aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/CodeGen/Targets
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/Targets')
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/AArch64.cpp970
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/AMDGPU.cpp694
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/ARC.cpp158
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/ARM.cpp814
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/AVR.cpp154
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/BPF.cpp100
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/CSKY.cpp173
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/Hexagon.cpp426
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/Lanai.cpp154
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/LoongArch.cpp460
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/M68k.cpp55
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/MSP430.cpp97
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/Mips.cpp438
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/NVPTX.cpp366
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/PNaCl.cpp112
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/PPC.cpp1050
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/RISCV.cpp563
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/SPIR.cpp218
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/Sparc.cpp414
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/SystemZ.cpp540
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/TCE.cpp82
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/VE.cpp71
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/WebAssembly.cpp173
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp3459
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/Targets/XCore.cpp662
25 files changed, 12403 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/AArch64.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/AArch64.cpp
new file mode 100644
index 000000000000..97381f673c28
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/AArch64.cpp
@@ -0,0 +1,970 @@
+//===- AArch64.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/AST/Decl.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+#include "llvm/TargetParser/AArch64TargetParser.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// AArch64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AArch64ABIInfo : public ABIInfo {
+ AArch64ABIKind Kind;
+
+public:
+ AArch64ABIInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
+ : ABIInfo(CGT), Kind(Kind) {}
+
+ bool isSoftFloat() const { return Kind == AArch64ABIKind::AAPCSSoft; }
+
+private:
+ AArch64ABIKind getABIKind() const { return Kind; }
+ bool isDarwinPCS() const { return Kind == AArch64ABIKind::DarwinPCS; }
+
+ ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, bool IsVariadic,
+ unsigned CallingConvention) const;
+ ABIArgInfo coerceIllegalVector(QualType Ty) const;
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t Members) const override;
+ bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
+
+ bool isIllegalVectorType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!::classifyReturnType(getCXXABI(), FI, *this))
+ FI.getReturnInfo() =
+ classifyReturnType(FI.getReturnType(), FI.isVariadic());
+
+ for (auto &it : FI.arguments())
+ it.info = classifyArgumentType(it.type, FI.isVariadic(),
+ FI.getCallingConvention());
+ }
+
+ RValue EmitDarwinVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF,
+ AggValueSlot Slot) const;
+
+ RValue EmitAAPCSVAArg(Address VAListAddr, QualType Ty, CodeGenFunction &CGF,
+ AArch64ABIKind Kind, AggValueSlot Slot) const;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override {
+ llvm::Type *BaseTy = CGF.ConvertType(Ty);
+ if (isa<llvm::ScalableVectorType>(BaseTy))
+ llvm::report_fatal_error("Passing SVE types to variadic functions is "
+ "currently not supported");
+
+ return Kind == AArch64ABIKind::Win64
+ ? EmitMSVAArg(CGF, VAListAddr, Ty, Slot)
+ : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF, Slot)
+ : EmitAAPCSVAArg(VAListAddr, Ty, CGF, Kind, Slot);
+ }
+
+ RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ bool allowBFloatArgsAndRet() const override {
+ return getTarget().hasBFloat16Type();
+ }
+
+ using ABIInfo::appendAttributeMangling;
+ void appendAttributeMangling(TargetClonesAttr *Attr, unsigned Index,
+ raw_ostream &Out) const override;
+ void appendAttributeMangling(StringRef AttrStr,
+ raw_ostream &Out) const override;
+};
+
+class AArch64SwiftABIInfo : public SwiftABIInfo {
+public:
+ explicit AArch64SwiftABIInfo(CodeGenTypes &CGT)
+ : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
+
+ bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+ unsigned NumElts) const override;
+};
+
+class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind Kind)
+ : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {
+ SwiftInfo = std::make_unique<AArch64SwiftABIInfo>(CGT);
+ }
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 31;
+ }
+
+ bool doesReturnSlotInterfereWithArgs() const override { return false; }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD)
+ return;
+
+ TargetInfo::BranchProtectionInfo BPI(CGM.getLangOpts());
+
+ if (const auto *TA = FD->getAttr<TargetAttr>()) {
+ ParsedTargetAttr Attr =
+ CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
+ if (!Attr.BranchProtection.empty()) {
+ StringRef Error;
+ (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
+ Attr.CPU, BPI, Error);
+ assert(Error.empty());
+ }
+ }
+ auto *Fn = cast<llvm::Function>(GV);
+ setBranchProtectionFnAttributes(BPI, *Fn);
+ }
+
+ bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
+ llvm::Type *Ty) const override {
+ if (CGF.getTarget().hasFeature("ls64")) {
+ auto *ST = dyn_cast<llvm::StructType>(Ty);
+ if (ST && ST->getNumElements() == 1) {
+ auto *AT = dyn_cast<llvm::ArrayType>(ST->getElementType(0));
+ if (AT && AT->getNumElements() == 8 &&
+ AT->getElementType()->isIntegerTy(64))
+ return true;
+ }
+ }
+ return TargetCodeGenInfo::isScalarizableAsmOperand(CGF, Ty);
+ }
+
+ void checkFunctionABI(CodeGenModule &CGM,
+ const FunctionDecl *Decl) const override;
+
+ void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee, const CallArgList &Args,
+ QualType ReturnType) const override;
+
+private:
+ // Diagnose calls between functions with incompatible Streaming SVE
+ // attributes.
+ void checkFunctionCallABIStreaming(CodeGenModule &CGM, SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee) const;
+ // Diagnose calls which must pass arguments in floating-point registers when
+ // the selected target does not have floating-point registers.
+ void checkFunctionCallABISoftFloat(CodeGenModule &CGM, SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee,
+ const CallArgList &Args,
+ QualType ReturnType) const;
+};
+
+class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
+public:
+ WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIKind K)
+ : AArch64TargetCodeGenInfo(CGT, K) {}
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+
+void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (GV->isDeclaration())
+ return;
+ addStackProbeTargetAttributes(D, GV, CGM);
+}
+}
+
+ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
+ assert(Ty->isVectorType() && "expected vector type!");
+
+ const auto *VT = Ty->castAs<VectorType>();
+ if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
+ assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
+ assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
+ BuiltinType::UChar &&
+ "unexpected builtin type for SVE predicate!");
+ return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
+ llvm::Type::getInt1Ty(getVMContext()), 16));
+ }
+
+ if (VT->getVectorKind() == VectorKind::SveFixedLengthData) {
+ assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
+
+ const auto *BT = VT->getElementType()->castAs<BuiltinType>();
+ llvm::ScalableVectorType *ResType = nullptr;
+ switch (BT->getKind()) {
+ default:
+ llvm_unreachable("unexpected builtin type for SVE vector!");
+ case BuiltinType::SChar:
+ case BuiltinType::UChar:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getInt8Ty(getVMContext()), 16);
+ break;
+ case BuiltinType::Short:
+ case BuiltinType::UShort:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getInt16Ty(getVMContext()), 8);
+ break;
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), 4);
+ break;
+ case BuiltinType::Long:
+ case BuiltinType::ULong:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2);
+ break;
+ case BuiltinType::Half:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getHalfTy(getVMContext()), 8);
+ break;
+ case BuiltinType::Float:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getFloatTy(getVMContext()), 4);
+ break;
+ case BuiltinType::Double:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getDoubleTy(getVMContext()), 2);
+ break;
+ case BuiltinType::BFloat16:
+ ResType = llvm::ScalableVectorType::get(
+ llvm::Type::getBFloatTy(getVMContext()), 8);
+ break;
+ }
+ return ABIArgInfo::getDirect(ResType);
+ }
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ // Android promotes <2 x i8> to i16, not i32
+ if ((isAndroid() || isOHOSFamily()) && (Size <= 16)) {
+ llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size <= 32) {
+ llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64) {
+ auto *ResType =
+ llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 128) {
+ auto *ResType =
+ llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo
+AArch64ABIInfo::classifyArgumentType(QualType Ty, bool IsVariadic,
+ unsigned CallingConvention) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty))
+ return coerceIllegalVector(Ty);
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > 128)
+ return getNaturalAlignIndirect(Ty, false);
+
+ return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
+ ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always indirect.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Empty records are always ignored on Darwin, but actually passed in C++ mode
+ // elsewhere for GNU compatibility.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
+ if (IsEmpty || Size == 0) {
+ if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
+ return ABIArgInfo::getIgnore();
+
+ // GNU C mode. The only argument that gets ignored is an empty one with size
+ // 0.
+ if (IsEmpty && Size == 0)
+ return ABIArgInfo::getIgnore();
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ }
+
+ // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ bool IsWin64 = Kind == AArch64ABIKind::Win64 ||
+ CallingConvention == llvm::CallingConv::Win64;
+ bool IsWinVariadic = IsWin64 && IsVariadic;
+ // In variadic functions on Windows, all composite types are treated alike,
+ // no special handling of HFAs/HVAs.
+ if (!IsWinVariadic && isHomogeneousAggregate(Ty, Base, Members)) {
+ if (Kind != AArch64ABIKind::AAPCS)
+ return ABIArgInfo::getDirect(
+ llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
+
+ // For HFAs/HVAs, cap the argument alignment to 16, otherwise
+ // set it to 8 according to the AAPCS64 document.
+ unsigned Align =
+ getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
+ Align = (Align >= 16) ? 16 : 8;
+ return ABIArgInfo::getDirect(
+ llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members), 0,
+ nullptr, true, Align);
+ }
+
+ // Aggregates <= 16 bytes are passed directly in registers or on the stack.
+ if (Size <= 128) {
+ // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
+ // same size and alignment.
+ if (getTarget().isRenderScriptTarget()) {
+ return coerceToIntArray(Ty, getContext(), getVMContext());
+ }
+ unsigned Alignment;
+ if (Kind == AArch64ABIKind::AAPCS) {
+ Alignment = getContext().getTypeUnadjustedAlign(Ty);
+ Alignment = Alignment < 128 ? 64 : 128;
+ } else {
+ Alignment =
+ std::max(getContext().getTypeAlign(Ty),
+ (unsigned)getTarget().getPointerWidth(LangAS::Default));
+ }
+ Size = llvm::alignTo(Size, Alignment);
+
+ // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+ // For aggregates with 16-byte alignment, we use i128.
+ llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
+ return ABIArgInfo::getDirect(
+ Size == Alignment ? BaseTy
+ : llvm::ArrayType::get(BaseTy, Size / Alignment));
+ }
+
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
+ bool IsVariadic) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const auto *VT = RetTy->getAs<VectorType>()) {
+ if (VT->getVectorKind() == VectorKind::SveFixedLengthData ||
+ VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
+ return coerceIllegalVector(RetTy);
+ }
+
+ // Large vector types should be returned via memory.
+ if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
+ return getNaturalAlignIndirect(RetTy);
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > 128)
+ return getNaturalAlignIndirect(RetTy);
+
+ return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
+ ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+ }
+
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(RetTy, Base, Members) &&
+ !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
+ IsVariadic))
+ // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
+ return ABIArgInfo::getDirect();
+
+ // Aggregates <= 16 bytes are returned directly in registers or on the stack.
+ if (Size <= 128) {
+ // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
+ // same size and alignment.
+ if (getTarget().isRenderScriptTarget()) {
+ return coerceToIntArray(RetTy, getContext(), getVMContext());
+ }
+
+ if (Size <= 64 && getDataLayout().isLittleEndian()) {
+ // Composite types are returned in lower bits of a 64-bit register for LE,
+ // and in higher bits for BE. However, integer types are always returned
+ // in lower bits for both LE and BE, and they are not rounded up to
+ // 64-bits. We can skip rounding up of composite types for LE, but not for
+ // BE, otherwise composite types will be indistinguishable from integer
+ // types.
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ unsigned Alignment = getContext().getTypeAlign(RetTy);
+ Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
+
+ // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
+ // For aggregates with 16-byte alignment, we use i128.
+ if (Alignment < 128 && Size == 128) {
+ llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
+ }
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
+ }
+
+ return getNaturalAlignIndirect(RetTy);
+}
+
+/// isIllegalVectorType - check whether the vector type is legal for AArch64.
+bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Check whether VT is a fixed-length SVE vector. These types are
+ // represented as scalable vectors in function args/return and must be
+ // coerced from fixed vectors.
+ if (VT->getVectorKind() == VectorKind::SveFixedLengthData ||
+ VT->getVectorKind() == VectorKind::SveFixedLengthPredicate)
+ return true;
+
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2.
+ if (!llvm::isPowerOf2_32(NumElements))
+ return true;
+
+ // arm64_32 has to be compatible with the ARM logic here, which allows huge
+ // vectors for some reason.
+ llvm::Triple Triple = getTarget().getTriple();
+ if (Triple.getArch() == llvm::Triple::aarch64_32 &&
+ Triple.isOSBinFormatMachO())
+ return Size <= 32;
+
+ return Size != 64 && (Size != 128 || NumElements == 1);
+ }
+ return false;
+}
+
+bool AArch64SwiftABIInfo::isLegalVectorType(CharUnits VectorSize,
+ llvm::Type *EltTy,
+ unsigned NumElts) const {
+ if (!llvm::isPowerOf2_32(NumElts))
+ return false;
+ if (VectorSize.getQuantity() != 8 &&
+ (VectorSize.getQuantity() != 16 || NumElts == 1))
+ return false;
+ return true;
+}
+
+bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ // For the soft-float ABI variant, no types are considered to be homogeneous
+ // aggregates.
+ if (Kind == AArch64ABIKind::AAPCSSoft)
+ return false;
+
+ // Homogeneous aggregates for AAPCS64 must have base types of a floating
+ // point type or a short-vector type. This is the same as the 32-bit ABI,
+ // but with the difference that any floating-point type is allowed,
+ // including __fp16.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->isFloatingPoint())
+ return true;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ unsigned VecSize = getContext().getTypeSize(VT);
+ if (VecSize == 64 || VecSize == 128)
+ return true;
+ }
+ return false;
+}
+
+bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const {
+ return Members <= 4;
+}
+
+bool AArch64ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate()
+ const {
+ // AAPCS64 says that the rule for whether something is a homogeneous
+ // aggregate is applied to the output of the data layout decision. So
+ // anything that doesn't affect the data layout also does not affect
+ // homogeneity. In particular, zero-length bitfields don't stop a struct
+ // being homogeneous.
+ return true;
+}
+
+RValue AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
+ CodeGenFunction &CGF, AArch64ABIKind Kind,
+ AggValueSlot Slot) const {
+ ABIArgInfo AI = classifyArgumentType(Ty, /*IsVariadic=*/true,
+ CGF.CurFnInfo->getCallingConvention());
+ // Empty records are ignored for parameter passing purposes.
+ if (AI.isIgnore())
+ return Slot.asRValue();
+
+ bool IsIndirect = AI.isIndirect();
+
+ llvm::Type *BaseTy = CGF.ConvertType(Ty);
+ if (IsIndirect)
+ BaseTy = llvm::PointerType::getUnqual(BaseTy);
+ else if (AI.getCoerceToType())
+ BaseTy = AI.getCoerceToType();
+
+ unsigned NumRegs = 1;
+ if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
+ BaseTy = ArrTy->getElementType();
+ NumRegs = ArrTy->getNumElements();
+ }
+ bool IsFPR = Kind != AArch64ABIKind::AAPCSSoft &&
+ (BaseTy->isFloatingPointTy() || BaseTy->isVectorTy());
+
+ // The AArch64 va_list type and handling is specified in the Procedure Call
+ // Standard, section B.4:
+ //
+ // struct {
+ // void *__stack;
+ // void *__gr_top;
+ // void *__vr_top;
+ // int __gr_offs;
+ // int __vr_offs;
+ // };
+
+ llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+
+ CharUnits TySize = getContext().getTypeSizeInChars(Ty);
+ CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
+
+ Address reg_offs_p = Address::invalid();
+ llvm::Value *reg_offs = nullptr;
+ int reg_top_index;
+ int RegSize = IsIndirect ? 8 : TySize.getQuantity();
+ if (!IsFPR) {
+ // 3 is the field number of __gr_offs
+ reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
+ reg_top_index = 1; // field number for __gr_top
+ RegSize = llvm::alignTo(RegSize, 8);
+ } else {
+ // 4 is the field number of __vr_offs.
+ reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
+ reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
+ reg_top_index = 2; // field number for __vr_top
+ RegSize = 16 * NumRegs;
+ }
+
+ //=======================================
+ // Find out where argument was passed
+ //=======================================
+
+ // If reg_offs >= 0 we're already using the stack for this type of
+ // argument. We don't want to keep updating reg_offs (in case it overflows,
+ // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
+ // whatever they get).
+ llvm::Value *UsingStack = nullptr;
+ UsingStack = CGF.Builder.CreateICmpSGE(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
+
+ CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
+
+ // Otherwise, at least some kind of argument could go in these registers, the
+ // question is whether this particular type is too big.
+ CGF.EmitBlock(MaybeRegBlock);
+
+ // Integer arguments may need to correct register alignment (for example a
+ // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
+ // align __gr_offs to calculate the potential address.
+ if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
+ int Align = TyAlign.getQuantity();
+
+ reg_offs = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
+ "align_regoffs");
+ reg_offs = CGF.Builder.CreateAnd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
+ "aligned_regoffs");
+ }
+
+ // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
+ // The fact that this is done unconditionally reflects the fact that
+ // allocating an argument to the stack also uses up all the remaining
+ // registers of the appropriate kind.
+ llvm::Value *NewOffset = nullptr;
+ NewOffset = CGF.Builder.CreateAdd(
+ reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
+ CGF.Builder.CreateStore(NewOffset, reg_offs_p);
+
+ // Now we're in a position to decide whether this argument really was in
+ // registers or not.
+ llvm::Value *InRegs = nullptr;
+ InRegs = CGF.Builder.CreateICmpSLE(
+ NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
+
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
+
+ //=======================================
+ // Argument was in registers
+ //=======================================
+
+ // Now we emit the code for if the argument was originally passed in
+ // registers. First start the appropriate block:
+ CGF.EmitBlock(InRegBlock);
+
+ llvm::Value *reg_top = nullptr;
+ Address reg_top_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
+ reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
+ Address BaseAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, reg_top, reg_offs),
+ CGF.Int8Ty, CharUnits::fromQuantity(IsFPR ? 16 : 8));
+ Address RegAddr = Address::invalid();
+ llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty), *ElementTy = MemTy;
+
+ if (IsIndirect) {
+ // If it's been passed indirectly (actually a struct), whatever we find from
+ // stored registers or on the stack will actually be a struct **.
+ MemTy = llvm::PointerType::getUnqual(MemTy);
+ }
+
+ const Type *Base = nullptr;
+ uint64_t NumMembers = 0;
+ bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
+ if (IsHFA && NumMembers > 1) {
+ // Homogeneous aggregates passed in registers will have their elements split
+ // and stored 16-bytes apart regardless of size (they're notionally in qN,
+ // qN+1, ...). We reload and store into a temporary local variable
+ // contiguously.
+ assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
+ auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
+ llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
+ llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
+ Address Tmp = CGF.CreateTempAlloca(HFATy,
+ std::max(TyAlign, BaseTyInfo.Align));
+
+ // On big-endian platforms, the value will be right-aligned in its slot.
+ int Offset = 0;
+ if (CGF.CGM.getDataLayout().isBigEndian() &&
+ BaseTyInfo.Width.getQuantity() < 16)
+ Offset = 16 - BaseTyInfo.Width.getQuantity();
+
+ for (unsigned i = 0; i < NumMembers; ++i) {
+ CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
+ Address LoadAddr =
+ CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
+ LoadAddr = LoadAddr.withElementType(BaseTy);
+
+ Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
+
+ llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
+ CGF.Builder.CreateStore(Elem, StoreAddr);
+ }
+
+ RegAddr = Tmp.withElementType(MemTy);
+ } else {
+ // Otherwise the object is contiguous in memory.
