diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp | 3459 |
1 files changed, 3459 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp new file mode 100644 index 000000000000..1dc3172a6bdf --- /dev/null +++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp @@ -0,0 +1,3459 @@ +//===- X86.cpp ------------------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "ABIInfoImpl.h" +#include "TargetInfo.h" +#include "clang/Basic/DiagnosticFrontend.h" +#include "llvm/ADT/SmallBitVector.h" + +using namespace clang; +using namespace clang::CodeGen; + +namespace { + +/// IsX86_MMXType - Return true if this is an MMX type. +bool IsX86_MMXType(llvm::Type *IRType) { + // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. + return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && + cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && + IRType->getScalarSizeInBits() != 64; +} + +static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) { + bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) + .Cases("y", "&y", "^Ym", true) + .Default(false); + if (IsMMXCons && Ty->isVectorTy()) { + if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() != + 64) { + // Invalid MMX constraint + return nullptr; + } + + return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); + } + + if (Constraint == "k") { + llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext()); + return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits()); + } + + // No operation needed + return Ty; +} + +/// Returns true if this type can be passed in SSE registers with the +/// X86_VectorCall calling convention. Shared between x86_32 and x86_64. +static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { + if (BT->getKind() == BuiltinType::LongDouble) { + if (&Context.getTargetInfo().getLongDoubleFormat() == + &llvm::APFloat::x87DoubleExtended()) + return false; + } + return true; + } + } else if (const VectorType *VT = Ty->getAs<VectorType>()) { + // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX + // registers specially. + unsigned VecSize = Context.getTypeSize(VT); + if (VecSize == 128 || VecSize == 256 || VecSize == 512) + return true; + } + return false; +} + +/// Returns true if this aggregate is small enough to be passed in SSE registers +/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. +static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { + return NumMembers <= 4; +} + +/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. +static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { + auto AI = ABIArgInfo::getDirect(T); + AI.setInReg(true); + AI.setCanBeFlattened(false); + return AI; +} + +//===----------------------------------------------------------------------===// +// X86-32 ABI Implementation +//===----------------------------------------------------------------------===// + +/// Similar to llvm::CCState, but for Clang. +struct CCState { + CCState(CGFunctionInfo &FI) + : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()), + Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {} + + llvm::SmallBitVector IsPreassigned; + unsigned CC = CallingConv::CC_C; + unsigned FreeRegs = 0; + unsigned FreeSSERegs = 0; + RequiredArgs Required; + bool IsDelegateCall = false; +}; + +/// X86_32ABIInfo - The X86-32 ABI information. +class X86_32ABIInfo : public ABIInfo { + enum Class { + Integer, + Float + }; + + static const unsigned MinABIStackAlignInBytes = 4; + + bool IsDarwinVectorABI; + bool IsRetSmallStructInRegABI; + bool IsWin32StructABI; + bool IsSoftFloatABI; + bool IsMCUABI; + bool IsLinuxABI; + unsigned DefaultNumRegisterParameters; + + static bool isRegisterSize(unsigned Size) { + return (Size == 8 || Size == 16 || Size == 32 || Size == 64); + } + + bool isHomogeneousAggregateBaseType(QualType Ty) const override { + // FIXME: Assumes vectorcall is in use. + return isX86VectorTypeForVectorCall(getContext(), Ty); + } + + bool isHomogeneousAggregateSmallEnough(const Type *Ty, + uint64_t NumMembers) const override { + // FIXME: Assumes vectorcall is in use. + return isX86VectorCallAggregateSmallEnough(NumMembers); + } + + bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; + + ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; + + /// Return the alignment to use for the given type on the stack. + unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; + + Class classify(QualType Ty) const; + ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; + ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State, + unsigned ArgIndex) const; + + /// Updates the number of available free registers, returns + /// true if any registers were allocated. + bool updateFreeRegs(QualType Ty, CCState &State) const; + + bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, + bool &NeedsPadding) const; + bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; + + bool canExpandIndirectArgument(QualType Ty) const; + + /// Rewrite the function info so that all memory arguments use + /// inalloca. + void rewriteWithInAlloca(CGFunctionInfo &FI) const; + + void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, + CharUnits &StackOffset, ABIArgInfo &Info, + QualType Type) const; + void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; + +public: + + void computeInfo(CGFunctionInfo &FI) const override; + RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, + AggValueSlot Slot) const override; + + X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, + bool RetSmallStructInRegABI, bool Win32StructABI, + unsigned NumRegisterParameters, bool SoftFloatABI) + : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), + IsRetSmallStructInRegABI(RetSmallStructInRegABI), + IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), + IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), + IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || + CGT.getTarget().getTriple().isOSCygMing()), + DefaultNumRegisterParameters(NumRegisterParameters) {} +}; + +class X86_32SwiftABIInfo : public SwiftABIInfo { +public: + explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) + : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} + + bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, + bool AsReturnValue) const override { + // LLVM's x86-32 lowering currently only assigns up to three + // integer registers and three fp registers. Oddly, it'll use up to + // four vector registers for vectors, but those can overlap with the + // scalar registers. + return occupiesMoreThan(ComponentTys, /*total=*/3); + } +}; + +class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { +public: + X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, + bool RetSmallStructInRegABI, bool Win32StructABI, + unsigned NumRegisterParameters, bool SoftFloatABI) + : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( + CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, + NumRegisterParameters, SoftFloatABI)) { + SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT); + } + + static bool isStructReturnInRegABI( + const llvm::Triple &Triple, const CodeGenOptions &Opts); + + void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override; + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + // Darwin uses different dwarf register numbers for EH. + if (CGM.getTarget().getTriple().isOSDarwin()) return 5; + return 4; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override; + + llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) const override { + return X86AdjustInlineAsmType(CGF, Constraint, Ty); + } + + void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, + std::string &Constraints, + std::vector<llvm::Type *> &ResultRegTypes, + std::vector<llvm::Type *> &ResultTruncRegTypes, + std::vector<LValue> &ResultRegDests, + std::string &AsmString, + unsigned NumOutputs) const override; + + StringRef getARCRetainAutoreleasedReturnValueMarker() const override { + return "movl\t%ebp, %ebp" + "\t\t// marker for objc_retainAutoreleaseReturnValue"; + } +}; + +} + +/// Rewrite input constraint references after adding some output constraints. +/// In the case where there is one output and one input and we add one output, +/// we need to replace all operand references greater than or equal to 1: +/// mov $0, $1 +/// mov eax, $1 +/// The result will be: +/// mov $0, $2 +/// mov eax, $2 +static void rewriteInputConstraintReferences(unsigned FirstIn, + unsigned NumNewOuts, + std::string &AsmString) { + std::string Buf; + llvm::raw_string_ostream OS(Buf); + size_t Pos = 0; + while (Pos < AsmString.size()) { + size_t DollarStart = AsmString.find('$', Pos); + if (DollarStart == std::string::npos) + DollarStart = AsmString.size(); + size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); + if (DollarEnd == std::string::npos) + DollarEnd = AsmString.size(); + OS << StringRef(&AsmString[Pos], DollarEnd - Pos); + Pos = DollarEnd; + size_t NumDollars = DollarEnd - DollarStart; + if (NumDollars % 2 != 0 && Pos < AsmString.size()) { + // We have an operand reference. + size_t DigitStart = Pos; + if (AsmString[DigitStart] == '{') { + OS << '{'; + ++DigitStart; + } + size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); + if (DigitEnd == std::string::npos) + DigitEnd = AsmString.size(); + StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); + unsigned OperandIndex; + if (!OperandStr.getAsInteger(10, OperandIndex)) { + if (OperandIndex >= FirstIn) + OperandIndex += NumNewOuts; + OS << OperandIndex; + } else { + OS << OperandStr; + } + Pos = DigitEnd; + } + } + AsmString = std::move(OS.str()); +} + +/// Add output constraints for EAX:EDX because they are return registers. +void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( + CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, + std::vector<llvm::Type *> &ResultRegTypes, + std::vector<llvm::Type *> &ResultTruncRegTypes, + std::vector<LValue> &ResultRegDests, std::string &AsmString, + unsigned NumOutputs) const { + uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); + + // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is + // larger. + if (!Constraints.empty()) + Constraints += ','; + if (RetWidth <= 32) { + Constraints += "={eax}"; + ResultRegTypes.push_back(CGF.Int32Ty); + } else { + // Use the 'A' constraint for EAX:EDX. + Constraints += "=A"; + ResultRegTypes.push_back(CGF.Int64Ty); + } + + // Truncate EAX or EAX:EDX to an integer of the appropriate size. + llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); + ResultTruncRegTypes.push_back(CoerceTy); + + // Coerce the integer by bitcasting the return slot pointer. + ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy)); + ResultRegDests.push_back(ReturnSlot); + + rewriteInputConstraintReferences(NumOutputs, 1, AsmString); +} + +/// shouldReturnTypeInRegister - Determine if the given type should be +/// returned in a register (for the Darwin and MCU ABI). +bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, + ASTContext &Context) const { + uint64_t Size = Context.getTypeSize(Ty); + + // For i386, type must be register sized. + // For the MCU ABI, it only needs to be <= 8-byte + if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) + return false; + + if (Ty->isVectorType()) { + // 64- and 128- bit vectors inside structures are not returned in + // registers. + if (Size == 64 || Size == 128) + return false; + + return true; + } + + // If this is a builtin, pointer, enum, complex type, member pointer, or + // member function pointer it is ok. + if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || + Ty->isAnyComplexType() || Ty->isEnumeralType() || + Ty->isBlockPointerType() || Ty->isMemberPointerType()) + return true; + + // Arrays are treated like records. + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) + return shouldReturnTypeInRegister(AT->getElementType(), Context); + + // Otherwise, it must be a record type. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) return false; + + // FIXME: Traverse bases here too. + + // Structure types are passed in register if all fields would be + // passed in a register. + for (const auto *FD : RT->getDecl()->fields()) { + // Empty fields are ignored. + if (isEmptyField(Context, FD, true)) + continue; + + // Check fields recursively. + if (!shouldReturnTypeInRegister(FD->getType(), Context)) + return false; + } + return true; +} + +static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { + // Treat complex types as the element type. + if (const ComplexType *CTy = Ty->getAs<ComplexType>()) + Ty = CTy->getElementType(); + + // Check for a type which we know has a simple scalar argument-passing + // convention without any padding. (We're specifically looking for 32 + // and 64-bit integer and integer-equivalents, float, and double.) + if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && + !Ty->isEnumeralType() && !Ty->isBlockPointerType()) + return false; + + uint64_t Size = Context.getTypeSize(Ty); + return Size == 32 || Size == 64; +} + +static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, + uint64_t &Size) { + for (const auto *FD : RD->fields()) { + // Scalar arguments on the stack get 4 byte alignment on x86. If the + // argument is smaller than 32-bits, expanding the struct will create + // alignment padding. + if (!is32Or64BitBasicType(FD->getType(), Context)) + return false; + + // FIXME: Reject bit-fields wholesale; there are two problems, we don't know + // how to expand them yet, and the predicate for telling if a bitfield still + // counts as "basic" is more complicated than what we were doing previously. + if (FD->isBitField()) + return false; + + Size += Context.getTypeSize(FD->getType()); + } + return true; +} + +static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, + uint64_t &Size) { + // Don't do this if there are any non-empty bases. + for (const CXXBaseSpecifier &Base : RD->bases()) { + if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), + Size)) + return false; + } + if (!addFieldSizes(Context, RD, Size)) + return false; + return true; +} + +/// Test whether an argument type which is to be passed indirectly (on the +/// stack) would have the equivalent layout if it was expanded into separate +/// arguments. If so, we prefer to do the latter to avoid inhibiting +/// optimizations. +bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { + // We can only expand structure types. + const RecordType *RT = Ty->getAs<RecordType>(); + if (!RT) + return false; + const RecordDecl *RD = RT->getDecl(); + uint64_t Size = 0; + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + if (!IsWin32StructABI) { + // On non-Windows, we have to conservatively match our old bitcode + // prototypes in order to be ABI-compatible at the bitcode level. + if (!CXXRD->isCLike()) + return false; + } else { + // Don't do this for dynamic classes. + if (CXXRD->isDynamicClass()) + return false; + } + if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) + return false; + } else { + if (!addFieldSizes(getContext(), RD, Size)) + return false; + } + + // We can do this if there was no alignment padding. + return Size == getContext().getTypeSize(Ty); +} + +ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (State.CC != llvm::CallingConv::X86_FastCall && + State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) { + --State.FreeRegs; + if (!IsMCUABI) + return getNaturalAlignIndirectInReg(RetTy); + } + return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); +} + +ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, + CCState &State) const { + if (RetTy->isVoidType()) + return ABIArgInfo::getIgnore(); + + const Type *Base = nullptr; + uint64_t NumElts = 0; + if ((State.CC == llvm::CallingConv::X86_VectorCall || + State.CC == llvm::CallingConv::X86_RegCall) && + isHomogeneousAggregate(RetTy, Base, NumElts)) { + // The LLVM struct type for such an aggregate should lower properly. + return ABIArgInfo::getDirect(); + } + + if (const VectorType *VT = RetTy->getAs<VectorType>()) { + // On Darwin, some vectors are returned in registers. + if (IsDarwinVectorABI) { + uint64_t Size = getContext().getTypeSize(RetTy); + + // 128-bit vectors are a special case; they are returned in + // registers and we need to make sure to pick a type the LLVM + // backend will like. + if (Size == 128) + return ABIArgInfo::getDirect(llvm::FixedVectorType::get( + llvm::Type::getInt64Ty(getVMContext()), 2)); + + // Always return in register if it fits in a general purpose + // register, or if it is 64 bits and has a single element. + if ((Size == 8 || Size == 16 || Size == 32) || + (Size == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + + return getIndirectReturnResult(RetTy, State); + } + + return ABIArgInfo::getDirect(); + } + + if (isAggregateTypeForABI(RetTy)) { + if (const RecordType *RT = RetTy->getAs<RecordType>()) { + // Structures with flexible arrays are always indirect. + if (RT->getDecl()->hasFlexibleArrayMember()) + return getIndirectReturnResult(RetTy, State); + } + + // If specified, structs and unions are always indirect. + if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) + return getIndirectReturnResult(RetTy, State); + + // Ignore empty structs/unions. + if (isEmptyRecord(getContext(), RetTy, true)) + return ABIArgInfo::getIgnore(); + + // Return complex of _Float16 as <2 x half> so the backend will use xmm0. + if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { + QualType ET = getContext().getCanonicalType(CT->getElementType()); + if (ET->isFloat16Type()) + return ABIArgInfo::getDirect(llvm::FixedVectorType::get( + llvm::Type::getHalfTy(getVMContext()), 2)); + } + + // Small structures which are register sized are generally returned + // in a register. + if (shouldReturnTypeInRegister(RetTy, getContext())) { + uint64_t Size = getContext().getTypeSize(RetTy); + + // As a special-case, if the struct is a "single-element" struct, and + // the field is of type "float" or "double", return it in a + // floating-point register. (MSVC does not apply this special case.) + // We apply a similar transformation for pointer types to improve the + // quality of the generated IR. + if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) + if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) + || SeltTy->hasPointerRepresentation()) + return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); + + // FIXME: We should be able to narrow this integer in cases with dead + // padding. + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); + } + + return getIndirectReturnResult(RetTy, State); + } + + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + if (const auto *EIT = RetTy->getAs<BitIntType>()) + if (EIT->getNumBits() > 64) + return getIndirectReturnResult(RetTy, State); + + return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) + : ABIArgInfo::getDirect()); +} + +unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, + unsigned Align) const { + // Otherwise, if the alignment is less than or equal to the minimum ABI + // alignment, just use the default; the backend will handle this. + if (Align <= MinABIStackAlignInBytes) + return 0; // Use default alignment. + + if (IsLinuxABI) { + // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't + // want to spend any effort dealing with the ramifications of ABI breaks. + // + // If the vector type is __m128/__m256/__m512, return the default alignment. + if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) + return Align; + } + // On non-Darwin, the stack type alignment is always 4. + if (!IsDarwinVectorABI) { + // Set explicit alignment, since we may need to realign the top. + return MinABIStackAlignInBytes; + } + + // Otherwise, if the type contains an SSE vector type, the alignment is 16. + if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || + isRecordWithSIMDVectorType(getContext(), Ty))) + return 16; + + return MinABIStackAlignInBytes; +} + +ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, + CCState &State) const { + if (!ByVal) { + if (State.FreeRegs) { + --State.FreeRegs; // Non-byval indirects just use one pointer. + if (!IsMCUABI) + return getNaturalAlignIndirectInReg(Ty); + } + return getNaturalAlignIndirect(Ty, false); + } + + // Compute the byval alignment. + unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; + unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); + if (StackAlign == 0) + return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); + + // If the stack alignment is less than the type alignment, realign the + // argument. + bool Realign = TypeAlign > StackAlign; + return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), + /*ByVal=*/true, Realign); +} + +X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { + const Type *T = isSingleElementStruct(Ty, getContext()); + if (!T) + T = Ty.getTypePtr(); + + if (const BuiltinType *BT = T->getAs<BuiltinType>()) { + BuiltinType::Kind K = BT->getKind(); + if (K == BuiltinType::Float || K == BuiltinType::Double) + return Float; + } + return Integer; +} + +bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { + if (!IsSoftFloatABI) { + Class C = classify(Ty); + if (C == Float) + return false; + } + + unsigned Size = getContext().getTypeSize(Ty); + unsigned SizeInRegs = (Size + 31) / 32; + + if (SizeInRegs == 0) + return false; + + if (!IsMCUABI) { + if (SizeInRegs > State.FreeRegs) { + State.FreeRegs = 0; + return false; + } + } else { + // The MCU psABI allows passing parameters in-reg even if there are + // earlier parameters that are passed on the stack. Also, + // it does not allow passing >8-byte structs in-register, + // even if there are 3 free registers available. + if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) + return false; + } + + State.FreeRegs -= SizeInRegs; + return true; +} + +bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, + bool &InReg, + bool &NeedsPadding) const { + // On Windows, aggregates other than HFAs are never passed in registers, and + // they do not consume register slots. Homogenous floating-point aggregates + // (HFAs) have already been dealt with at this point. + if (IsWin32StructABI && isAggregateTypeForABI(Ty)) + return false; + + NeedsPadding = false; + InReg = !IsMCUABI; + + if (!updateFreeRegs(Ty, State)) + return false; + + if (IsMCUABI) + return true; + + if (State.CC == llvm::CallingConv::X86_FastCall || + State.CC == llvm::CallingConv::X86_VectorCall || + State.CC == llvm::CallingConv::X86_RegCall) { + if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) + NeedsPadding = true; + + return false; + } + + return true; +} + +bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { + bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && + (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || + Ty->isReferenceType()); + + if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || + State.CC == llvm::CallingConv::X86_VectorCall)) + return false; + + if (!updateFreeRegs(Ty, State)) + return false; + + if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) + return false; + + // Return true to apply inreg to all legal parameters except for MCU targets. + return !IsMCUABI; +} + +void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { + // Vectorcall x86 works subtly different than in x64, so the format is + // a bit different than the x64 version. First, all vector types (not HVAs) + // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. + // This differs from the x64 implementation, where the first 6 by INDEX get + // registers. + // In the second pass over the arguments, HVAs are passed in the remaining + // vector registers if possible, or indirectly by address. The address will be + // passed in ECX/EDX if available. Any other arguments are passed according to + // the usual fastcall rules. + MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); + for (int I = 0, E = Args.size(); I < E; ++I) { + const Type *Base = nullptr; + uint64_t NumElts = 0; + const QualType &Ty = Args[I].type; + if ((Ty->isVectorType() || Ty->isBuiltinType()) && + isHomogeneousAggregate(Ty, Base, NumElts)) { + if (State.FreeSSERegs >= NumElts) { + State.FreeSSERegs -= NumElts; + Args[I].info = ABIArgInfo::getDirectInReg(); + State.IsPreassigned.set(I); + } + } + } +} + +ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State, + unsigned ArgIndex) const { + // FIXME: Set alignment on indirect arguments. + bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; + bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; + bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; + + Ty = useFirstFieldIfTransparentUnion(Ty); + TypeInfo TI = getContext().getTypeInfo(Ty); + + // Check with the C++ ABI first. + const RecordType *RT = Ty->getAs<RecordType>(); + if (RT) { + CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); + if (RAA == CGCXXABI::RAA_Indirect) { + return getIndirectResult(Ty, false, State); + } else if (State.IsDelegateCall) { + // Avoid having different alignments on delegate call args by always + // setting the alignment to 4, which is what we do for inallocas. + ABIArgInfo Res = getIndirectResult(Ty, false, State); + Res.setIndirectAlign(CharUnits::fromQuantity(4)); + return Res; + } else if (RAA == CGCXXABI::RAA_DirectInMemory) { + // The field index doesn't matter, we'll fix it up later. + return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); + } + } + + // Regcall uses the concept of a homogenous vector aggregate, similar + // to other targets. + const Type *Base = nullptr; + uint64_t NumElts = 0; + if ((IsRegCall || IsVectorCall) && + isHomogeneousAggregate(Ty, Base, NumElts)) { + if (State.FreeSSERegs >= NumElts) { + State.FreeSSERegs -= NumElts; + + // Vectorcall passes HVAs directly and does not flatten them, but regcall + // does. + if (IsVectorCall) + return getDirectX86Hva(); + + if (Ty->isBuiltinType() || Ty->isVectorType()) + return ABIArgInfo::getDirect(); + return ABIArgInfo::getExpand(); + } + if (IsVectorCall && Ty->isBuiltinType()) + return ABIArgInfo::getDirect(); + return getIndirectResult(Ty, /*ByVal=*/false, State); + } + + if (isAggregateTypeForABI(Ty)) { + // Structures with flexible arrays are always indirect. + // FIXME: This should not be byval! + if (RT && RT->getDecl()->hasFlexibleArrayMember()) + return getIndirectResult(Ty, true, State); + + // Ignore empty structs/unions on non-Windows. + if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) + return ABIArgInfo::getIgnore(); + + llvm::LLVMContext &LLVMContext = getVMContext(); + llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); + bool NeedsPadding = false; + bool InReg; + if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { + unsigned SizeInRegs = (TI.Width + 31) / 32; + SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); + llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); + if (InReg) + return ABIArgInfo::getDirectInReg(Result); + else + return ABIArgInfo::getDirect(Result); + } + llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; + + // Pass over-aligned aggregates to non-variadic functions on Windows + // indirectly. This behavior was added in MSVC 2015. Use the required + // alignment from the record layout, since that may be less than the + // regular type alignment, and types with required alignment of less than 4 + // bytes are not passed indirectly. + if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) { + unsigned AlignInBits = 0; + if (RT) { + const ASTRecordLayout &Layout = + getContext().getASTRecordLayout(RT->getDecl()); + AlignInBits = getContext().toBits(Layout.getRequiredAlignment()); + } else if (TI.isAlignRequired()) { + AlignInBits = TI.Align; + } + if (AlignInBits > 32) + return getIndirectResult(Ty, /*ByVal=*/false, State); + } + + // Expand small (<= 128-bit) record types when we know that the stack layout + // of those arguments will match the struct. This is important because the + // LLVM backend isn't smart enough to remove byval, which inhibits many + // optimizations. + // Don't do this for the MCU if there are still free integer registers + // (see X86_64 ABI for full explanation). + if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && + canExpandIndirectArgument(Ty)) + return ABIArgInfo::getExpandWithPadding( + IsFastCall || IsVectorCall || IsRegCall, PaddingType); + + return getIndirectResult(Ty, true, State); + } + + if (const VectorType *VT = Ty->getAs<VectorType>()) { + // On Windows, vectors are passed directly if registers are available, or + // indirectly if not. This avoids the need to align argument memory. Pass + // user-defined vector types larger than 512 bits indirectly for simplicity. + if (IsWin32StructABI) { + if (TI.Width <= 512 && State.FreeSSERegs > 0) { + --State.FreeSSERegs; + return ABIArgInfo::getDirectInReg(); + } + return