withElementType(LTy);
+ } else if (neededInt) {
+ RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
+ LTy, CharUnits::fromQuantity(8));
+
+ // Copy to a temporary if necessary to ensure the appropriate alignment.
+ auto TInfo = getContext().getTypeInfoInChars(Ty);
+ uint64_t TySize = TInfo.Width.getQuantity();
+ CharUnits TyAlign = TInfo.Align;
+
+ // Copy into a temporary if the type is more aligned than the
+ // register save area.
+ if (TyAlign.getQuantity() > 8) {
+ Address Tmp = CGF.CreateMemTemp(Ty);
+ CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
+ RegAddr = Tmp;
+ }
+
+ } else if (neededSSE == 1) {
+ RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
+ LTy, CharUnits::fromQuantity(16));
+ } else {
+ assert(neededSSE == 2 && "Invalid number of needed registers!");
+ // SSE registers are spaced 16 bytes apart in the register save
+ // area, we need to collect the two eightbytes together.
+ // The ABI isn't explicit about this, but it seems reasonable
+ // to assume that the slots are 16-byte aligned, since the stack is
+ // naturally 16-byte aligned and the prologue is expected to store
+ // all the SSE registers to the RSA.
+ Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
+ fp_offset),
+ CGF.Int8Ty, CharUnits::fromQuantity(16));
+ Address RegAddrHi =
+ CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
+ CharUnits::fromQuantity(16));
+ llvm::Type *ST = AI.canHaveCoerceToType()
+ ? AI.getCoerceToType()
+ : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
+ llvm::Value *V;
+ Address Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = Tmp.withElementType(ST);
+ V = CGF.Builder.CreateLoad(
+ RegAddrLo.withElementType(ST->getStructElementType(0)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(
+ RegAddrHi.withElementType(ST->getStructElementType(1)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = Tmp.withElementType(LTy);
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 5. Set:
+ // l->gp_offset = l->gp_offset + num_gp * 8
+ // l->fp_offset = l->fp_offset + num_fp * 16.
+ if (neededInt) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+ gp_offset_p);
+ }
+ if (neededSSE) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+ fp_offset_p);
+ }
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+
+ CGF.EmitBlock(InMemBlock);
+ Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
+
+ // Return the appropriate result.
+
+ CGF.EmitBlock(ContBlock);
+ Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
+ "vaarg.addr");
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
+}
+
+RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ uint64_t Width = getContext().getTypeSize(Ty);
+ bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ CGF.getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(8),
+ /*allowHigherAlign*/ false, Slot);
+}
+
+ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
+ QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+
+ if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
+ isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ return getDirectX86Hva();
+ }
+ return current;
+}
+
+ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
+ bool IsReturnType, bool IsVectorCall,
+ bool IsRegCall) const {
+
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ TypeInfo Info = getContext().getTypeInfo(Ty);
+ uint64_t Width = Info.Width;
+ CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ if (!IsReturnType) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ }
+
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ // vectorcall adds the concept of a homogenous vector aggregate, similar to
+ // other targets.
+ if ((IsVectorCall || IsRegCall) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (IsRegCall) {
+ if (FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ } else if (IsVectorCall) {
+ if (FreeSSERegs >= NumElts &&
+ (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
+ FreeSSERegs -= NumElts;
+ return ABIArgInfo::getDirect();
+ } else if (IsReturnType) {
+ return ABIArgInfo::getExpand();
+ } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
+ // HVAs are delayed and reclassified in the 2nd step.
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+ }
+ }
+
+ if (Ty->isMemberPointerType()) {
+ // If the member pointer is represented by an LLVM int or ptr, pass it
+ // directly.
+ llvm::Type *LLTy = CGT.ConvertType(Ty);
+ if (LLTy->isPointerTy() || LLTy->isIntegerTy())
+ return ABIArgInfo::getDirect();
+ }
+
+ if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ if (Width > 64 || !llvm::isPowerOf2_64(Width))
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ // Otherwise, coerce it to a small integer.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
+ }
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ switch (BT->getKind()) {
+ case BuiltinType::Bool:
+ // Bool type is always extended to the ABI, other builtin types are not
+ // extended.
+ return ABIArgInfo::getExtend(Ty);
+
+ case BuiltinType::LongDouble:
+ // Mingw64 GCC uses the old 80 bit extended precision floating point
+ // unit. It passes them indirectly through memory.
+ if (IsMingw64) {
+ const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+ if (LDF == &llvm::APFloat::x87DoubleExtended())
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+ break;
+
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ // If it's a parameter type, the normal ABI rule is that arguments larger
+ // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
+ // even though it isn't particularly efficient.
+ if (!IsReturnType)
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+
+ // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
+ // Clang matches them for compatibility.
+ return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2));
+
+ default:
+ break;
+ }
+ }
+
+ if (Ty->isBitIntType()) {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
+ // or 8 bytes anyway as long is it fits in them, so we don't have to check
+ // the power of 2.
+ if (Width <= 64)
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+
+ return ABIArgInfo::getDirect();
+}
+
+void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ const unsigned CC = FI.getCallingConvention();
+ bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
+ bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
+
+ // If __attribute__((sysv_abi)) is in use, use the SysV argument
+ // classification rules.
+ if (CC == llvm::CallingConv::X86_64_SysV) {
+ X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
+ SysVABIInfo.computeInfo(FI);
+ return;
+ }
+
+ unsigned FreeSSERegs = 0;
+ if (IsVectorCall) {
+ // We can use up to 4 SSE return registers with vectorcall.
+ FreeSSERegs = 4;
+ } else if (IsRegCall) {
+ // RegCall gives us 16 SSE registers.
+ FreeSSERegs = 16;
+ }
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
+ IsVectorCall, IsRegCall);
+
+ if (IsVectorCall) {
+ // We can use up to 6 SSE register parameters with vectorcall.
+ FreeSSERegs = 6;
+ } else if (IsRegCall) {
+ // RegCall gives us 16 SSE registers, we can reuse the return registers.
+ FreeSSERegs = 16;
+ }
+
+ unsigned ArgNum = 0;
+ unsigned ZeroSSERegs = 0;
+ for (auto &I : FI.arguments()) {
+ // Vectorcall in x64 only permits the first 6 arguments to be passed as
+ // XMM/YMM registers. After the sixth argument, pretend no vector
+ // registers are left.
+ unsigned *MaybeFreeSSERegs =
+ (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
+ I.info =
+ classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
+ ++ArgNum;
+ }
+
+ if (IsVectorCall) {
+ // For vectorcall, assign aggregate HVAs to any free vector registers in a
+ // second pass.
+ for (auto &I : FI.arguments())
+ I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
+ }
+}
+
+RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ uint64_t Width = getContext().getTypeSize(Ty);
+ bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ CGF.getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(8),
+ /*allowHigherAlign*/ false, Slot);
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
+ CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
+ unsigned NumRegisterParameters, bool SoftFloatABI) {
+ bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ CGM.getTriple(), CGM.getCodeGenOpts());
+ return std::make_unique<X86_32TargetCodeGenInfo>(
+ CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+ NumRegisterParameters, SoftFloatABI);
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
+ CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
+ unsigned NumRegisterParameters) {
+ bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ CGM.getTriple(), CGM.getCodeGenOpts());
+ return std::make_unique<WinX86_32TargetCodeGenInfo>(
+ CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+ NumRegisterParameters);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
+ X86AVXABILevel AVXLevel) {
+ return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
+ X86AVXABILevel AVXLevel) {
+ return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
+}