+
+ // It might be right-aligned in its slot.
+ CharUnits SlotSize = BaseAddr.getAlignment();
+ if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
+ (IsHFA || !isAggregateTypeForABI(Ty)) &&
+ TySize < SlotSize) {
+ CharUnits Offset = SlotSize - TySize;
+ BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
+ }
+
+ RegAddr = BaseAddr.withElementType(MemTy);
+ }
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Argument was on the stack
+ //=======================================
+ CGF.EmitBlock(OnStackBlock);
+
+ Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
+ llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
+
+ // Again, stack arguments may need realignment. In this case both integer and
+ // floating-point ones might be affected.
+ if (!IsIndirect && TyAlign.getQuantity() > 8) {
+ OnStackPtr = emitRoundPointerUpToAlignment(CGF, OnStackPtr, TyAlign);
+ }
+ Address OnStackAddr = Address(OnStackPtr, CGF.Int8Ty,
+ std::max(CharUnits::fromQuantity(8), TyAlign));
+
+ // All stack slots are multiples of 8 bytes.
+ CharUnits StackSlotSize = CharUnits::fromQuantity(8);
+ CharUnits StackSize;
+ if (IsIndirect)
+ StackSize = StackSlotSize;
+ else
+ StackSize = TySize.alignTo(StackSlotSize);
+
+ llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
+ llvm::Value *NewStack = CGF.Builder.CreateInBoundsGEP(
+ CGF.Int8Ty, OnStackPtr, StackSizeC, "new_stack");
+
+ // Write the new value of __stack for the next call to va_arg
+ CGF.Builder.CreateStore(NewStack, stack_p);
+
+ if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
+ TySize < StackSlotSize) {
+ CharUnits Offset = StackSlotSize - TySize;
+ OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
+ }
+
+ OnStackAddr = OnStackAddr.withElementType(MemTy);
+
+ CGF.EmitBranch(ContBlock);
+
+ //=======================================
+ // Tidy up
+ //=======================================
+ CGF.EmitBlock(ContBlock);
+
+ Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, OnStackAddr,
+ OnStackBlock, "vaargs.addr");
+
+ if (IsIndirect)
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(
+ Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), ElementTy,
+ TyAlign),
+ Ty),
+ Slot);
+
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
+}
+
+RValue AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
+ CodeGenFunction &CGF,
+ AggValueSlot Slot) const {
+ // The backend's lowering doesn't support va_arg for aggregates or
+ // illegal vector types. Lower VAArg here for these cases and use
+ // the LLVM va_arg instruction for everything else.
+ if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(
+ EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()), Ty),
+ Slot);
+
+ uint64_t PointerSize = getTarget().getPointerWidth(LangAS::Default) / 8;
+ CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return Slot.asRValue();
+
+ // The size of the actual thing passed, which might end up just
+ // being a pointer for indirect types.
+ auto TyInfo = getContext().getTypeInfoInChars(Ty);
+
+ // Arguments bigger than 16 bytes which aren't homogeneous
+ // aggregates should be passed indirectly.
+ bool IsIndirect = false;
+ if (TyInfo.Width.getQuantity() > 16) {
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
+ }
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, SlotSize,
+ /*AllowHigherAlign*/ true, Slot);
+}
+
+RValue AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ bool IsIndirect = false;
+
+ // Composites larger than 16 bytes are passed by reference.
+ if (isAggregateTypeForABI(Ty) && getContext().getTypeSize(Ty) > 128)
+ IsIndirect = true;
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ CGF.getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(8),
+ /*allowHigherAlign*/ false, Slot);
+}
+
+static bool isStreamingCompatible(const FunctionDecl *F) {
+ if (const auto *T = F->getType()->getAs<FunctionProtoType>())
+ return T->getAArch64SMEAttributes() &
+ FunctionType::SME_PStateSMCompatibleMask;
+ return false;
+}
+
+// Report an error if an argument or return value of type Ty would need to be
+// passed in a floating-point register.
+static void diagnoseIfNeedsFPReg(DiagnosticsEngine &Diags,
+ const StringRef ABIName,
+ const AArch64ABIInfo &ABIInfo,
+ const QualType &Ty, const NamedDecl *D,
+ SourceLocation loc) {
+ const Type *HABase = nullptr;
+ uint64_t HAMembers = 0;
+ if (Ty->isFloatingType() || Ty->isVectorType() ||
+ ABIInfo.isHomogeneousAggregate(Ty, HABase, HAMembers)) {
+ Diags.Report(loc, diag::err_target_unsupported_type_for_abi)
+ << D->getDeclName() << Ty << ABIName;
+ }
+}
+
+// If we are using a hard-float ABI, but do not have floating point registers,
+// then report an error for any function arguments or returns which would be
+// passed in floating-pint registers.
+void AArch64TargetCodeGenInfo::checkFunctionABI(
+ CodeGenModule &CGM, const FunctionDecl *FuncDecl) const {
+ const AArch64ABIInfo &ABIInfo = getABIInfo<AArch64ABIInfo>();
+ const TargetInfo &TI = ABIInfo.getContext().getTargetInfo();
+
+ if (!TI.hasFeature("fp") && !ABIInfo.isSoftFloat()) {
+ diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo,
+ FuncDecl->getReturnType(), FuncDecl,
+ FuncDecl->getLocation());
+ for (ParmVarDecl *PVD : FuncDecl->parameters()) {
+ diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo, PVD->getType(),
+ PVD, FuncDecl->getLocation());
+ }
+ }
+}
+
+void AArch64TargetCodeGenInfo::checkFunctionCallABIStreaming(
+ CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
+ const FunctionDecl *Callee) const {
+ if (!Caller || !Callee || !Callee->hasAttr<AlwaysInlineAttr>())
+ return;
+
+ bool CallerIsStreaming =
+ IsArmStreamingFunction(Caller, /*IncludeLocallyStreaming=*/true);
+ bool CalleeIsStreaming =
+ IsArmStreamingFunction(Callee, /*IncludeLocallyStreaming=*/true);
+ bool CallerIsStreamingCompatible = isStreamingCompatible(Caller);
+ bool CalleeIsStreamingCompatible = isStreamingCompatible(Callee);
+
+ if (!CalleeIsStreamingCompatible &&
+ (CallerIsStreaming != CalleeIsStreaming || CallerIsStreamingCompatible))
+ CGM.getDiags().Report(
+ CallLoc, CalleeIsStreaming
+ ? diag::err_function_always_inline_attribute_mismatch
+ : diag::warn_function_always_inline_attribute_mismatch)
+ << Caller->getDeclName() << Callee->getDeclName() << "streaming";
+ if (auto *NewAttr = Callee->getAttr<ArmNewAttr>())
+ if (NewAttr->isNewZA())
+ CGM.getDiags().Report(CallLoc, diag::err_function_always_inline_new_za)
+ << Callee->getDeclName();
+}
+
+// If the target does not have floating-point registers, but we are using a
+// hard-float ABI, there is no way to pass floating-point, vector or HFA values
+// to functions, so we report an error.
+void AArch64TargetCodeGenInfo::checkFunctionCallABISoftFloat(
+ CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
+ const FunctionDecl *Callee, const CallArgList &Args,
+ QualType ReturnType) const {
+ const AArch64ABIInfo &ABIInfo = getABIInfo<AArch64ABIInfo>();
+ const TargetInfo &TI = ABIInfo.getContext().getTargetInfo();
+
+ if (!Caller || TI.hasFeature("fp") || ABIInfo.isSoftFloat())
+ return;
+
+ diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo, ReturnType,
+ Callee ? Callee : Caller, CallLoc);
+
+ for (const CallArg &Arg : Args)
+ diagnoseIfNeedsFPReg(CGM.getDiags(), TI.getABI(), ABIInfo, Arg.getType(),
+ Callee ? Callee : Caller, CallLoc);
+}
+
+void AArch64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
+ SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee,
+ const CallArgList &Args,
+ QualType ReturnType) const {
+ checkFunctionCallABIStreaming(CGM, CallLoc, Caller, Callee);
+ checkFunctionCallABISoftFloat(CGM, CallLoc, Caller, Callee, Args, ReturnType);
+}
+
+void AArch64ABIInfo::appendAttributeMangling(TargetClonesAttr *Attr,
+ unsigned Index,
+ raw_ostream &Out) const {
+ appendAttributeMangling(Attr->getFeatureStr(Index), Out);
+}
+
+void AArch64ABIInfo::appendAttributeMangling(StringRef AttrStr,
+ raw_ostream &Out) const {
+ if (AttrStr == "default") {
+ Out << ".default";
+ return;
+ }
+
+ Out << "._";
+ SmallVector<StringRef, 8> Features;
+ AttrStr.split(Features, "+");
+ for (auto &Feat : Features)
+ Feat = Feat.trim();
+
+ llvm::sort(Features, [](const StringRef LHS, const StringRef RHS) {
+ return LHS.compare(RHS) < 0;
+ });
+
+ llvm::SmallDenseSet<StringRef, 8> UniqueFeats;
+ for (auto &Feat : Features)
+ if (auto Ext = llvm::AArch64::parseFMVExtension(Feat))
+ if (UniqueFeats.insert(Ext->Name).second)
+ Out << 'M' << Ext->Name;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAArch64TargetCodeGenInfo(CodeGenModule &CGM,
+ AArch64ABIKind Kind) {
+ return std::make_unique<AArch64TargetCodeGenInfo>(CGM.getTypes(), Kind);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM,
+ AArch64ABIKind K) {
+ return std::make_unique<WindowsAArch64TargetCodeGenInfo>(CGM.getTypes(), K);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/AMDGPU.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/AMDGPU.cpp
new file mode 100644
index 000000000000..4d3275e17c38
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/AMDGPU.cpp
@@ -0,0 +1,694 @@
+//===- AMDGPU.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/TargetOptions.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// AMDGPU ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class AMDGPUABIInfo final : public DefaultABIInfo {
+private:
+ static const unsigned MaxNumRegsForArgsRet = 16;
+
+ unsigned numRegsForType(QualType Ty) const;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const override;
+
+ // Coerce HIP scalar pointer arguments from generic pointers to global ones.
+ llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
+ unsigned ToAS) const {
+ // Single value types.
+ auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(Ty);
+ if (PtrTy && PtrTy->getAddressSpace() == FromAS)
+ return llvm::PointerType::get(Ty->getContext(), ToAS);
+ return Ty;
+ }
+
+public:
+ explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
+ DefaultABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
+ ABIArgInfo classifyArgumentType(QualType Ty, bool Variadic,
+ unsigned &NumRegsLeft) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ return true;
+}
+
+bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
+ const Type *Base, uint64_t Members) const {
+ uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
+
+ // Homogeneous Aggregates may occupy at most 16 registers.
+ return Members * NumRegs <= MaxNumRegsForArgsRet;
+}
+
+/// Estimate number of registers the type will use when passed in registers.
+unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
+ unsigned NumRegs = 0;
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // Compute from the number of elements. The reported size is based on the
+ // in-memory size, which includes the padding 4th element for 3-vectors.
+ QualType EltTy = VT->getElementType();
+ unsigned EltSize = getContext().getTypeSize(EltTy);
+
+ // 16-bit element vectors should be passed as packed.
+ if (EltSize == 16)
+ return (VT->getNumElements() + 1) / 2;
+
+ unsigned EltNumRegs = (EltSize + 31) / 32;
+ return EltNumRegs * VT->getNumElements();
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ assert(!RD->hasFlexibleArrayMember());
+
+ for (const FieldDecl *Field : RD->fields()) {
+ QualType FieldTy = Field->getType();
+ NumRegs += numRegsForType(FieldTy);
+ }
+
+ return NumRegs;
+ }
+
+ return (getContext().getTypeSize(Ty) + 31) / 32;
+}
+
+void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ llvm::CallingConv::ID CC = FI.getCallingConvention();
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ unsigned ArgumentIndex = 0;
+ const unsigned numFixedArguments = FI.getNumRequiredArgs();
+
+ unsigned NumRegsLeft = MaxNumRegsForArgsRet;
+ for (auto &Arg : FI.arguments()) {
+ if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
+ Arg.info = classifyKernelArgumentType(Arg.type);
+ } else {
+ bool FixedArgument = ArgumentIndex++ < numFixedArguments;
+ Arg.info = classifyArgumentType(Arg.type, !FixedArgument, NumRegsLeft);
+ }
+ }
+}
+
+RValue AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ const bool IsIndirect = false;
+ const bool AllowHigherAlign = false;
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(4), AllowHigherAlign, Slot);
+}
+
+ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
+ if (isAggregateTypeForABI(RetTy)) {
+ // Records with non-trivial destructors/copy-constructors should not be
+ // returned by value.
+ if (!getRecordArgABI(RetTy, getCXXABI())) {
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Lower single-element structs to just return a regular value.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return DefaultABIInfo::classifyReturnType(RetTy);
+ }
+
+ // Pack aggregates <= 4 bytes into single VGPR or pair.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+
+ if (Size <= 32)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+ if (Size <= 64) {
+ llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
+ }
+
+ if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ // Otherwise just do the default thing.
+ return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+/// For kernels all parameters are really passed in a special buffer. It doesn't
+/// make sense to pass anything byval, so everything must be direct.
+ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // TODO: Can we omit empty structs?
+
+ if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+ Ty = QualType(SeltTy, 0);
+
+ llvm::Type *OrigLTy = CGT.ConvertType(Ty);
+ llvm::Type *LTy = OrigLTy;
+ if (getContext().getLangOpts().HIP) {
+ LTy = coerceKernelArgumentType(
+ OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
+ /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
+ }
+
+ // FIXME: Should also use this for OpenCL, but it requires addressing the
+ // problem of kernels being called.
+ //
+ // FIXME: This doesn't apply the optimization of coercing pointers in structs
+ // to global address space when using byref. This would require implementing a
+ // new kind of coercion of the in-memory type when for indirect arguments.
+ if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
+ isAggregateTypeForABI(Ty)) {
+ return ABIArgInfo::getIndirectAliased(
+ getContext().getTypeAlignInChars(Ty),
+ getContext().getTargetAddressSpace(LangAS::opencl_constant),
+ false /*Realign*/, nullptr /*Padding*/);
+ }
+
+ // If we set CanBeFlattened to true, CodeGen will expand the struct to its
+ // individual elements, which confuses the Clover OpenCL backend; therefore we
+ // have to set it to false here. Other args of getDirect() are just defaults.
+ return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
+}
+
+ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, bool Variadic,
+ unsigned &NumRegsLeft) const {
+ assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
+
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (Variadic) {
+ return ABIArgInfo::getDirect(/*T=*/nullptr,
+ /*Offset=*/0,
+ /*Padding=*/nullptr,
+ /*CanBeFlattened=*/false,
+ /*Align=*/0);
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Records with non-trivial destructors/copy-constructors should not be
+ // passed by value.
+ if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ // Lower single-element structs to just pass a regular value. TODO: We
+ // could do reasonable-size multiple-element structs too, using getExpand(),
+ // though watch out for things like bitfields.
+ if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return DefaultABIInfo::classifyArgumentType(Ty);
+ }
+
+ // Pack aggregates <= 8 bytes into single VGPR or pair.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 64) {
+ unsigned NumRegs = (Size + 31) / 32;
+ NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
+
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+
+ if (Size <= 32)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+ // XXX: Should this be i64 instead, and should the limit increase?
+ llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
+ }
+
+ if (NumRegsLeft > 0) {
+ unsigned NumRegs = numRegsForType(Ty);
+ if (NumRegsLeft >= NumRegs) {
+ NumRegsLeft -= NumRegs;
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ // Use pass-by-reference in stead of pass-by-value for struct arguments in
+ // function ABI.
+ return ABIArgInfo::getIndirectAliased(
+ getContext().getTypeAlignInChars(Ty),
+ getContext().getTargetAddressSpace(LangAS::opencl_private));
+ }
+
+ // Otherwise just do the default thing.
+ ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
+ if (!ArgInfo.isIndirect()) {
+ unsigned NumRegs = numRegsForType(Ty);
+ NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
+ }
+
+ return ArgInfo;
+}
+
+class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
+
+ void setFunctionDeclAttributes(const FunctionDecl *FD, llvm::Function *F,
+ CodeGenModule &CGM) const;
+
+ void emitTargetGlobals(CodeGen::CodeGenModule &CGM) const override;
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+ unsigned getOpenCLKernelCallingConv() const override;
+
+ llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
+ llvm::PointerType *T, QualType QT) const override;
+
+ LangAS getASTAllocaAddressSpace() const override {
+ return getLangASFromTargetAS(
+ getABIInfo().getDataLayout().getAllocaAddrSpace());
+ }
+ LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
+ const VarDecl *D) const override;
+ llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
+ SyncScope Scope,
+ llvm::AtomicOrdering Ordering,
+ llvm::LLVMContext &Ctx) const override;
+ llvm::Value *createEnqueuedBlockKernel(CodeGenFunction &CGF,
+ llvm::Function *BlockInvokeFunc,
+ llvm::Type *BlockTy) const override;
+ bool shouldEmitStaticExternCAliases() const override;
+ bool shouldEmitDWARFBitFieldSeparators() const override;
+ void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
+};
+}
+
+static bool requiresAMDGPUProtectedVisibility(const Decl *D,
+ llvm::GlobalValue *GV) {
+ if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
+ return false;
+
+ return !D->hasAttr<OMPDeclareTargetDeclAttr>() &&
+ (D->hasAttr<OpenCLKernelAttr>() ||
+ (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
+ (isa<VarDecl>(D) &&
+ (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
+ cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
+ cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())));
+}
+
+void AMDGPUTargetCodeGenInfo::setFunctionDeclAttributes(
+ const FunctionDecl *FD, llvm::Function *F, CodeGenModule &M) const {
+ const auto *ReqdWGS =
+ M.getLangOpts().OpenCL ? FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
+ const bool IsOpenCLKernel =
+ M.getLangOpts().OpenCL && FD->hasAttr<OpenCLKernelAttr>();
+ const bool IsHIPKernel = M.getLangOpts().HIP && FD->hasAttr<CUDAGlobalAttr>();
+
+ const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
+ if (ReqdWGS || FlatWGS) {
+ M.handleAMDGPUFlatWorkGroupSizeAttr(F, FlatWGS, ReqdWGS);
+ } else if (IsOpenCLKernel || IsHIPKernel) {
+ // By default, restrict the maximum size to a value specified by
+ // --gpu-max-threads-per-block=n or its default value for HIP.
+ const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
+ const unsigned DefaultMaxWorkGroupSize =
+ IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
+ : M.getLangOpts().GPUMaxThreadsPerBlock;
+ std::string AttrVal =
+ std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
+ F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
+ }
+
+ if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>())
+ M.handleAMDGPUWavesPerEUAttr(F, Attr);
+
+ if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
+ unsigned NumSGPR = Attr->getNumSGPR();
+
+ if (NumSGPR != 0)
+ F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
+ }
+
+ if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
+ uint32_t NumVGPR = Attr->getNumVGPR();
+
+ if (NumVGPR != 0)
+ F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
+ }
+
+ if (const auto *Attr = FD->getAttr<AMDGPUMaxNumWorkGroupsAttr>()) {
+ uint32_t X = Attr->getMaxNumWorkGroupsX()
+ ->EvaluateKnownConstInt(M.getContext())
+ .getExtValue();
+ // Y and Z dimensions default to 1 if not specified
+ uint32_t Y = Attr->getMaxNumWorkGroupsY()
+ ? Attr->getMaxNumWorkGroupsY()
+ ->EvaluateKnownConstInt(M.getContext())
+ .getExtValue()
+ : 1;
+ uint32_t Z = Attr->getMaxNumWorkGroupsZ()
+ ? Attr->getMaxNumWorkGroupsZ()
+ ->EvaluateKnownConstInt(M.getContext())
+ .getExtValue()
+ : 1;
+
+ llvm::SmallString<32> AttrVal;
+ llvm::raw_svector_ostream OS(AttrVal);
+ OS << X << ',' << Y << ',' << Z;
+
+ F->addFnAttr("amdgpu-max-num-workgroups", AttrVal.str());
+ }
+}
+
+/// Emits control constants used to change per-architecture behaviour in the
+/// AMDGPU ROCm device libraries.