getIndirectResult(Ty, /*ByVal=*/false, State); + } + + // On Darwin, some vectors are passed in memory, we handle this by passing + // it as an i8/i16/i32/i64. + if (IsDarwinVectorABI) { + if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || + (TI.Width == 64 && VT->getNumElements() == 1)) + return ABIArgInfo::getDirect( + llvm::IntegerType::get(getVMContext(), TI.Width)); + } + + if (IsX86_MMXType(CGT.ConvertType(Ty))) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); + + return ABIArgInfo::getDirect(); + } + + + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + bool InReg = shouldPrimitiveUseInReg(Ty, State); + + if (isPromotableIntegerTypeForABI(Ty)) { + if (InReg) + return ABIArgInfo::getExtendInReg(Ty); + return ABIArgInfo::getExtend(Ty); + } + + if (const auto *EIT = Ty->getAs<BitIntType>()) { + if (EIT->getNumBits() <= 64) { + if (InReg) + return ABIArgInfo::getDirectInReg(); + return ABIArgInfo::getDirect(); + } + return getIndirectResult(Ty, /*ByVal=*/false, State); + } + + if (InReg) + return ABIArgInfo::getDirectInReg(); + return ABIArgInfo::getDirect(); +} + +void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { + CCState State(FI); + if (IsMCUABI) + State.FreeRegs = 3; + else if (State.CC == llvm::CallingConv::X86_FastCall) { + State.FreeRegs = 2; + State.FreeSSERegs = 3; + } else if (State.CC == llvm::CallingConv::X86_VectorCall) { + State.FreeRegs = 2; + State.FreeSSERegs = 6; + } else if (FI.getHasRegParm()) + State.FreeRegs = FI.getRegParm(); + else if (State.CC == llvm::CallingConv::X86_RegCall) { + State.FreeRegs = 5; + State.FreeSSERegs = 8; + } else if (IsWin32StructABI) { + // Since MSVC 2015, the first three SSE vectors have been passed in + // registers. The rest are passed indirectly. + State.FreeRegs = DefaultNumRegisterParameters; + State.FreeSSERegs = 3; + } else + State.FreeRegs = DefaultNumRegisterParameters; + + if (!::classifyReturnType(getCXXABI(), FI, *this)) { + FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); + } else if (FI.getReturnInfo().isIndirect()) { + // The C++ ABI is not aware of register usage, so we have to check if the + // return value was sret and put it in a register ourselves if appropriate. + if (State.FreeRegs) { + --State.FreeRegs; // The sret parameter consumes a register. + if (!IsMCUABI) + FI.getReturnInfo().setInReg(true); + } + } + + // The chain argument effectively gives us another free register. + if (FI.isChainCall()) + ++State.FreeRegs; + + // For vectorcall, do a first pass over the arguments, assigning FP and vector + // arguments to XMM registers as available. + if (State.CC == llvm::CallingConv::X86_VectorCall) + runVectorCallFirstPass(FI, State); + + bool UsedInAlloca = false; + MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); + for (unsigned I = 0, E = Args.size(); I < E; ++I) { + // Skip arguments that have already been assigned. + if (State.IsPreassigned.test(I)) + continue; + + Args[I].info = + classifyArgumentType(Args[I].type, State, I); + UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); + } + + // If we needed to use inalloca for any argument, do a second pass and rewrite + // all the memory arguments to use inalloca. + if (UsedInAlloca) + rewriteWithInAlloca(FI); +} + +void +X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, + CharUnits &StackOffset, ABIArgInfo &Info, + QualType Type) const { + // Arguments are always 4-byte-aligned. + CharUnits WordSize = CharUnits::fromQuantity(4); + assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); + + // sret pointers and indirect things will require an extra pointer + // indirection, unless they are byval. Most things are byval, and will not + // require this indirection. + bool IsIndirect = false; + if (Info.isIndirect() && !Info.getIndirectByVal()) + IsIndirect = true; + Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); + llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); + if (IsIndirect) + LLTy = llvm::PointerType::getUnqual(getVMContext()); + FrameFields.push_back(LLTy); + StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); + + // Insert padding bytes to respect alignment. + CharUnits FieldEnd = StackOffset; + StackOffset = FieldEnd.alignTo(WordSize); + if (StackOffset != FieldEnd) { + CharUnits NumBytes = StackOffset - FieldEnd; + llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); + Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); + FrameFields.push_back(Ty); + } +} + +static bool isArgInAlloca(const ABIArgInfo &Info) { + // Leave ignored and inreg arguments alone. + switch (Info.getKind()) { + case ABIArgInfo::InAlloca: + return true; + case ABIArgInfo::Ignore: + case ABIArgInfo::IndirectAliased: + return false; + case ABIArgInfo::Indirect: + case ABIArgInfo::Direct: + case ABIArgInfo::Extend: + return !Info.getInReg(); + case ABIArgInfo::Expand: + case ABIArgInfo::CoerceAndExpand: + // These are aggregate types which are never passed in registers when + // inalloca is involved. + return true; + } + llvm_unreachable("invalid enum"); +} + +void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { + assert(IsWin32StructABI && "inalloca only supported on win32"); + + // Build a packed struct type for all of the arguments in memory. + SmallVector<llvm::Type *, 6> FrameFields; + + // The stack alignment is always 4. + CharUnits StackAlign = CharUnits::fromQuantity(4); + + CharUnits StackOffset; + CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); + + // Put 'this' into the struct before 'sret', if necessary. + bool IsThisCall = + FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; + ABIArgInfo &Ret = FI.getReturnInfo(); + if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && + isArgInAlloca(I->info)) { + addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); + ++I; + } + + // Put the sret parameter into the inalloca struct if it's in memory. + if (Ret.isIndirect() && !Ret.getInReg()) { + addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); + // On Windows, the hidden sret parameter is always returned in eax. + Ret.setInAllocaSRet(IsWin32StructABI); + } + + // Skip the 'this' parameter in ecx. + if (IsThisCall) + ++I; + + // Put arguments passed in memory into the struct. + for (; I != E; ++I) { + if (isArgInAlloca(I->info)) + addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); + } + + FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, + /*isPacked=*/true), + StackAlign); +} + +RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, + QualType Ty, AggValueSlot Slot) const { + + auto TypeInfo = getContext().getTypeInfoInChars(Ty); + + CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo)); + ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0); + // Empty records are ignored for parameter passing purposes. + if (AI.isIgnore()) + return Slot.asRValue(); + + // x86-32 changes the alignment of certain arguments on the stack. + // + // Just messing with TypeInfo like this works because we never pass + // anything indirectly. + TypeInfo.Align = CharUnits::fromQuantity( + getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); + + return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, + CharUnits::fromQuantity(4), + /*AllowHigherAlign*/ true, Slot); +} + +bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( + const llvm::Triple &Triple, const CodeGenOptions &Opts) { + assert(Triple.getArch() == llvm::Triple::x86); + + switch (Opts.getStructReturnConvention()) { + case CodeGenOptions::SRCK_Default: + break; + case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return + return false; + case CodeGenOptions::SRCK_InRegs: // -freg-struct-return + return true; + } + + if (Triple.isOSDarwin() || Triple.isOSIAMCU()) + return true; + + switch (Triple.getOS()) { + case llvm::Triple::DragonFly: + case llvm::Triple::FreeBSD: + case llvm::Triple::OpenBSD: + case llvm::Triple::Win32: + return true; + default: + return false; + } +} + +static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) { + if (!FD->hasAttr<AnyX86InterruptAttr>()) + return; + + llvm::Function *Fn = cast<llvm::Function>(GV); + Fn->setCallingConv(llvm::CallingConv::X86_INTR); + if (FD->getNumParams() == 0) + return; + + auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); + llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); + llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( + Fn->getContext(), ByValTy); + Fn->addParamAttr(0, NewAttr); +} + +void X86_32TargetCodeGenInfo::setTargetAttributes( + const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { + if (GV->isDeclaration()) + return; + if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { + if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { + llvm::Function *Fn = cast<llvm::Function>(GV); + Fn->addFnAttr("stackrealign"); + } + + addX86InterruptAttrs(FD, GV, CGM); + } +} + +bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( + CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const { + CodeGen::CGBuilderTy &Builder = CGF.Builder; + + llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); + + // 0-7 are the eight integer registers; the order is different + // on Darwin (for EH), but the range is the same. + // 8 is %eip. + AssignToArrayRange(Builder, Address, Four8, 0, 8); + + if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { + // 12-16 are st(0..4). Not sure why we stop at 4. + // These have size 16, which is sizeof(long double) on + // platforms with 8-byte alignment for that type. + llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); + AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); + + } else { + // 9 is %eflags, which doesn't get a size on Darwin for some + // reason. + Builder.CreateAlignedStore( + Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), + CharUnits::One()); + + // 11-16 are st(0..5). Not sure why we stop at 5. + // These have size 12, which is sizeof(long double) on + // platforms with 4-byte alignment for that type. + llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); + AssignToArrayRange(Builder, Address, Twelve8, 11, 16); + } + + return false; +} + +//===----------------------------------------------------------------------===// +// X86-64 ABI Implementation +//===----------------------------------------------------------------------===// + + +namespace { + +/// \p returns the size in bits of the largest (native) vector for \p AVXLevel. +static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { + switch (AVXLevel) { + case X86AVXABILevel::AVX512: + return 512; + case X86AVXABILevel::AVX: + return 256; + case X86AVXABILevel::None: + return 128; + } + llvm_unreachable("Unknown AVXLevel"); +} + +/// X86_64ABIInfo - The X86_64 ABI information. +class X86_64ABIInfo : public ABIInfo { + enum Class { + Integer = 0, + SSE, + SSEUp, + X87, + X87Up, + ComplexX87, + NoClass, + Memory + }; + + /// merge - Implement the X86_64 ABI merging algorithm. + /// + /// Merge an accumulating classification \arg Accum with a field + /// classification \arg Field. + /// + /// \param Accum - The accumulating classification. This should + /// always be either NoClass or the result of a previous merge + /// call. In addition, this should never be Memory (the caller + /// should just return Memory for the aggregate). + static Class merge(Class Accum, Class Field); + + /// postMerge - Implement the X86_64 ABI post merging algorithm. + /// + /// Post merger cleanup, reduces a malformed Hi and Lo pair to + /// final MEMORY or SSE classes when necessary. + /// + /// \param AggregateSize - The size of the current aggregate in + /// the classification process. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the higher words of the containing object. + /// + void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; + + /// classify - Determine the x86_64 register classes in which the + /// given type T should be passed. + /// + /// \param Lo - The classification for the parts of the type + /// residing in the low word of the containing object. + /// + /// \param Hi - The classification for the parts of the type + /// residing in the high word of the containing object. + /// + /// \param OffsetBase - The bit offset of this type in the + /// containing object. Some parameters are classified different + /// depending on whether they straddle an eightbyte boundary. + /// + /// \param isNamedArg - Whether the argument in question is a "named" + /// argument, as used in AMD64-ABI 3.5.7. + /// + /// \param IsRegCall - Whether the calling conversion is regcall. + /// + /// If a word is unused its result will be NoClass; if a type should + /// be passed in Memory then at least the classification of \arg Lo + /// will be Memory. + /// + /// The \arg Lo class will be NoClass iff the argument is ignored. + /// + /// If the \arg Lo class is ComplexX87, then the \arg Hi class will + /// also be ComplexX87. + void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, + bool isNamedArg, bool IsRegCall = false) const; + + llvm::Type *GetByteVectorType(QualType Ty) const; + llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, + unsigned IROffset, QualType SourceTy, + unsigned SourceOffset) const; + llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, + unsigned IROffset, QualType SourceTy, + unsigned SourceOffset) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be returned in memory. + ABIArgInfo getIndirectReturnResult(QualType Ty) const; + + /// getIndirectResult - Give a source type \arg Ty, return a suitable result + /// such that the argument will be passed in memory. + /// + /// \param freeIntRegs - The number of free integer registers remaining + /// available. + ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; + + ABIArgInfo classifyReturnType(QualType RetTy) const; + + ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, + unsigned &neededInt, unsigned &neededSSE, + bool isNamedArg, + bool IsRegCall = false) const; + + ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, + unsigned &NeededSSE, + unsigned &MaxVectorWidth) const; + + ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, + unsigned &NeededSSE, + unsigned &MaxVectorWidth) const; + + bool IsIllegalVectorType(QualType Ty) const; + + /// The 0.98 ABI revision clarified a lot of ambiguities, + /// unfortunately in ways that were not always consistent with + /// certain previous compilers. In particular, platforms which + /// required strict binary compatibility with older versions of GCC + /// may need to exempt themselves. + bool honorsRevision0_98() const { + return !getTarget().getTriple().isOSDarwin(); + } + + /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to + /// classify it as INTEGER (for compatibility with older clang compilers). + bool classifyIntegerMMXAsSSE() const { + // Clang <= 3.8 did not do this. + if (getContext().getLangOpts().getClangABICompat() <= + LangOptions::ClangABI::Ver3_8) + return false; + + const llvm::Triple &Triple = getTarget().getTriple(); + if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) + return false; + return true; + } + + // GCC classifies vectors of __int128 as memory. + bool passInt128VectorsInMem() const { + // Clang <= 9.0 did not do this. + if (getContext().getLangOpts().getClangABICompat() <= + LangOptions::ClangABI::Ver9) + return false; + + const llvm::Triple &T = getTarget().getTriple(); + return T.isOSLinux() || T.isOSNetBSD(); + } + + X86AVXABILevel AVXLevel; + // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on + // 64-bit hardware. + bool Has64BitPointers; + +public: + X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) + : ABIInfo(CGT), AVXLevel(AVXLevel), + Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} + + bool isPassedUsingAVXType(QualType type) const { + unsigned neededInt, neededSSE; + // The freeIntRegs argument doesn't matter here. + ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, + /*isNamedArg*/true); + if (info.isDirect()) { + llvm::Type *ty = info.getCoerceToType(); + if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) + return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; + } + return false; + } + + void computeInfo(CGFunctionInfo &FI) const override; + + RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, + AggValueSlot Slot) const override; + RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, + AggValueSlot Slot) const override; + + bool has64BitPointers() const { + return Has64BitPointers; + } +}; + +/// WinX86_64ABIInfo - The Windows X86_64 ABI information. +class WinX86_64ABIInfo : public ABIInfo { +public: + WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) + : ABIInfo(CGT), AVXLevel(AVXLevel), + IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} + + void computeInfo(CGFunctionInfo &FI) const override; + + RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, + AggValueSlot Slot) const override; + + bool isHomogeneousAggregateBaseType(QualType Ty) const override { + // FIXME: Assumes vectorcall is in use. + return isX86VectorTypeForVectorCall(getContext(), Ty); + } + + bool isHomogeneousAggregateSmallEnough(const Type *Ty, + uint64_t NumMembers) const override { + // FIXME: Assumes vectorcall is in use. + return isX86VectorCallAggregateSmallEnough(NumMembers); + } + +private: + ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, + bool IsVectorCall, bool IsRegCall) const; + ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, + const ABIArgInfo ¤t) const; + + X86AVXABILevel AVXLevel; + + bool IsMingw64; +}; + +class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) + : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) { + SwiftInfo = + std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); + } + + /// Disable tail call on x86-64. The epilogue code before the tail jump blocks + /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. + bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + return 7; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override { + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + + // 0-15 are the 16 integer registers. + // 16 is %rip. + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); + return false; + } + + llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, + StringRef Constraint, + llvm::Type* Ty) const override { + return X86AdjustInlineAsmType(CGF, Constraint, Ty); + } + + bool isNoProtoCallVariadic(const CallArgList &args, + const FunctionNoProtoType *fnType) const override { + // The default CC on x86-64 sets %al to the number of SSA + // registers used, and GCC sets this when calling an unprototyped + // function, so we override the default behavior. However, don't do + // that when AVX types are involved: the ABI explicitly states it is + // undefined, and it doesn't work in practice because of how the ABI + // defines varargs anyway. + if (fnType->getCallConv() == CC_C) { + bool HasAVXType = false; + for (CallArgList::const_iterator + it = args.begin(), ie = args.end(); it != ie; ++it) { + if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) { + HasAVXType = true; + break; + } + } + + if (!HasAVXType) + return true; + } + + return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); + } + + void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override { + if (GV->isDeclaration()) + return; + if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { + if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { + llvm::Function *Fn = cast<llvm::Function>(GV); + Fn->addFnAttr("stackrealign"); + } + + addX86InterruptAttrs(FD, GV, CGM); + } + } + + void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, + const FunctionDecl *Caller, + const FunctionDecl *Callee, const CallArgList &Args, + QualType ReturnType) const override; +}; +} // namespace + +static void initFeatureMaps(const ASTContext &Ctx, + llvm::StringMap<bool> &CallerMap, + const FunctionDecl *Caller, + llvm::StringMap<bool> &CalleeMap, + const FunctionDecl *Callee) { + if (CalleeMap.empty() && CallerMap.empty()) { + // The caller is potentially nullptr in the case where the call isn't in a + // function. In this case, the getFunctionFeatureMap ensures we just get + // the TU level setting (since it cannot be modified by 'target'.. + Ctx.getFunctionFeatureMap(CallerMap, Caller); + Ctx.getFunctionFeatureMap(CalleeMap, Callee); + } +} + +static bool checkAVXParamFeature(DiagnosticsEngine &Diag, + SourceLocation CallLoc, + const llvm::StringMap<bool> &CallerMap, + const llvm::StringMap<bool> &CalleeMap, + QualType Ty, StringRef Feature, + bool IsArgument) { + bool CallerHasFeat = CallerMap.lookup(Feature); + bool CalleeHasFeat = CalleeMap.lookup(Feature); + if (!CallerHasFeat && !CalleeHasFeat) + return Diag.Report(CallLoc, diag::warn_avx_calling_convention) + << IsArgument << Ty << Feature; + + // Mixing calling conventions here is very clearly an error. + if (!CallerHasFeat || !CalleeHasFeat) + return Diag.Report(CallLoc, diag::err_avx_calling_convention) + << IsArgument << Ty << Feature; + + // Else, both caller and callee have the required feature, so there is no need + // to diagnose. + return false; +} + +static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag, + SourceLocation CallLoc, + const llvm::StringMap<bool> &CallerMap, + const llvm::StringMap<bool> &CalleeMap, + QualType Ty, bool IsArgument) { + bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512"); + bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512"); + + // Forbid 512-bit or larger vector pass or return when we disabled ZMM + // instructions. + if (Caller256 || Callee256) + return Diag.Report(CallLoc, diag::err_avx_calling_convention) + << IsArgument << Ty << "evex512"; + + return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, + "avx512f", IsArgument); +} + +static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, + SourceLocation CallLoc, + const llvm::StringMap<bool> &CallerMap, + const llvm::StringMap<bool> &CalleeMap, QualType Ty, + bool IsArgument) { + uint64_t Size = Ctx.getTypeSize(Ty); + if (Size > 256) + return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, + IsArgument); + + if (Size > 128) + return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", + IsArgument); + + return false; +} + +void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM, + SourceLocation CallLoc, + const FunctionDecl *Caller, + const FunctionDecl *Callee, + const CallArgList &Args, + QualType ReturnType) const { + if (!Callee) + return; + + llvm::StringMap<bool> CallerMap; + llvm::StringMap<bool> CalleeMap; + unsigned ArgIndex = 0; + + // We need to loop through the actual call arguments rather than the + // function's parameters, in case this variadic. + for (const CallArg &Arg : Args) { + // The "avx" feature changes how vectors >128 in size are passed. "avx512f" + // additionally changes how vectors >256 in size are passed. Like GCC, we + // warn when a function is called with an argument where this will change. + // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, + // the caller and callee features are mismatched. + // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can + // change its ABI with attribute-target after this call. + if (Arg.getType()->isVectorType() && + CGM.getContext().getTypeSize(Arg.getType()) > 128) { + initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); + QualType Ty = Arg.getType(); + // The CallArg seems to have desugared the type already, so for clearer + // diagnostics, replace it with the type in the FunctionDecl if possible. + if (ArgIndex < Callee->getNumParams()) + Ty = Callee->getParamDecl(ArgIndex)->getType(); + + if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, + CalleeMap, Ty, /*IsArgument*/ true)) + return; + } + ++ArgIndex; + } + + // Check return always, as we don't have a good way of knowing in codegen + // whether this value is used, tail-called, etc. + if (Callee->getReturnType()->isVectorType() && + CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { + initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); + checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, + CalleeMap, Callee->getReturnType(), + /*IsArgument*/ false); + } +} + +std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) { + // If the argument does not end in .lib, automatically add the suffix. + // If the argument contains a space, enclose it in quotes. + // This matches the behavior of MSVC. + bool Quote = Lib.contains(' '); + std::string ArgStr = Quote ? "\"" : ""; + ArgStr += Lib; + if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a")) + ArgStr += ".lib"; + ArgStr += Quote ? "\"" : ""; + return ArgStr; +} + +namespace { +class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { +public: + WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, + bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, + unsigned NumRegisterParameters) + : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, + Win32StructABI, NumRegisterParameters, false) {} + + void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override; + + void getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const override { + Opt = "/DEFAULTLIB:"; + Opt += qualifyWindowsLibrary(Lib); + } + + void getDetectMismatchOption(llvm::StringRef Name, + llvm::StringRef Value, + llvm::SmallString<32> &Opt) const override { + Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; + } +}; +} // namespace + +void WinX86_32TargetCodeGenInfo::setTargetAttributes( + const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { + X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); + if (GV->isDeclaration()) + return; + addStackProbeTargetAttributes(D, GV, CGM); +} + +namespace { +class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { +public: + WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, + X86AVXABILevel AVXLevel) + : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) { + SwiftInfo = + std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); + } + + void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, + CodeGen::CodeGenModule &CGM) const override; + + int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { + return 7; + } + + bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, + llvm::Value *Address) const override { + llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); + + // 0-15 are the 16 integer registers. + // 16 is %rip. + AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); + return false; + } + + void getDependentLibraryOption(llvm::StringRef Lib, + llvm::SmallString<24> &Opt) const override { + Opt = "/DEFAULTLIB:"; + Opt += qualifyWindowsLibrary(Lib); + } + + void getDetectMismatchOption(llvm::StringRef Name, + llvm::StringRef Value, + llvm::SmallString<32> &Opt) const override { + Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; + } +}; +} // namespace + +void WinX86_64TargetCodeGenInfo::setTargetAttributes( + const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { + TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); + if (GV->isDeclaration()) + return; + if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { + if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { + llvm::Function *Fn = cast<llvm::Function>(GV); + Fn->addFnAttr("stackrealign"); + } + + addX86InterruptAttrs(FD, GV, CGM); + } + + addStackProbeTargetAttributes(D, GV, CGM); +} + +void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, + Class &Hi) const { + // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: + // + // (a) If one of the classes is Memory, the whole argument is passed in + // memory. + // + // (b) If X87UP is not preceded by X87, the whole argument is passed in + // memory. + // + // (c) If the size of the aggregate exceeds two eightbytes and the first + // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole + // argument is passed in memory. NOTE: This is necessary to keep the + // ABI working for processors that don't support the __m256 type. + // + // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. + // + // Some of these are enforced by the merging logic. Others can arise + // only with unions; for example: + // union { _Complex double; unsigned; } + // + // Note that clauses (b) and (c) were added in 0.98. + // + if (Hi == Memory) + Lo = Memory; + if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) + Lo = Memory; + if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) + Lo = Memory; + if (Hi == SSEUp && Lo != SSE) + Hi = SSE; +} + +X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { + // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is + // classified recursively so that always two fields are + // considered. The resulting class is calculated according to + // the classes of the fields in the eightbyte: + // + // (a) If both classes are equal, this is the resulting class. + // + // (b) If