+void AMDGPUTargetCodeGenInfo::emitTargetGlobals(
+ CodeGen::CodeGenModule &CGM) const {
+ StringRef Name = "__oclc_ABI_version";
+ llvm::GlobalVariable *OriginalGV = CGM.getModule().getNamedGlobal(Name);
+ if (OriginalGV && !llvm::GlobalVariable::isExternalLinkage(OriginalGV->getLinkage()))
+ return;
+
+ if (CGM.getTarget().getTargetOpts().CodeObjectVersion ==
+ llvm::CodeObjectVersionKind::COV_None)
+ return;
+
+ auto *Type = llvm::IntegerType::getIntNTy(CGM.getModule().getContext(), 32);
+ llvm::Constant *COV = llvm::ConstantInt::get(
+ Type, CGM.getTarget().getTargetOpts().CodeObjectVersion);
+
+ // It needs to be constant weak_odr without externally_initialized so that
+ // the load instuction can be eliminated by the IPSCCP.
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), Type, true, llvm::GlobalValue::WeakODRLinkage, COV, Name,
+ nullptr, llvm::GlobalValue::ThreadLocalMode::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant));
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Local);
+ GV->setVisibility(llvm::GlobalValue::VisibilityTypes::HiddenVisibility);
+
+ // Replace any external references to this variable with the new global.
+ if (OriginalGV) {
+ OriginalGV->replaceAllUsesWith(GV);
+ GV->takeName(OriginalGV);
+ OriginalGV->eraseFromParent();
+ }
+}
+
+void AMDGPUTargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+ if (requiresAMDGPUProtectedVisibility(D, GV)) {
+ GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
+ GV->setDSOLocal(true);
+ }
+
+ if (GV->isDeclaration())
+ return;
+
+ llvm::Function *F = dyn_cast<llvm::Function>(GV);
+ if (!F)
+ return;
+
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (FD)
+ setFunctionDeclAttributes(FD, F, M);
+
+ if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
+ F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
+
+ if (!getABIInfo().getCodeGenOpts().EmitIEEENaNCompliantInsts)
+ F->addFnAttr("amdgpu-ieee", "false");
+}
+
+unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
+ return llvm::CallingConv::AMDGPU_KERNEL;
+}
+
+// Currently LLVM assumes null pointers always have value 0,
+// which results in incorrectly transformed IR. Therefore, instead of
+// emitting null pointers in private and local address spaces, a null
+// pointer in generic address space is emitted which is casted to a
+// pointer in local or private address space.
+llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
+ const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
+ QualType QT) const {
+ if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
+ return llvm::ConstantPointerNull::get(PT);
+
+ auto &Ctx = CGM.getContext();
+ auto NPT = llvm::PointerType::get(
+ PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
+ return llvm::ConstantExpr::getAddrSpaceCast(
+ llvm::ConstantPointerNull::get(NPT), PT);
+}
+
+LangAS
+AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
+ const VarDecl *D) const {
+ assert(!CGM.getLangOpts().OpenCL &&
+ !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
+ "Address space agnostic languages only");
+ LangAS DefaultGlobalAS = getLangASFromTargetAS(
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
+ if (!D)
+ return DefaultGlobalAS;
+
+ LangAS AddrSpace = D->getType().getAddressSpace();
+ if (AddrSpace != LangAS::Default)
+ return AddrSpace;
+
+ // Only promote to address space 4 if VarDecl has constant initialization.
+ if (D->getType().isConstantStorage(CGM.getContext(), false, false) &&
+ D->hasConstantInitialization()) {
+ if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
+ return *ConstAS;
+ }
+ return DefaultGlobalAS;
+}
+
+llvm::SyncScope::ID
+AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
+ SyncScope Scope,
+ llvm::AtomicOrdering Ordering,
+ llvm::LLVMContext &Ctx) const {
+ std::string Name;
+ switch (Scope) {
+ case SyncScope::HIPSingleThread:
+ case SyncScope::SingleScope:
+ Name = "singlethread";
+ break;
+ case SyncScope::HIPWavefront:
+ case SyncScope::OpenCLSubGroup:
+ case SyncScope::WavefrontScope:
+ Name = "wavefront";
+ break;
+ case SyncScope::HIPWorkgroup:
+ case SyncScope::OpenCLWorkGroup:
+ case SyncScope::WorkgroupScope:
+ Name = "workgroup";
+ break;
+ case SyncScope::HIPAgent:
+ case SyncScope::OpenCLDevice:
+ case SyncScope::DeviceScope:
+ Name = "agent";
+ break;
+ case SyncScope::SystemScope:
+ case SyncScope::HIPSystem:
+ case SyncScope::OpenCLAllSVMDevices:
+ Name = "";
+ break;
+ }
+
+ if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
+ if (!Name.empty())
+ Name = Twine(Twine(Name) + Twine("-")).str();
+
+ Name = Twine(Twine(Name) + Twine("one-as")).str();
+ }
+
+ return Ctx.getOrInsertSyncScopeID(Name);
+}
+
+bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
+ return false;
+}
+
+bool AMDGPUTargetCodeGenInfo::shouldEmitDWARFBitFieldSeparators() const {
+ return true;
+}
+
+void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
+ const FunctionType *&FT) const {
+ FT = getABIInfo().getContext().adjustFunctionType(
+ FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
+}
+
+/// Create an OpenCL kernel for an enqueued block.
+///
+/// The type of the first argument (the block literal) is the struct type
+/// of the block literal instead of a pointer type. The first argument
+/// (block literal) is passed directly by value to the kernel. The kernel
+/// allocates the same type of struct on stack and stores the block literal
+/// to it and passes its pointer to the block invoke function. The kernel
+/// has "enqueued-block" function attribute and kernel argument metadata.
+llvm::Value *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
+ CodeGenFunction &CGF, llvm::Function *Invoke, llvm::Type *BlockTy) const {
+ auto &Builder = CGF.Builder;
+ auto &C = CGF.getLLVMContext();
+
+ auto *InvokeFT = Invoke->getFunctionType();
+ llvm::SmallVector<llvm::Type *, 2> ArgTys;
+ llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
+ llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
+ llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
+ llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
+ llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
+ llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
+
+ ArgTys.push_back(BlockTy);
+ ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
+ AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
+ ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
+ ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
+ AccessQuals.push_back(llvm::MDString::get(C, "none"));
+ ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
+ for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
+ ArgTys.push_back(InvokeFT->getParamType(I));
+ ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
+ AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
+ AccessQuals.push_back(llvm::MDString::get(C, "none"));
+ ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
+ ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
+ ArgNames.push_back(
+ llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
+ }
+ std::string Name = Invoke->getName().str() + "_kernel";
+ auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
+ auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
+ &CGF.CGM.getModule());
+ F->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL);
+
+ llvm::AttrBuilder KernelAttrs(C);
+ // FIXME: The invoke isn't applying the right attributes either
+ // FIXME: This is missing setTargetAttributes
+ CGF.CGM.addDefaultFunctionDefinitionAttributes(KernelAttrs);
+ KernelAttrs.addAttribute("enqueued-block");
+ F->addFnAttrs(KernelAttrs);
+
+ auto IP = CGF.Builder.saveIP();
+ auto *BB = llvm::BasicBlock::Create(C, "entry", F);
+ Builder.SetInsertPoint(BB);
+ const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
+ auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
+ BlockPtr->setAlignment(BlockAlign);
+ Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
+ auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
+ llvm::SmallVector<llvm::Value *, 2> Args;
+ Args.push_back(Cast);
+ for (llvm::Argument &A : llvm::drop_begin(F->args()))
+ Args.push_back(&A);
+ llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
+ call->setCallingConv(Invoke->getCallingConv());
+ Builder.CreateRetVoid();
+ Builder.restoreIP(IP);
+
+ F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
+ F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
+ F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
+ F->setMetadata("kernel_arg_base_type",
+ llvm::MDNode::get(C, ArgBaseTypeNames));
+ F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
+ if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
+ F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
+
+ return F;
+}
+
+void CodeGenModule::handleAMDGPUFlatWorkGroupSizeAttr(
+ llvm::Function *F, const AMDGPUFlatWorkGroupSizeAttr *FlatWGS,
+ const ReqdWorkGroupSizeAttr *ReqdWGS, int32_t *MinThreadsVal,
+ int32_t *MaxThreadsVal) {
+ unsigned Min = 0;
+ unsigned Max = 0;
+ if (FlatWGS) {
+ Min = FlatWGS->getMin()->EvaluateKnownConstInt(getContext()).getExtValue();
+ Max = FlatWGS->getMax()->EvaluateKnownConstInt(getContext()).getExtValue();
+ }
+ if (ReqdWGS && Min == 0 && Max == 0)
+ Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
+
+ if (Min != 0) {
+ assert(Min <= Max && "Min must be less than or equal Max");
+
+ if (MinThreadsVal)
+ *MinThreadsVal = Min;
+ if (MaxThreadsVal)
+ *MaxThreadsVal = Max;
+ std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
+ if (F)
+ F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
+ } else
+ assert(Max == 0 && "Max must be zero");
+}
+
+void CodeGenModule::handleAMDGPUWavesPerEUAttr(
+ llvm::Function *F, const AMDGPUWavesPerEUAttr *Attr) {
+ unsigned Min =
+ Attr->getMin()->EvaluateKnownConstInt(getContext()).getExtValue();
+ unsigned Max =
+ Attr->getMax()
+ ? Attr->getMax()->EvaluateKnownConstInt(getContext()).getExtValue()
+ : 0;
+
+ if (Min != 0) {
+ assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
+
+ std::string AttrVal = llvm::utostr(Min);
+ if (Max != 0)
+ AttrVal = AttrVal + "," + llvm::utostr(Max);
+ F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
+ } else
+ assert(Max == 0 && "Max must be zero");
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<AMDGPUTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/ARC.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/ARC.cpp
new file mode 100644
index 000000000000..1904e8fdb388
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/ARC.cpp
@@ -0,0 +1,158 @@
+//===- ARC.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+// ARC ABI implementation.
+namespace {
+
+class ARCABIInfo : public DefaultABIInfo {
+ struct CCState {
+ unsigned FreeRegs;
+ };
+
+public:
+ using DefaultABIInfo::DefaultABIInfo;
+
+private:
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
+ if (!State.FreeRegs)
+ return;
+ if (Info.isIndirect() && Info.getInReg())
+ State.FreeRegs--;
+ else if (Info.isDirect() && Info.getInReg()) {
+ unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
+ if (sz < State.FreeRegs)
+ State.FreeRegs -= sz;
+ else
+ State.FreeRegs = 0;
+ }
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ CCState State;
+ // ARC uses 8 registers to pass arguments.
+ State.FreeRegs = 8;
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ updateState(FI.getReturnInfo(), FI.getReturnType(), State);
+ for (auto &I : FI.arguments()) {
+ I.info = classifyArgumentType(I.type, State.FreeRegs);
+ updateState(I.info, I.type, State);
+ }
+ }
+
+ ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
+ ABIArgInfo getIndirectByValue(QualType Ty) const;
+ ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+};
+
+class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ ARCTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
+};
+
+
+ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
+ return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
+ getNaturalAlignIndirect(Ty, false);
+}
+
+ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
+ // Compute the byval alignment.
+ const unsigned MinABIStackAlignInBytes = 4;
+ unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
+ TypeAlign > MinABIStackAlignInBytes);
+}
+
+RValue ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
+ getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(4), true, Slot);
+}
+
+ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
+ uint8_t FreeRegs) const {
+ // Handle the generic C++ ABI.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+ if (RAA == CGCXXABI::RAA_Indirect)
+ return getIndirectByRef(Ty, FreeRegs > 0);
+
+ if (RAA == CGCXXABI::RAA_DirectInMemory)
+ return getIndirectByValue(Ty);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Structures with flexible arrays are always indirect.
+ if (RT && RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectByValue(Ty);
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ llvm::LLVMContext &LLVMContext = getVMContext();
+
+ llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+ SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
+ llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+
+ return FreeRegs >= SizeInRegs ?
+ ABIArgInfo::getDirectInReg(Result) :
+ ABIArgInfo::getDirect(Result, 0, nullptr, false);
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > 64)
+ return getIndirectByValue(Ty);
+
+ return isPromotableIntegerTypeForABI(Ty)
+ ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
+ : ABIArgInfo::getExtend(Ty))
+ : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
+ : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirectInReg();
+
+ // Arguments of size > 4 registers are indirect.
+ auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
+ if (RetSize > 4)
+ return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
+
+ return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+} // End anonymous namespace.
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createARCTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<ARCTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/ARM.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/ARM.cpp
new file mode 100644
index 000000000000..457d761039a0
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/ARM.cpp
@@ -0,0 +1,814 @@
+//===- ARM.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// ARM ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class ARMABIInfo : public ABIInfo {
+ ARMABIKind Kind;
+ bool IsFloatABISoftFP;
+
+public:
+ ARMABIInfo(CodeGenTypes &CGT, ARMABIKind Kind) : ABIInfo(CGT), Kind(Kind) {
+ setCCs();
+ IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
+ CGT.getCodeGenOpts().FloatABI == ""; // default
+ }
+
+ bool isEABI() const {
+ switch (getTarget().getTriple().getEnvironment()) {
+ case llvm::Triple::Android:
+ case llvm::Triple::EABI:
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABI:
+ case llvm::Triple::GNUEABIT64:
+ case llvm::Triple::GNUEABIHF:
+ case llvm::Triple::GNUEABIHFT64:
+ case llvm::Triple::MuslEABI:
+ case llvm::Triple::MuslEABIHF:
+ return true;
+ default:
+ return getTarget().getTriple().isOHOSFamily();
+ }
+ }
+
+ bool isEABIHF() const {
+ switch (getTarget().getTriple().getEnvironment()) {
+ case llvm::Triple::EABIHF:
+ case llvm::Triple::GNUEABIHF:
+ case llvm::Triple::GNUEABIHFT64:
+ case llvm::Triple::MuslEABIHF:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ ARMABIKind getABIKind() const { return Kind; }
+
+ bool allowBFloatArgsAndRet() const override {
+ return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
+ }
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
+ unsigned functionCallConv) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
+ unsigned functionCallConv) const;
+ ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
+ uint64_t Members) const;
+ ABIArgInfo coerceIllegalVector(QualType Ty) const;
+ bool isIllegalVectorType(QualType Ty) const;
+ bool containsAnyFP16Vectors(QualType Ty) const;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t Members) const override;
+ bool isZeroLengthBitfieldPermittedInHomogeneousAggregate() const override;
+
+ bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ llvm::CallingConv::ID getLLVMDefaultCC() const;
+ llvm::CallingConv::ID getABIDefaultCC() const;
+ void setCCs();
+};
+
+class ARMSwiftABIInfo : public SwiftABIInfo {
+public:
+ explicit ARMSwiftABIInfo(CodeGenTypes &CGT)
+ : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/true) {}
+
+ bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+ unsigned NumElts) const override;
+};
+
+class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
+ : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {
+ SwiftInfo = std::make_unique<ARMSwiftABIInfo>(CGT);
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 13;
+ }
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-15 are the 16 integer registers.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
+ return false;
+ }
+
+ unsigned getSizeOfUnwindException() const override {
+ if (getABIInfo<ARMABIInfo>().isEABI())
+ return 88;
+ return TargetCodeGenInfo::getSizeOfUnwindException();
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ if (GV->isDeclaration())
+ return;
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD)
+ return;
+ auto *Fn = cast<llvm::Function>(GV);
+
+ if (const auto *TA = FD->getAttr<TargetAttr>()) {
+ ParsedTargetAttr Attr =
+ CGM.getTarget().parseTargetAttr(TA->getFeaturesStr());
+ if (!Attr.BranchProtection.empty()) {
+ TargetInfo::BranchProtectionInfo BPI{};
+ StringRef DiagMsg;
+ StringRef Arch =
+ Attr.CPU.empty() ? CGM.getTarget().getTargetOpts().CPU : Attr.CPU;
+ if (!CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
+ Arch, BPI, DiagMsg)) {
+ CGM.getDiags().Report(
+ D->getLocation(),
+ diag::warn_target_unsupported_branch_protection_attribute)
+ << Arch;
+ } else
+ setBranchProtectionFnAttributes(BPI, (*Fn));
+ } else if (CGM.getLangOpts().BranchTargetEnforcement ||
+ CGM.getLangOpts().hasSignReturnAddress()) {
+ // If the Branch Protection attribute is missing, validate the target
+ // Architecture attribute against Branch Protection command line
+ // settings.
+ if (!CGM.getTarget().isBranchProtectionSupportedArch(Attr.CPU))
+ CGM.getDiags().Report(
+ D->getLocation(),
+ diag::warn_target_unsupported_branch_protection_attribute)
+ << Attr.CPU;
+ }
+ } else if (CGM.getTarget().isBranchProtectionSupportedArch(
+ CGM.getTarget().getTargetOpts().CPU)) {
+ TargetInfo::BranchProtectionInfo BPI(CGM.getLangOpts());
+ setBranchProtectionFnAttributes(BPI, (*Fn));
+ }
+
+ const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
+ if (!Attr)
+ return;
+
+ const char *Kind;
+ switch (Attr->getInterrupt()) {
+ case ARMInterruptAttr::Generic: Kind = ""; break;
+ case ARMInterruptAttr::IRQ: Kind = "IRQ"; break;
+ case ARMInterruptAttr::FIQ: Kind = "FIQ"; break;
+ case ARMInterruptAttr::SWI: Kind = "SWI"; break;
+ case ARMInterruptAttr::ABORT: Kind = "ABORT"; break;
+ case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break;
+ }
+
+ Fn->addFnAttr("interrupt", Kind);
+
+ ARMABIKind ABI = getABIInfo<ARMABIInfo>().getABIKind();
+ if (ABI == ARMABIKind::APCS)
+ return;
+
+ // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
+ // however this is not necessarily true on taking any interrupt. Instruct
+ // the backend to perform a realignment as part of the function prologue.
+ llvm::AttrBuilder B(Fn->getContext());
+ B.addStackAlignmentAttr(8);
+ Fn->addFnAttrs(B);
+ }
+};
+
+class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
+public:
+ WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIKind K)
+ : ARMTargetCodeGenInfo(CGT, K) {}
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+
+void WindowsARMTargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (GV->isDeclaration())
+ return;
+ addStackProbeTargetAttributes(D, GV, CGM);
+}
+}
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!::classifyReturnType(getCXXABI(), FI, *this))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
+ FI.getCallingConvention());
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, FI.isVariadic(),
+ FI.getCallingConvention());
+
+
+ // Always honor user-specified calling convention.
+ if (FI.getCallingConvention() != llvm::CallingConv::C)
+ return;
+
+ llvm::CallingConv::ID cc = getRuntimeCC();
+ if (cc != llvm::CallingConv::C)
+ FI.setEffectiveCallingConvention(cc);
+}
+
+/// Return the default calling convention that LLVM will use.
+llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
+ // The default calling convention that LLVM will infer.