one of the classes is NO_CLASS, the resulting class is + // the other class. + // + // (c) If one of the classes is MEMORY, the result is the MEMORY + // class. + // + // (d) If one of the classes is INTEGER, the result is the + // INTEGER. + // + // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, + // MEMORY is used as class. + // + // (f) Otherwise class SSE is used. + + // Accum should never be memory (we should have returned) or + // ComplexX87 (because this cannot be passed in a structure). + assert((Accum != Memory && Accum != ComplexX87) && + "Invalid accumulated classification during merge."); + if (Accum == Field || Field == NoClass) + return Accum; + if (Field == Memory) + return Memory; + if (Accum == NoClass) + return Field; + if (Accum == Integer || Field == Integer) + return Integer; + if (Field == X87 || Field == X87Up || Field == ComplexX87 || + Accum == X87 || Accum == X87Up) + return Memory; + return SSE; +} + +void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, + Class &Hi, bool isNamedArg, bool IsRegCall) const { + // FIXME: This code can be simplified by introducing a simple value class for + // Class pairs with appropriate constructor methods for the various + // situations. + + // FIXME: Some of the split computations are wrong; unaligned vectors + // shouldn't be passed in registers for example, so there is no chance they + // can straddle an eightbyte. Verify & simplify. + + Lo = Hi = NoClass; + + Class &Current = OffsetBase < 64 ? Lo : Hi; + Current = Memory; + + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + BuiltinType::Kind k = BT->getKind(); + + if (k == BuiltinType::Void) { + Current = NoClass; + } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { + Lo = Integer; + Hi = Integer; + } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { + Current = Integer; + } else if (k == BuiltinType::Float || k == BuiltinType::Double || + k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { + Current = SSE; + } else if (k == BuiltinType::Float128) { + Lo = SSE; + Hi = SSEUp; + } else if (k == BuiltinType::LongDouble) { + const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); + if (LDF == &llvm::APFloat::IEEEquad()) { + Lo = SSE; + Hi = SSEUp; + } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { + Lo = X87; + Hi = X87Up; + } else if (LDF == &llvm::APFloat::IEEEdouble()) { + Current = SSE; + } else + llvm_unreachable("unexpected long double representation!"); + } + // FIXME: _Decimal32 and _Decimal64 are SSE. + // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). + return; + } + + if (const EnumType *ET = Ty->getAs<EnumType>()) { + // Classify the underlying integer type. + classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); + return; + } + + if (Ty->hasPointerRepresentation()) { + Current = Integer; + return; + } + + if (Ty->isMemberPointerType()) { + if (Ty->isMemberFunctionPointerType()) { + if (Has64BitPointers) { + // If Has64BitPointers, this is an {i64, i64}, so classify both + // Lo and Hi now. + Lo = Hi = Integer; + } else { + // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that + // straddles an eightbyte boundary, Hi should be classified as well. + uint64_t EB_FuncPtr = (OffsetBase) / 64; + uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; + if (EB_FuncPtr != EB_ThisAdj) { + Lo = Hi = Integer; + } else { + Current = Integer; + } + } + } else { + Current = Integer; + } + return; + } + + if (const VectorType *VT = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VT); + if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { + // gcc passes the following as integer: + // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> + // 2 bytes - <2 x char>, <1 x short> + // 1 byte - <1 x char> + Current = Integer; + + // If this type crosses an eightbyte boundary, it should be + // split. + uint64_t EB_Lo = (OffsetBase) / 64; + uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; + if (EB_Lo != EB_Hi) + Hi = Lo; + } else if (Size == 64) { + QualType ElementType = VT->getElementType(); + + // gcc passes <1 x double> in memory. :( + if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) + return; + + // gcc passes <1 x long long> as SSE but clang used to unconditionally + // pass them as integer. For platforms where clang is the de facto + // platform compiler, we must continue to use integer. + if (!classifyIntegerMMXAsSSE() && + (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || + ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || + ElementType->isSpecificBuiltinType(BuiltinType::Long) || + ElementType->isSpecificBuiltinType(BuiltinType::ULong))) + Current = Integer; + else + Current = SSE; + + // If this type crosses an eightbyte boundary, it should be + // split. + if (OffsetBase && OffsetBase != 64) + Hi = Lo; + } else if (Size == 128 || + (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { + QualType ElementType = VT->getElementType(); + + // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( + if (passInt128VectorsInMem() && Size != 128 && + (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || + ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) + return; + + // Arguments of 256-bits are split into four eightbyte chunks. The + // least significant one belongs to class SSE and all the others to class + // SSEUP. The original Lo and Hi design considers that types can't be + // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. + // This design isn't correct for 256-bits, but since there're no cases + // where the upper parts would need to be inspected, avoid adding + // complexity and just consider Hi to match the 64-256 part. + // + // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in + // registers if they are "named", i.e. not part of the "..." of a + // variadic function. + // + // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are + // split into eight eightbyte chunks, one SSE and seven SSEUP. + Lo = SSE; + Hi = SSEUp; + } + return; + } + + if (const ComplexType *CT = Ty->getAs<ComplexType>()) { + QualType ET = getContext().getCanonicalType(CT->getElementType()); + + uint64_t Size = getContext().getTypeSize(Ty); + if (ET->isIntegralOrEnumerationType()) { + if (Size <= 64) + Current = Integer; + else if (Size <= 128) + Lo = Hi = Integer; + } else if (ET->isFloat16Type() || ET == getContext().FloatTy || + ET->isBFloat16Type()) { + Current = SSE; + } else if (ET == getContext().DoubleTy) { + Lo = Hi = SSE; + } else if (ET == getContext().LongDoubleTy) { + const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); + if (LDF == &llvm::APFloat::IEEEquad()) + Current = Memory; + else if (LDF == &llvm::APFloat::x87DoubleExtended()) + Current = ComplexX87; + else if (LDF == &llvm::APFloat::IEEEdouble()) + Lo = Hi = SSE; + else + llvm_unreachable("unexpected long double representation!"); + } + + // If this complex type crosses an eightbyte boundary then it + // should be split. + uint64_t EB_Real = (OffsetBase) / 64; + uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; + if (Hi == NoClass && EB_Real != EB_Imag) + Hi = Lo; + + return; + } + + if (const auto *EITy = Ty->getAs<BitIntType>()) { + if (EITy->getNumBits() <= 64) + Current = Integer; + else if (EITy->getNumBits() <= 128) + Lo = Hi = Integer; + // Larger values need to get passed in memory. + return; + } + + if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { + // Arrays are treated like structures. + + uint64_t Size = getContext().getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than eight eightbytes, ..., it has class MEMORY. + // regcall ABI doesn't have limitation to an object. The only limitation + // is the free registers, which will be checked in computeInfo. + if (!IsRegCall && Size > 512) + return; + + // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned + // fields, it has class MEMORY. + // + // Only need to check alignment of array base. + if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) + return; + + // Otherwise implement simplified merge. We could be smarter about + // this, but it isn't worth it and would be harder to verify. + Current = NoClass; + uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); + uint64_t ArraySize = AT->getZExtSize(); + + // The only case a 256-bit wide vector could be used is when the array + // contains a single 256-bit element. Since Lo and Hi logic isn't extended + // to work for sizes wider than 128, early check and fallback to memory. + // + if (Size > 128 && + (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) + return; + + for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { + Class FieldLo, FieldHi; + classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + postMerge(Size, Lo, Hi); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); + return; + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + uint64_t Size = getContext().getTypeSize(Ty); + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger + // than eight eightbytes, ..., it has class MEMORY. + if (Size > 512) + return; + + // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial + // copy constructor or a non-trivial destructor, it is passed by invisible + // reference. + if (getRecordArgABI(RT, getCXXABI())) + return; + + const RecordDecl *RD = RT->getDecl(); + + // Assume variable sized types are passed in memory. + if (RD->hasFlexibleArrayMember()) + return; + + const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); + + // Reset Lo class, this will be recomputed. + Current = NoClass; + + // If this is a C++ record, classify the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (const auto &I : CXXRD->bases()) { + assert(!I.isVirtual() && !I.getType()->isDependentType() && + "Unexpected base class!"); + const auto *Base = + cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a + // single eightbyte, each is classified separately. Each eightbyte gets + // initialized to class NO_CLASS. + Class FieldLo, FieldHi; + uint64_t Offset = + OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); + classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) { + postMerge(Size, Lo, Hi); + return; + } + } + } + + // Classify the fields one at a time, merging the results. + unsigned idx = 0; + bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= + LangOptions::ClangABI::Ver11 || + getContext().getTargetInfo().getTriple().isPS(); + bool IsUnion = RT->isUnionType() && !UseClang11Compat; + + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + bool BitField = i->isBitField(); + + // Ignore padding bit-fields. + if (BitField && i->isUnnamedBitField()) + continue; + + // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than + // eight eightbytes, or it contains unaligned fields, it has class MEMORY. + // + // The only case a 256-bit or a 512-bit wide vector could be used is when + // the struct contains a single 256-bit or 512-bit element. Early check + // and fallback to memory. + // + // FIXME: Extended the Lo and Hi logic properly to work for size wider + // than 128. + if (Size > 128 && + ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || + Size > getNativeVectorSizeForAVXABI(AVXLevel))) { + Lo = Memory; + postMerge(Size, Lo, Hi); + return; + } + + bool IsInMemory = + Offset % getContext().getTypeAlign(i->getType().getCanonicalType()); + // Note, skip this test for bit-fields, see below. + if (!BitField && IsInMemory) { + Lo = Memory; + postMerge(Size, Lo, Hi); + return; + } + + // Classify this field. + // + // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate + // exceeds a single eightbyte, each is classified + // separately. Each eightbyte gets initialized to class + // NO_CLASS. + Class FieldLo, FieldHi; + + // Bit-fields require special handling, they do not force the + // structure to be passed in memory even if unaligned, and + // therefore they can straddle an eightbyte. + if (BitField) { + assert(!i->isUnnamedBitField()); + uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); + uint64_t Size = i->getBitWidthValue(getContext()); + + uint64_t EB_Lo = Offset / 64; + uint64_t EB_Hi = (Offset + Size - 1) / 64; + + if (EB_Lo) { + assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); + FieldLo = NoClass; + FieldHi = Integer; + } else { + FieldLo = Integer; + FieldHi = EB_Hi ? Integer : NoClass; + } + } else + classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); + Lo = merge(Lo, FieldLo); + Hi = merge(Hi, FieldHi); + if (Lo == Memory || Hi == Memory) + break; + } + + postMerge(Size, Lo, Hi); + } +} + +ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + if (!isAggregateTypeForABI(Ty)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isBitIntType()) + return getNaturalAlignIndirect(Ty); + + return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) + : ABIArgInfo::getDirect()); + } + + return getNaturalAlignIndirect(Ty); +} + +bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { + if (const VectorType *VecTy = Ty->getAs<VectorType>()) { + uint64_t Size = getContext().getTypeSize(VecTy); + unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); + if (Size <= 64 || Size > LargestVector) + return true; + QualType EltTy = VecTy->getElementType(); + if (passInt128VectorsInMem() && + (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || + EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) + return true; + } + + return false; +} + +ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, + unsigned freeIntRegs) const { + // If this is a scalar LLVM value then assume LLVM will pass it in the right + // place naturally. + // + // This assumption is optimistic, as there could be free registers available + // when we need to pass this argument in memory, and LLVM could try to pass + // the argument in the free register. This does not seem to happen currently, + // but this code would be much safer if we could mark the argument with + // 'onstack'. See PR12193. + if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && + !Ty->isBitIntType()) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) + : ABIArgInfo::getDirect()); + } + + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) + return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + + // Compute the byval alignment. We specify the alignment of the byval in all + // cases so that the mid-level optimizer knows the alignment of the byval. + unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); + + // Attempt to avoid passing indirect results using byval when possible. This + // is important for good codegen. + // + // We do this by coercing the value into a scalar type which the backend can + // handle naturally (i.e., without using byval). + // + // For simplicity, we currently only do this when we have exhausted all of the + // free integer registers. Doing this when there are free integer registers + // would require more care, as we would have to ensure that the coerced value + // did not claim the unused register. That would require either reording the + // arguments to the function (so that any subsequent inreg values came first), + // or only doing this optimization when there were no following arguments that + // might be inreg. + // + // We currently expect it to be rare (particularly in well written code) for + // arguments to be passed on the stack when there are still free integer + // registers available (this would typically imply large structs being passed + // by value), so this seems like a fair tradeoff for now. + // + // We can revisit this if the backend grows support for 'onstack' parameter + // attributes. See PR12193. + if (freeIntRegs == 0) { + uint64_t Size = getContext().getTypeSize(Ty); + + // If this type fits in an eightbyte, coerce it into the matching integral + // type, which will end up on the stack (with alignment 8). + if (Align == 8 && Size <= 64) + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), + Size)); + } + + return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); +} + +/// The ABI specifies that a value should be passed in a full vector XMM/YMM +/// register. Pick an LLVM IR type that will be passed as a vector register. +llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { + // Wrapper structs/arrays that only contain vectors are passed just like + // vectors; strip them off if present. + if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) + Ty = QualType(InnerTy, 0); + + llvm::Type *IRType = CGT.ConvertType(Ty); + if (isa<llvm::VectorType>(IRType)) { + // Don't pass vXi128 vectors in their native type, the backend can't + // legalize them. + if (passInt128VectorsInMem() && + cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { + // Use a vXi64 vector. + uint64_t Size = getContext().getTypeSize(Ty); + return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), + Size / 64); + } + + return IRType; + } + + if (IRType->getTypeID() == llvm::Type::FP128TyID) + return IRType; + + // We couldn't find the preferred IR vector type for 'Ty'. + uint64_t Size = getContext().getTypeSize(Ty); + assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); + + + // Return a LLVM IR vector type based on the size of 'Ty'. + return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), + Size / 64); +} + +/// BitsContainNoUserData - Return true if the specified [start,end) bit range +/// is known to either be off the end of the specified type or being in +/// alignment padding. The user type specified is known to be at most 128 bits +/// in size, and have passed through X86_64ABIInfo::classify with a successful +/// classification that put one of the two halves in the INTEGER class. +/// +/// It is conservatively correct to return false. +static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, + unsigned EndBit, ASTContext &Context) { + // If the bytes being queried are off the end of the type, there is no user + // data hiding here. This handles analysis of builtins, vectors and other + // types that don't contain interesting padding. + unsigned TySize = (unsigned)Context.getTypeSize(Ty); + if (TySize <= StartBit) + return true; + + if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { + unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); + unsigned NumElts = (unsigned)AT->getZExtSize(); + + // Check each element to see if the element overlaps with the queried range. + for (unsigned i = 0; i != NumElts; ++i) { + // If the element is after the span we care about, then we're done.. + unsigned EltOffset = i*EltSize; + if (EltOffset >= EndBit) break; + + unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; + if (!BitsContainNoUserData(AT->getElementType(), EltStart, + EndBit-EltOffset, Context)) + return false; + } + // If it overlaps no elements, then it is safe to process as padding. + return true; + } + + if (const RecordType *RT = Ty->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // If this is a C++ record, check the bases first. + if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { + for (const auto &I : CXXRD->bases()) { + assert(!I.isVirtual() && !I.getType()->isDependentType() && + "Unexpected base class!"); + const auto *Base = + cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); + + // If the base is after the span we care about, ignore it. + unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); + if (BaseOffset >= EndBit) continue; + + unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; + if (!BitsContainNoUserData(I.getType(), BaseStart, + EndBit-BaseOffset, Context)) + return false; + } + } + + // Verify that no field has data that overlaps the region of interest. Yes + // this could be sped up a lot by being smarter about queried fields, + // however we're only looking at structs up to 16 bytes, so we don't care + // much. + unsigned idx = 0; + for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); + i != e; ++i, ++idx) { + unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); + + // If we found a field after the region we care about, then we're done. + if (FieldOffset >= EndBit) break; + + unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; + if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, + Context)) + return false; + } + + // If nothing in this record overlapped the area of interest, then we're + // clean. + return true; + } + + return false; +} + +/// getFPTypeAtOffset - Return a floating point type at the specified offset. +static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, + const llvm::DataLayout &TD) { + if (IROffset == 0 && IRType->isFloatingPointTy()) + return IRType; + + // If this is a struct, recurse into the field at the specified offset. + if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { + if (!STy->getNumContainedTypes()) + return nullptr; + + const llvm::StructLayout *SL = TD.getStructLayout(STy); + unsigned Elt = SL->getElementContainingOffset(IROffset); + IROffset -= SL->getElementOffset(Elt); + return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); + } + + // If this is an array, recurse into the field at the specified offset. + if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { + llvm::Type *EltTy = ATy->getElementType(); + unsigned EltSize = TD.getTypeAllocSize(EltTy); + IROffset -= IROffset / EltSize * EltSize; + return getFPTypeAtOffset(EltTy, IROffset, TD); + } + + return nullptr; +} + +/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the +/// low 8 bytes of an XMM register, corresponding to the SSE class. +llvm::Type *X86_64ABIInfo:: +GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, + QualType SourceTy, unsigned SourceOffset) const { + const llvm::DataLayout &TD = getDataLayout(); + unsigned SourceSize = + (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; + llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); + if (!T0 || T0->isDoubleTy()) + return llvm::Type::getDoubleTy(getVMContext()); + + // Get the adjacent FP type. + llvm::Type *T1 = nullptr; + unsigned T0Size = TD.getTypeAllocSize(T0); + if (SourceSize > T0Size) + T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); + if (T1 == nullptr) { + // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due + // to its alignment. + if (T0->is16bitFPTy() && SourceSize > 4) + T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); + // If we can't get a second FP type, return a simple half or float. + // avx512fp16-abi.c:pr51813_2 shows it works to return float for + // {float, i8} too. + if (T1 == nullptr) + return T0; + } + + if (T0->isFloatTy() && T1->isFloatTy()) + return llvm::FixedVectorType::get(T0, 2); + + if (T0->is16bitFPTy() && T1->is16bitFPTy()) { + llvm::Type *T2 = nullptr; + if (SourceSize > 4) + T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); + if (T2 == nullptr) + return llvm::FixedVectorType::get(T0, 2); + return llvm::FixedVectorType::get(T0, 4); + } + + if (T0->is16bitFPTy() || T1->is16bitFPTy()) + return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); + + return llvm::Type::getDoubleTy(getVMContext()); +} + + +/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in +/// an 8-byte GPR. This means that we either have a scalar or we are talking +/// about the high or low part of an up-to-16-byte struct. This routine picks +/// the best LLVM IR type to represent this, which may be i64 or may be anything +/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, +/// etc). +/// +/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for +/// the source type. IROffset is an offset in bytes into the LLVM IR type that +/// the 8-byte value references. PrefType may be null. +/// +/// SourceTy is the source-level type for the entire argument. SourceOffset is +/// an offset into this that we're processing (which is always either 0 or 8). +/// +llvm::Type *X86_64ABIInfo:: +GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, + QualType SourceTy, unsigned SourceOffset) const { + // If we're dealing with an un-offset LLVM IR type, then it means that we're + // returning an 8-byte unit starting with it. See if we can safely use it. + if (IROffset == 0) { + // Pointers and int64's always fill the 8-byte unit. + if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || + IRType->isIntegerTy(64)) + return IRType; + + // If we have a 1/2/4-byte integer, we can use it only if the rest of the + // goodness in the source type is just tail padding. This is allowed to + // kick in for struct {double,int} on the int, but not on + // struct{double,int,int} because we wouldn't return the second int. We + // have to do this analysis on the source type because we can't depend on + // unions being lowered a specific way etc. + if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || + IRType->isIntegerTy(32) || + (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { + unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : + cast<llvm::IntegerType>(IRType)->getBitWidth(); + + if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, + SourceOffset*8+64, getContext())) + return IRType; + } + } + + if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { + // If this is a struct, recurse into the field at the specified offset. + const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); + if (IROffset < SL->getSizeInBytes()) { + unsigned FieldIdx = SL->getElementContainingOffset(IROffset); + IROffset -= SL->getElementOffset(FieldIdx); + + return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, + SourceTy, SourceOffset); + } + } + + if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { + llvm::Type *EltTy = ATy->getElementType(); + unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); + unsigned EltOffset = IROffset/EltSize*EltSize; + return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, + SourceOffset); + } + + // Okay, we don't have any better idea of what to pass, so we pass this in an + // integer register that isn't too big to fit the rest of the struct. + unsigned TySizeInBytes = + (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); + + assert(TySizeInBytes != SourceOffset && "Empty field?"); + + // It is always safe to classify this as an integer type up to i64 that + // isn't larger than the structure. + return llvm::IntegerType::get(getVMContext(), + std::min(TySizeInBytes-SourceOffset, 8U)*8); +} + + +/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally +/// be used as elements of a two register pair to pass or return, return a +/// first class aggregate to represent them. For example, if the low part of +/// a by-value argument should be passed as i32* and the high part as float, +/// return {i32*, float}. +static llvm::Type * +GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, + const llvm::DataLayout &TD) { + // In order to correctly satisfy the ABI, we need to the high part to start + // at offset 8. If the high and low parts we inferred are both 4-byte types + // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have + // the second element at offset 8. Check for this: + unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); + llvm::Align HiAlign = TD.getABITypeAlign(Hi); + unsigned HiStart = llvm::alignTo(LoSize, HiAlign); + assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); + + // To handle this, we have to increase the size of the low part so that the + // second element will start at an 8 byte offset. We can't increase the size + // of the second element because it might make us access off the end of the + // struct. + if (HiStart != 8) { + // There are usually two sorts of types the ABI generation code can produce + // for the low part of a pair that aren't 8 bytes in size: half, float or + // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and + // NaCl). + // Promote these to a larger type. + if (Lo->isHalfTy() || Lo->isFloatTy()) + Lo = llvm::Type::getDoubleTy(Lo->getContext()); + else { + assert((Lo->isIntegerTy() || Lo->isPointerTy()) + && "Invalid/unknown lo type"); + Lo = llvm::Type::getInt64Ty(Lo->getContext()); + } + } + + llvm::StructType *Result = llvm::StructType::get(Lo, Hi); + + // Verify that the second element is at an 8-byte offset. + assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && + "Invalid x86-64 argument pair!"); + return Result; +} + +ABIArgInfo X86_64ABIInfo:: +classifyReturnType(QualType RetTy) const { + // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the + // classification algorithm. + X86_64ABIInfo::Class Lo, Hi; + classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); + + // Check some invariants. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + llvm::Type *ResType = nullptr; + switch (Lo) { + case NoClass: + if (Hi == NoClass) + return ABIArgInfo::getIgnore(); + // If the low part is just padding, it takes no register, leave ResType + // null. + assert((Hi == SSE || Hi == Integer || Hi == X87Up) && + "Unknown missing lo part"); + break; + + case SSEUp: + case X87Up: + llvm_unreachable("Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via + // hidden argument. + case Memory: + return getIndirectReturnResult(RetTy); + + // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next + // available register of the sequence %rax, %rdx is used. + case Integer: + ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + + // If we have a sign or zero extended integer, make sure to return Extend + // so that the parameter gets the right LLVM IR attributes. + if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) + RetTy = EnumTy->getDecl()->getIntegerType(); + + if (RetTy->isIntegralOrEnumerationType() && + isPromotableIntegerTypeForABI(RetTy)) + return ABIArgInfo::getExtend(RetTy); + } + break; + + // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next + // available SSE register of the sequence %xmm0, %xmm1 is used. + case SSE: + ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); + break; + + // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is + // returned on the X87 stack in %st0 as 80-bit x87 number. + case X87: + ResType = llvm::Type::getX86_FP80Ty(getVMContext()); + break; + + // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real + // part of the value is returned in %st0 and the imaginary part in + // %st1. + case ComplexX87: + assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); + ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), + llvm::Type::getX86_FP80Ty(getVMContext())); + break; + } + + llvm::Type *HighPart = nullptr; + switch (Hi) { + // Memory was handled previously and X87 should + // never occur as a hi class. + case Memory: + case X87: + llvm_unreachable("Invalid classification for hi word."); + + case ComplexX87: // Previously handled. + case NoClass: + break; + + case Integer: + HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + case SSE: + HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte + // is passed in the next available eightbyte chunk if the last used + // vector register. + // + // SSEUP should always be preceded by SSE, just widen. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification."); + ResType = GetByteVectorType(RetTy); + break; + + // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is + // returned together with the previous X87 value in %st0. + case X87Up: + // If X87Up is preceded by X87, we don't need to do + // anything. However, in some cases with unions it may not be + // preceded by X87. In such situations we follow gcc and pass the + // extra bits in an SSE reg. + if (Lo != X87) { + HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); + if (Lo == NoClass) // Return HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + } + break; + } + + // If a high part was specified, merge it together with the low part. It is + // known to pass in the high eightbyte of the result. We do this by forming a + // first class struct aggregate with the high and low part: {low, high} + if (HighPart) + ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + + return ABIArgInfo::getDirect(ResType); +} + +ABIArgInfo +X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, + unsigned &neededInt, unsigned &neededSSE, + bool isNamedArg, bool IsRegCall) const { + Ty = useFirstFieldIfTransparentUnion(Ty); + + X86_64ABIInfo::Class Lo, Hi; + classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); + + // Check some invariants. + // FIXME: Enforce these by construction. + assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); + assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); + + neededInt = 0; + neededSSE = 0; + llvm::Type *ResType = nullptr; + switch (Lo) { + case NoClass: + if (Hi == NoClass) + return ABIArgInfo::getIgnore(); + // If the low part is just padding, it takes no register, leave ResType + // null. + assert((Hi == SSE || Hi == Integer || Hi == X87Up) && + "Unknown missing lo part"); + break; + + // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument + // on the stack. + case Memory: + + // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or + // COMPLEX_X87, it is passed in memory. + case X87: + case ComplexX87: + if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) + ++neededInt; + return getIndirectResult(Ty, freeIntRegs); + + case SSEUp: + case X87Up: + llvm_unreachable("Invalid classification for lo word."); + + // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next + // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 + // and %r9 is used. + case Integer: + ++neededInt; + + // Pick an 8-byte type based on the preferred type. + ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); + + // If we have a sign or zero extended integer, make sure to return Extend + // so that the parameter gets the right LLVM IR attributes. + if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { + // Treat an enum type as its underlying type. + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + if (Ty->isIntegralOrEnumerationType() && + isPromotableIntegerTypeForABI(Ty)) + return ABIArgInfo::getExtend(Ty); + } + + break; + + // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next + // available SSE register is used, the registers are taken in the + // order from %xmm0 to %xmm7. + case SSE: { + llvm::Type *IRType = CGT.ConvertType(Ty); + ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); + ++neededSSE; + break; + } + } + + llvm::Type *HighPart = nullptr; + switch (Hi) { + // Memory was handled previously, ComplexX87 and X87 should + // never occur as hi classes, and X87Up must be preceded by X87, + // which is passed in memory. + case Memory: + case X87: + case ComplexX87: + llvm_unreachable("Invalid classification for hi word."); + + case NoClass: break; + + case Integer: + ++neededInt; + // Pick an 8-byte type based on the preferred type. + HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + + if (Lo == NoClass) // Pass HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // X87Up generally doesn't occur here (long double is passed in + // memory), except in situations involving unions. + case X87Up: + case SSE: + ++neededSSE; + HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); + + if (Lo == NoClass) // Pass HighPart at offset 8 in memory. + return ABIArgInfo::getDirect(HighPart, 8); + break; + + // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the + // eightbyte is passed in the upper half of the last used SSE + // register. This only happens when 128-bit vectors are passed. + case SSEUp: + assert(Lo == SSE && "Unexpected SSEUp classification"); + ResType = GetByteVectorType(Ty); + break; + } + + // If a high part was specified, merge it together with the low part. It is + // known to pass in the high eightbyte of the result. We do this by forming a + // first class struct aggregate with the high and low part: {low, high} + if (HighPart) + ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); + + return ABIArgInfo::getDirect(ResType); +} + +ABIArgInfo +X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, + unsigned &NeededSSE, + unsigned &MaxVectorWidth) const { + auto RT = Ty->getAs<RecordType>(); + assert(RT && "classifyRegCallStructType only valid with struct types"); + + if (RT->getDecl()->hasFlexibleArrayMember()) + return getIndirectReturnResult(Ty); + + // Sum up bases + if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { + if (CXXRD->isDynamicClass()) { + NeededInt = NeededSSE = 0; + return getIndirectReturnResult(Ty); + } + + for (const auto &I : CXXRD->bases()) + if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, + MaxVectorWidth) + .isIndirect()) { + NeededInt = NeededSSE = 0; + return getIndirectReturnResult(Ty); + } + } + + // Sum up members + for (const auto *FD : RT->getDecl()->fields()) { + QualType MTy = FD->getType(); + if (MTy->isRecordType() && !MTy->isUnionType()) { + if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, + MaxVectorWidth) + .isIndirect()) { + NeededInt = NeededSSE = 0; + return getIndirectReturnResult(Ty); + } + } else { + unsigned LocalNeededInt, LocalNeededSSE; + if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, + true, true) + .isIndirect()) { + NeededInt = NeededSSE = 0; + return getIndirectReturnResult(Ty); + } + if (const auto *AT = getContext().getAsConstantArrayType(MTy)) + MTy = AT->getElementType(); + if (const auto *VT = MTy->getAs<VectorType>()) + if (getContext().getTypeSize(VT) > MaxVectorWidth) + MaxVectorWidth = getContext().getTypeSize(VT); + NeededInt += LocalNeededInt; + NeededSSE += LocalNeededSSE; + } + } + + return ABIArgInfo::getDirect(); +} + +ABIArgInfo +X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, + unsigned &NeededSSE, + unsigned &MaxVectorWidth) const { + + NeededInt = 0; + NeededSSE = 0; + MaxVectorWidth = 0; + + return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, + MaxVectorWidth); +} + +void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + + const unsigned CallingConv = FI.getCallingConvention(); + // It is possible to force Win64 calling convention on any x86_64 target by + // using __attribute__((ms_abi)). In such case to correctly emit Win64 + // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. + if (CallingConv == llvm::CallingConv::Win64) { + WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); + Win64ABIInfo.computeInfo(FI); + return; + } + + bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; + + // Keep track of the number of assigned registers. + unsigned FreeIntRegs = IsRegCall ? 11 : 6; + unsigned FreeSSERegs = IsRegCall ? 16 : 8; + unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; + + if (!::classifyReturnType(getCXXABI(), FI, *this)) { + if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && + !FI.getReturnType()->getTypePtr()->isUnionType()) { + FI.getReturnInfo() = classifyRegCallStructType( + FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); + if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { + FreeIntRegs -= NeededInt; + FreeSSERegs -= NeededSSE; + } else { + FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); + } + } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && + getContext().getCanonicalType(FI.getReturnType() + ->getAs<ComplexType>() + ->getElementType()) == + getContext().LongDoubleTy) + // Complex Long Double Type is passed in Memory when Regcall + // calling convention is used. + FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); + else + FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); + } + + // If the return value is indirect, then the hidden argument is consuming one + // integer register. + if (FI.getReturnInfo().isIndirect()) + --FreeIntRegs; + else if (NeededSSE && MaxVectorWidth > 0) + FI.setMaxVectorWidth(MaxVectorWidth); + + // The chain argument effectively gives us another free register. + if (FI.isChainCall()) + ++FreeIntRegs; + + unsigned NumRequiredArgs = FI.getNumRequiredArgs(); + // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers + // get assigned (in left-to-right order) for passing as follows... + unsigned ArgNo = 0; + for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); + it != ie; ++it, ++ArgNo) { + bool IsNamedArg = ArgNo < NumRequiredArgs; + + if (IsRegCall && it->type->isStructureOrClassType()) + it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, + MaxVectorWidth); + else + it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, + NeededSSE, IsNamedArg); + + // AMD64-ABI 3.2.3p3: If there are no registers available for any + // eightbyte of an argument, the whole argument is passed on the + // stack. If registers have already been assigned for some + // eightbytes of such an argument, the assignments get reverted. + if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { + FreeIntRegs -= NeededInt; + FreeSSERegs -= NeededSSE; + if (MaxVectorWidth > FI.getMaxVectorWidth()) + FI.setMaxVectorWidth(MaxVectorWidth); + } else { + it->info = getIndirectResult(it->type, FreeIntRegs); + } + } +} + +static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, + Address VAListAddr, QualType Ty) { + Address overflow_arg_area_p = + CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); + llvm::Value *overflow_arg_area = + CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); + + // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 + // byte boundary if alignment needed by type exceeds 8 byte boundary. + // It isn't stated explicitly in the standard, but in practice we use + // alignment greater than 16 where necessary. + CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); + if (Align > CharUnits::fromQuantity(8)) { + overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, + Align); + } + + // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. + llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *Res = overflow_arg_area; + + // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: + // l->overflow_arg_area + sizeof(type). + // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to + // an 8 byte boundary. + + uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; + llvm::Value *Offset = + llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); + overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, + Offset, "overflow_arg_area.next"); + CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); + + // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. + return Address(Res, LTy, Align); +} + +RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, + QualType Ty, AggValueSlot Slot) const { + // Assume that va_list type is correct; should be pointer to LLVM type: + // struct { + // i32 gp_offset; + // i32 fp_offset; + // i8* overflow_arg_area; + // i8* reg_save_area; + // }; + unsigned neededInt, neededSSE; + + Ty = getContext().getCanonicalType(Ty); + ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, + /*isNamedArg*/false); + + // Empty records are ignored for parameter passing purposes. + if (AI.isIgnore()) + return Slot.asRValue(); + + // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed + // in the registers. If not go to step 7. + if (!neededInt && !neededSSE) + return CGF.EmitLoadOfAnyValue( + CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty), + Slot); + + // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of + // general purpose registers needed to pass type and num_fp to hold + // the number of floating point registers needed. + + // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into + // registers. In the case: l->gp_offset > 48 - num_gp * 8 or + // l->fp_offset > 304 - num_fp * 16 go to step 7. + // + // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of + // register save space). + + llvm::Value *InRegs = nullptr; + Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); + llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; + if (neededInt) { + gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); + gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); + InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); + InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); + } + + if (neededSSE) { + fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); + fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); + llvm::Value *FitsInFP = + llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); + FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); + InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; + } + + llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); + llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); + CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); + + // Emit code to load the value if it was passed in registers. + + CGF.EmitBlock(InRegBlock); + + // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with + // an offset of l->gp_offset and/or l->fp_offset. This may require + // copying to a temporary location in case the parameter is passed + // in different register classes or requires an alignment greater + // than 8 for general purpose registers and 16 for XMM registers. + // + // FIXME: This really results in shameful code when we end up needing to + // collect arguments from different places; often what should result in a + // simple assembling of a structure from scattered addresses has many more + // loads than necessary. Can we clean this up? + llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); + llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( + CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); + + Address RegAddr = Address::invalid(); + if (neededInt && neededSSE) { + // FIXME: Cleanup. + assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); + llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); + Address Tmp = CGF.CreateMemTemp(Ty); + Tmp = Tmp.withElementType(ST); + assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); + llvm::Type *TyLo = ST->getElementType(0); + llvm::Type *TyHi = ST->getElementType(1); + assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && + "Unexpected ABI info for mixed regs"); + llvm::Value *GPAddr = + CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); + llvm::Value *FPAddr = + CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); + llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; + llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; + + // Copy the first element. + // FIXME: Our choice of alignment here and below is probably pessimistic. + llvm::Value *V = CGF.Builder.CreateAlignedLoad( + TyLo, RegLoAddr, + CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + + // Copy the second element. + V = CGF.Builder.CreateAlignedLoad( + TyHi, RegHiAddr, + CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + + RegAddr = Tmp.withElementType(LTy); + } else if (neededInt) { + RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), + LTy, CharUnits::fromQuantity(8)); + + // Copy to a temporary if necessary to ensure the appropriate alignment. + auto TInfo = getContext().getTypeInfoInChars(Ty); + uint64_t TySize = TInfo.Width.getQuantity(); + CharUnits TyAlign = TInfo.Align; + + // Copy into a temporary if the type is more aligned than the + // register save area. + if (TyAlign.getQuantity() > 8) { + Address Tmp = CGF.CreateMemTemp(Ty); + CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); + RegAddr = Tmp; + } + + } else if (neededSSE == 1) { + RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), + LTy, CharUnits::fromQuantity(16)); + } else { + assert(neededSSE == 2 && "Invalid number of needed registers!"); + // SSE registers are spaced 16 bytes apart in the register save + // area, we need to collect the two eightbytes together. + // The ABI isn't explicit about this, but it seems reasonable + // to assume that the slots are 16-byte aligned, since the stack is + // naturally 16-byte aligned and the prologue is expected to store + // all the SSE registers to the RSA. + Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, + fp_offset), + CGF.Int8Ty, CharUnits::fromQuantity(16)); + Address RegAddrHi = + CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, + CharUnits::fromQuantity(16)); + llvm::Type *ST = AI.canHaveCoerceToType() + ? AI.getCoerceToType() + : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); + llvm::Value *V; + Address Tmp = CGF.CreateMemTemp(Ty); + Tmp = Tmp.withElementType(ST); + V = CGF.Builder.CreateLoad( + RegAddrLo.withElementType(ST->getStructElementType(0))); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); + V = CGF.Builder.CreateLoad( + RegAddrHi.withElementType(ST->getStructElementType(1))); + CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); + + RegAddr = Tmp.withElementType(LTy); + } + + // AMD64-ABI 3.5.7p5: Step 5. Set: + // l->gp_offset = l->gp_offset + num_gp * 8 + // l->fp_offset = l->fp_offset + num_fp * 16. + if (neededInt) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), + gp_offset_p); + } + if (neededSSE) { + llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); + CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), + fp_offset_p); + } + CGF.EmitBranch(ContBlock); + + // Emit code to load the value if it was passed in memory. + + CGF.EmitBlock(InMemBlock); + Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); + + // Return the appropriate result. + + CGF.EmitBlock(ContBlock); + Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, + "vaarg.addr"); + return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot); +} + +RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, + QualType Ty, AggValueSlot Slot) const { + // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is + // not 1, 2, 4, or 8 bytes, must be passed by reference." + uint64_t Width = getContext().getTypeSize(Ty); + bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); + + return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, + CGF.getContext().getTypeInfoInChars(Ty), + CharUnits::fromQuantity(8), + /*allowHigherAlign*/ false, Slot); +} + +ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( + QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { + const Type *Base = nullptr; + uint64_t NumElts = 0; + + if (!Ty->isBuiltinType() && !Ty->isVectorType() && + isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { + FreeSSERegs -= NumElts; + return getDirectX86Hva(); + } + return current; +} + +ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, + bool IsReturnType, bool IsVectorCall, + bool IsRegCall) const { + + if (Ty->isVoidType()) + return ABIArgInfo::getIgnore(); + + if (const EnumType *EnumTy = Ty->getAs<EnumType>()) + Ty = EnumTy->getDecl()->getIntegerType(); + + TypeInfo Info = getContext().getTypeInfo(Ty); + uint64_t Width = Info.Width; + CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); + + const RecordType *RT = Ty->getAs<RecordType>(); + if (RT) { + if (!IsReturnType) { + if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) + return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); + } + + if (RT->getDecl()->hasFlexibleArrayMember()) + return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + + } + + const Type *Base = nullptr; + uint64_t NumElts = 0; + // vectorcall adds the concept of a homogenous vector aggregate, similar to + // other targets. + if ((IsVectorCall || IsRegCall) && + isHomogeneousAggregate(Ty, Base, NumElts)) { + if (IsRegCall) { + if (FreeSSERegs >= NumElts) { + FreeSSERegs -= NumElts; + if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) + return ABIArgInfo::getDirect(); + return ABIArgInfo::getExpand(); + } + return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); + } else if (IsVectorCall) { + if (FreeSSERegs >= NumElts && + (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { + FreeSSERegs -= NumElts; + return ABIArgInfo::getDirect(); + } else if (IsReturnType) { + return ABIArgInfo::getExpand(); + } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { + // HVAs are delayed and reclassified in the 2nd step. + return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); + } + } + } + + if (Ty->isMemberPointerType()) { + // If the member pointer is represented by an LLVM int or ptr, pass it + // directly. + llvm::Type *LLTy = CGT.ConvertType(Ty); + if (LLTy->isPointerTy() || LLTy->isIntegerTy()) + return ABIArgInfo::getDirect(); + } + + if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { + // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is + // not 1, 2, 4, or 8 bytes, must be passed by reference." + if (Width > 64 || !llvm::isPowerOf2_64(Width)) + return getNaturalAlignIndirect(Ty, /*ByVal=*/false); + + // Otherwise, coerce it to a small integer. + return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); + } + + if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { + switch (BT->getKind()) { + case BuiltinType::Bool: + // Bool type is always extended to the ABI, other builtin types are not + // extended. + return ABIArgInfo::getExtend(Ty); + + case BuiltinType::LongDouble: + // Mingw64 GCC uses the old 80 bit extended precision floating point + // unit. It passes them indirectly through memory. + if (IsMingw64) { + const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); + if (LDF == &llvm::APFloat::x87DoubleExtended()) + return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); + } + break; + + case BuiltinType::Int128: + case BuiltinType::UInt128: + // If it's a parameter type, the normal ABI rule is that arguments larger + // than 8 bytes are passed indirectly. GCC follows it. We follow it too, + // even though it isn't particularly efficient. + if (!IsReturnType) + return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); + + // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. + // Clang matches them for compatibility. + return ABIArgInfo::getDirect(llvm::FixedVectorType::get( + llvm::Type::getInt64Ty(getVMContext()), 2)); + + default: + break; + } + } + + if (Ty->isBitIntType()) { + // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is + // not 1, 2, 4, or 8 bytes, must be passed by reference." + // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, + // or 8 bytes anyway as long is it fits in them, so we don't have to check + // the power of 2. + if (Width <= 64) + return ABIArgInfo::getDirect(); + return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); + } + + return ABIArgInfo::getDirect(); +} + +void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { + const unsigned CC = FI.getCallingConvention(); + bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; + bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; + + // If __attribute__((sysv_abi)) is in use, use the SysV argument + // classification rules. + if (CC == llvm::CallingConv::X86_64_SysV) { + X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); + SysVABIInfo.computeInfo(FI); + return; + } + + unsigned FreeSSERegs = 0; + if (IsVectorCall) { + // We can use up to 4 SSE return registers with vectorcall. + FreeSSERegs = 4; + } else if (IsRegCall) { + // RegCall gives us 16 SSE registers. + FreeSSERegs = 16; + } + + if (!getCXXABI().classifyReturnType(FI)) + FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, + IsVectorCall, IsRegCall); + + if (IsVectorCall) { + // We can use up to 6 SSE register parameters with vectorcall. + FreeSSERegs = 6; + } else if (IsRegCall) { + // RegCall gives us 16 SSE registers, we can reuse the return registers. + FreeSSERegs = 16; + } + + unsigned ArgNum = 0; + unsigned ZeroSSERegs = 0; + for (auto &I : FI.arguments()) { + // Vectorcall in x64 only permits the first 6 arguments to be passed as + // XMM/YMM registers. After the sixth argument, pretend no vector + // registers are left. + unsigned *MaybeFreeSSERegs = + (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; + I.info = + classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); + ++ArgNum; + } + + if (IsVectorCall) { + // For vectorcall, assign aggregate HVAs to any free vector registers in a + // second pass. + for (auto &I : FI.arguments()) + I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); + } +} + +RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, + QualType Ty, AggValueSlot Slot) const { + // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is + // not 1, 2, 4, or 8 bytes, must be passed by reference." + uint64_t Width = getContext().getTypeSize(Ty); + bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); + + return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, + CGF.getContext().getTypeInfoInChars(Ty), + CharUnits::fromQuantity(8), + /*allowHigherAlign*/ false, Slot); +} + +std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo( + CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, + unsigned NumRegisterParameters, bool SoftFloatABI) { + bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( + CGM.getTriple(), CGM.getCodeGenOpts()); + return std::make_unique<X86_32TargetCodeGenInfo>( + CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, + NumRegisterParameters, SoftFloatABI); +} + +std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo( + CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, + unsigned NumRegisterParameters) { + bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( + CGM.getTriple(), CGM.getCodeGenOpts()); + return std::make_unique<WinX86_32TargetCodeGenInfo>( + CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, + NumRegisterParameters); +} + +std::unique_ptr<TargetCodeGenInfo> +CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM, + X86AVXABILevel AVXLevel) { + return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); +} + +std::unique_ptr<TargetCodeGenInfo> +CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, + X86AVXABILevel AVXLevel) { + return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); +} |