+ if (isEABIHF() || getTarget().getTriple().isWatchABI())
+ return llvm::CallingConv::ARM_AAPCS_VFP;
+ else if (isEABI())
+ return llvm::CallingConv::ARM_AAPCS;
+ else
+ return llvm::CallingConv::ARM_APCS;
+}
+
+/// Return the calling convention that our ABI would like us to use
+/// as the C calling convention.
+llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
+ switch (getABIKind()) {
+ case ARMABIKind::APCS:
+ return llvm::CallingConv::ARM_APCS;
+ case ARMABIKind::AAPCS:
+ return llvm::CallingConv::ARM_AAPCS;
+ case ARMABIKind::AAPCS_VFP:
+ return llvm::CallingConv::ARM_AAPCS_VFP;
+ case ARMABIKind::AAPCS16_VFP:
+ return llvm::CallingConv::ARM_AAPCS_VFP;
+ }
+ llvm_unreachable("bad ABI kind");
+}
+
+void ARMABIInfo::setCCs() {
+ assert(getRuntimeCC() == llvm::CallingConv::C);
+
+ // Don't muddy up the IR with a ton of explicit annotations if
+ // they'd just match what LLVM will infer from the triple.
+ llvm::CallingConv::ID abiCC = getABIDefaultCC();
+ if (abiCC != getLLVMDefaultCC())
+ RuntimeCC = abiCC;
+}
+
+ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 32) {
+ llvm::Type *ResType =
+ llvm::Type::getInt32Ty(getVMContext());
+ return ABIArgInfo::getDirect(ResType);
+ }
+ if (Size == 64 || Size == 128) {
+ auto *ResType = llvm::FixedVectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), Size / 32);
+ return ABIArgInfo::getDirect(ResType);
+ }
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
+ const Type *Base,
+ uint64_t Members) const {
+ assert(Base && "Base class should be set for homogeneous aggregate");
+ // Base can be a floating-point or a vector.
+ if (const VectorType *VT = Base->getAs<VectorType>()) {
+ // FP16 vectors should be converted to integer vectors
+ if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
+ uint64_t Size = getContext().getTypeSize(VT);
+ auto *NewVecTy = llvm::FixedVectorType::get(
+ llvm::Type::getInt32Ty(getVMContext()), Size / 32);
+ llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
+ return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
+ }
+ }
+ unsigned Align = 0;
+ if (getABIKind() == ARMABIKind::AAPCS ||
+ getABIKind() == ARMABIKind::AAPCS_VFP) {
+ // For alignment adjusted HFAs, cap the argument alignment to 8, leave it
+ // default otherwise.
+ Align = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
+ unsigned BaseAlign = getContext().getTypeAlignInChars(Base).getQuantity();
+ Align = (Align > BaseAlign && Align >= 8) ? 8 : 0;
+ }
+ return ABIArgInfo::getDirect(nullptr, 0, nullptr, false, Align);
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
+ unsigned functionCallConv) const {
+ // 6.1.2.1 The following argument types are VFP CPRCs:
+ // A single-precision floating-point type (including promoted
+ // half-precision types); A double-precision floating-point type;
+ // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
+ // with a Base Type of a single- or double-precision floating-point type,
+ // 64-bit containerized vectors or 128-bit containerized vectors with one
+ // to four Elements.
+ // Variadic functions should always marshal to the base standard.
+ bool IsAAPCS_VFP =
+ !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
+
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Handle illegal vector types here.
+ if (isIllegalVectorType(Ty))
+ return coerceIllegalVector(Ty);
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+ Ty = EnumTy->getDecl()->getIntegerType();
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > 64)
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ if (IsAAPCS_VFP) {
+ // Homogeneous Aggregates need to be expanded when we can fit the aggregate
+ // into VFP registers.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, Members))
+ return classifyHomogeneousAggregate(Ty, Base, Members);
+ } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
+ // WatchOS does have homogeneous aggregates. Note that we intentionally use
+ // this convention even for a variadic function: the backend will use GPRs
+ // if needed.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(Ty, Base, Members)) {
+ assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
+ llvm::Type *Ty =
+ llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
+ return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
+ }
+ }
+
+ if (getABIKind() == ARMABIKind::AAPCS16_VFP &&
+ getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
+ // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
+ // bigger than 128-bits, they get placed in space allocated by the caller,
+ // and a pointer is passed.
+ return ABIArgInfo::getIndirect(
+ CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
+ }
+
+ // Support byval for ARM.
+ // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
+ // most 8-byte. We realign the indirect argument if type alignment is bigger
+ // than ABI alignment.
+ uint64_t ABIAlign = 4;
+ uint64_t TyAlign;
+ if (getABIKind() == ARMABIKind::AAPCS_VFP ||
+ getABIKind() == ARMABIKind::AAPCS) {
+ TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
+ ABIAlign = std::clamp(TyAlign, (uint64_t)4, (uint64_t)8);
+ } else {
+ TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
+ }
+ if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
+ assert(getABIKind() != ARMABIKind::AAPCS16_VFP && "unexpected byval");
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
+ /*ByVal=*/true,
+ /*Realign=*/TyAlign > ABIAlign);
+ }
+
+ // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
+ // same size and alignment.
+ if (getTarget().isRenderScriptTarget()) {
+ return coerceToIntArray(Ty, getContext(), getVMContext());
+ }
+
+ // Otherwise, pass by coercing to a structure of the appropriate size.
+ llvm::Type* ElemTy;
+ unsigned SizeRegs;
+ // FIXME: Try to match the types of the arguments more accurately where
+ // we can.
+ if (TyAlign <= 4) {
+ ElemTy = llvm::Type::getInt32Ty(getVMContext());
+ SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+ } else {
+ ElemTy = llvm::Type::getInt64Ty(getVMContext());
+ SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
+ }
+
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
+}
+
+static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
+ llvm::LLVMContext &VMContext) {
+ // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
+ // is called integer-like if its size is less than or equal to one word, and
+ // the offset of each of its addressable sub-fields is zero.
+
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // Check that the type fits in a word.
+ if (Size > 32)
+ return false;
+
+ // FIXME: Handle vector types!
+ if (Ty->isVectorType())
+ return false;
+
+ // Float types are never treated as "integer like".
+ if (Ty->isRealFloatingType())
+ return false;
+
+ // If this is a builtin or pointer type then it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
+ return true;
+
+ // Small complex integer types are "integer like".
+ if (const ComplexType *CT = Ty->getAs<ComplexType>())
+ return isIntegerLikeType(CT->getElementType(), Context, VMContext);
+
+ // Single element and zero sized arrays should be allowed, by the definition
+ // above, but they are not.
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // Ignore records with flexible arrays.
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return false;
+
+ // Check that all sub-fields are at offset 0, and are themselves "integer
+ // like".
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ bool HadField = false;
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ const FieldDecl *FD = *i;
+
+ // Bit-fields are not addressable, we only need to verify they are "integer
+ // like". We still have to disallow a subsequent non-bitfield, for example:
+ // struct { int : 0; int x }
+ // is non-integer like according to gcc.
+ if (FD->isBitField()) {
+ if (!RD->isUnion())
+ HadField = true;
+
+ if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+ return false;
+
+ continue;
+ }
+
+ // Check if this field is at offset 0.
+ if (Layout.getFieldOffset(idx) != 0)
+ return false;
+
+ if (!isIntegerLikeType(FD->getType(), Context, VMContext))
+ return false;
+
+ // Only allow at most one field in a structure. This doesn't match the
+ // wording above, but follows gcc in situations with a field following an
+ // empty structure.
+ if (!RD->isUnion()) {
+ if (HadField)
+ return false;
+
+ HadField = true;
+ }
+ }
+
+ return true;
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
+ unsigned functionCallConv) const {
+
+ // Variadic functions should always marshal to the base standard.
+ bool IsAAPCS_VFP =
+ !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
+
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+ // Large vector types should be returned via memory.
+ if (getContext().getTypeSize(RetTy) > 128)
+ return getNaturalAlignIndirect(RetTy);
+ // TODO: FP16/BF16 vectors should be converted to integer vectors
+ // This check is similar to isIllegalVectorType - refactor?
+ if ((!getTarget().hasLegalHalfType() &&
+ (VT->getElementType()->isFloat16Type() ||
+ VT->getElementType()->isHalfType())) ||
+ (IsFloatABISoftFP &&
+ VT->getElementType()->isBFloat16Type()))
+ return coerceIllegalVector(RetTy);
+ }
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > 64)
+ return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+
+ return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect();
+ }
+
+ // Are we following APCS?
+ if (getABIKind() == ARMABIKind::APCS) {
+ if (isEmptyRecord(getContext(), RetTy, false))
+ return ABIArgInfo::getIgnore();
+
+ // Complex types are all returned as packed integers.
+ //
+ // FIXME: Consider using 2 x vector types if the back end handles them
+ // correctly.
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(
+ getVMContext(), getContext().getTypeSize(RetTy)));
+
+ // Integer like structures are returned in r0.
+ if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
+ // Return in the smallest viable integer type.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ }
+
+ // Otherwise return in memory.
+ return getNaturalAlignIndirect(RetTy);
+ }
+
+ // Otherwise this is an AAPCS variant.
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Check for homogeneous aggregates with AAPCS-VFP.
+ if (IsAAPCS_VFP) {
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (isHomogeneousAggregate(RetTy, Base, Members))
+ return classifyHomogeneousAggregate(RetTy, Base, Members);
+ }
+
+ // Aggregates <= 4 bytes are returned in r0; other aggregates
+ // are returned indirectly.
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size <= 32) {
+ // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
+ // same size and alignment.
+ if (getTarget().isRenderScriptTarget()) {
+ return coerceToIntArray(RetTy, getContext(), getVMContext());
+ }
+ if (getDataLayout().isBigEndian())
+ // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+
+ // Return in the smallest viable integer type.
+ if (Size <= 8)
+ return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
+ if (Size <= 16)
+ return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
+ return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
+ } else if (Size <= 128 && getABIKind() == ARMABIKind::AAPCS16_VFP) {
+ llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
+ llvm::Type *CoerceTy =
+ llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ return getNaturalAlignIndirect(RetTy);
+}
+
+/// isIllegalVector - check whether Ty is an illegal vector type.
+bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VT = Ty->getAs<VectorType> ()) {
+ // On targets that don't support half, fp16 or bfloat, they are expanded
+ // into float, and we don't want the ABI to depend on whether or not they
+ // are supported in hardware. Thus return false to coerce vectors of these
+ // types into integer vectors.
+ // We do not depend on hasLegalHalfType for bfloat as it is a
+ // separate IR type.
+ if ((!getTarget().hasLegalHalfType() &&
+ (VT->getElementType()->isFloat16Type() ||
+ VT->getElementType()->isHalfType())) ||
+ (IsFloatABISoftFP &&
+ VT->getElementType()->isBFloat16Type()))
+ return true;
+ if (isAndroid()) {
+ // Android shipped using Clang 3.1, which supported a slightly different
+ // vector ABI. The primary differences were that 3-element vector types
+ // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
+ // accepts that legacy behavior for Android only.
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ // NumElements should be power of 2 or equal to 3.
+ if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
+ return true;
+ } else {
+ // Check whether VT is legal.
+ unsigned NumElements = VT->getNumElements();
+ uint64_t Size = getContext().getTypeSize(VT);
+ // NumElements should be power of 2.
+ if (!llvm::isPowerOf2_32(NumElements))
+ return true;
+ // Size should be greater than 32 bits.
+ return Size <= 32;
+ }
+ }
+ return false;
+}
+
+/// Return true if a type contains any 16-bit floating point vectors
+bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ uint64_t NElements = AT->getZExtSize();
+ if (NElements == 0)
+ return false;
+ return containsAnyFP16Vectors(AT->getElementType());
+ } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
+ return containsAnyFP16Vectors(B.getType());
+ }))
+ return true;
+
+ if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
+ return FD && containsAnyFP16Vectors(FD->getType());
+ }))
+ return true;
+
+ return false;
+ } else {
+ if (const VectorType *VT = Ty->getAs<VectorType>())
+ return (VT->getElementType()->isFloat16Type() ||
+ VT->getElementType()->isBFloat16Type() ||
+ VT->getElementType()->isHalfType());
+ return false;
+ }
+}
+
+bool ARMSwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
+ unsigned NumElts) const {
+ if (!llvm::isPowerOf2_32(NumElts))
+ return false;
+ unsigned size = CGT.getDataLayout().getTypeStoreSizeInBits(EltTy);
+ if (size > 64)
+ return false;
+ if (VectorSize.getQuantity() != 8 &&
+ (VectorSize.getQuantity() != 16 || NumElts == 1))
+ return false;
+ return true;
+}
+
+bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ // Homogeneous aggregates for AAPCS-VFP must have base types of float,
+ // double, or 64-bit or 128-bit vectors.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Float ||
+ BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble)
+ return true;
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ unsigned VecSize = getContext().getTypeSize(VT);
+ if (VecSize == 64 || VecSize == 128)
+ return true;
+ }
+ return false;
+}
+
+bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
+ uint64_t Members) const {
+ return Members <= 4;
+}
+
+bool ARMABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
+ // AAPCS32 says that the rule for whether something is a homogeneous
+ // aggregate is applied to the output of the data layout decision. So
+ // anything that doesn't affect the data layout also does not affect
+ // homogeneity. In particular, zero-length bitfields don't stop a struct
+ // being homogeneous.
+ return true;
+}
+
+bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
+ bool acceptHalf) const {
+ // Give precedence to user-specified calling conventions.
+ if (callConvention != llvm::CallingConv::C)
+ return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
+ else
+ return (getABIKind() == ARMABIKind::AAPCS_VFP) ||
+ (acceptHalf && (getABIKind() == ARMABIKind::AAPCS16_VFP));
+}
+
+RValue ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ CharUnits SlotSize = CharUnits::fromQuantity(4);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return Slot.asRValue();
+
+ CharUnits TySize = getContext().getTypeSizeInChars(Ty);
+ CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
+
+ // Use indirect if size of the illegal vector is bigger than 16 bytes.
+ bool IsIndirect = false;
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
+ IsIndirect = true;
+
+ // ARMv7k passes structs bigger than 16 bytes indirectly, in space
+ // allocated by the caller.
+ } else if (TySize > CharUnits::fromQuantity(16) &&
+ getABIKind() == ARMABIKind::AAPCS16_VFP &&
+ !isHomogeneousAggregate(Ty, Base, Members)) {
+ IsIndirect = true;
+
+ // Otherwise, bound the type's ABI alignment.
+ // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
+ // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
+ // Our callers should be prepared to handle an under-aligned address.
+ } else if (getABIKind() == ARMABIKind::AAPCS_VFP ||
+ getABIKind() == ARMABIKind::AAPCS) {
+ TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
+ TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
+ } else if (getABIKind() == ARMABIKind::AAPCS16_VFP) {
+ // ARMv7k allows type alignment up to 16 bytes.
+ TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
+ TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
+ } else {
+ TyAlignForABI = CharUnits::fromQuantity(4);
+ }
+
+ TypeInfoChars TyInfo(TySize, TyAlignForABI, AlignRequirementKind::None);
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, SlotSize,
+ /*AllowHigherAlign*/ true, Slot);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind) {
+ return std::make_unique<ARMTargetCodeGenInfo>(CGM.getTypes(), Kind);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K) {
+ return std::make_unique<WindowsARMTargetCodeGenInfo>(CGM.getTypes(), K);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/AVR.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/AVR.cpp
new file mode 100644
index 000000000000..50547dd6dec5
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/AVR.cpp
@@ -0,0 +1,154 @@
+//===- AVR.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// AVR ABI Implementation. Documented at
+// https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
+// https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny
+//===----------------------------------------------------------------------===//
+
+namespace {
+class AVRABIInfo : public DefaultABIInfo {
+private:
+ // The total amount of registers can be used to pass parameters. It is 18 on
+ // AVR, or 6 on AVRTiny.
+ const unsigned ParamRegs;
+ // The total amount of registers can be used to pass return value. It is 8 on
+ // AVR, or 4 on AVRTiny.
+ const unsigned RetRegs;
+
+public:
+ AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
+ : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {}
+
+ ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const {
+ // On AVR, a return struct with size less than or equals to 8 bytes is
+ // returned directly via registers R18-R25. On AVRTiny, a return struct
+ // with size less than or equals to 4 bytes is returned directly via
+ // registers R22-R25.
+ if (isAggregateTypeForABI(Ty) &&
+ getContext().getTypeSize(Ty) <= RetRegs * 8)
+ return ABIArgInfo::getDirect();
+ // A return value (struct or scalar) with larger size is returned via a
+ // stack slot, along with a pointer as the function's implicit argument.
+ if (getContext().getTypeSize(Ty) > RetRegs * 8) {
+ LargeRet = true;
+ return getNaturalAlignIndirect(Ty);
+ }
+ // An i8 return value should not be extended to i16, since AVR has 8-bit
+ // registers.
+ if (Ty->isIntegralOrEnumerationType() && getContext().getTypeSize(Ty) <= 8)
+ return ABIArgInfo::getDirect();
+ // Otherwise we follow the default way which is compatible.
+ return DefaultABIInfo::classifyReturnType(Ty);
+ }
+
+ ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const {
+ unsigned TySize = getContext().getTypeSize(Ty);
+
+ // An int8 type argument always costs two registers like an int16.
+ if (TySize == 8 && NumRegs >= 2) {
+ NumRegs -= 2;
+ return ABIArgInfo::getExtend(Ty);
+ }
+
+ // If the argument size is an odd number of bytes, round up the size
+ // to the next even number.
+ TySize = llvm::alignTo(TySize, 16);
+
+ // Any type including an array/struct type can be passed in rgisters,
+ // if there are enough registers left.
+ if (TySize <= NumRegs * 8) {
+ NumRegs -= TySize / 8;
+ return ABIArgInfo::getDirect();
+ }
+
+ // An argument is passed either completely in registers or completely in
+ // memory. Since there are not enough registers left, current argument
+ // and all other unprocessed arguments should be passed in memory.
+ // However we still need to return `ABIArgInfo::getDirect()` other than
+ // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot
+ // will be allocated, so the stack frame layout will be incompatible with
+ // avr-gcc.
+ NumRegs = 0;
+ return ABIArgInfo::getDirect();
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ // Decide the return type.
+ bool LargeRet = false;
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet);
+
+ // Decide each argument type. The total number of registers can be used for
+ // arguments depends on several factors:
+ // 1. Arguments of varargs functions are passed on the stack. This applies
+ // even to the named arguments. So no register can be used.
+ // 2. Total 18 registers can be used on avr and 6 ones on avrtiny.
+ // 3. If the return type is a struct with too large size, two registers
+ // (out of 18/6) will be cost as an implicit pointer argument.
+ unsigned NumRegs = ParamRegs;
+ if (FI.isVariadic())
+ NumRegs = 0;
+ else if (LargeRet)
+ NumRegs -= 2;
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, NumRegs);
+ }
+};
+
+class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR)
+ : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {}
+
+ LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
+ const VarDecl *D) const override {
+ // Check if global/static variable is defined in address space
+ // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5)
+ // but not constant.
+ if (D) {
+ LangAS AS = D->getType().getAddressSpace();
+ if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) &&
+ toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified())
+ CGM.getDiags().Report(D->getLocation(),
+ diag::err_verify_nonconst_addrspace)
+ << "__flash*";
+ }
+ return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ if (GV->isDeclaration())
+ return;
+ const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) return;
+ auto *Fn = cast<llvm::Function>(GV);
+
+ if (FD->getAttr<AVRInterruptAttr>())
+ Fn->addFnAttr("interrupt");
+
+ if (FD->getAttr<AVRSignalAttr>())
+ Fn->addFnAttr("signal");
+ }
+};
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR,
+ unsigned NRR) {
+ return std::make_unique<AVRTargetCodeGenInfo>(CGM.getTypes(), NPR, NRR);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/BPF.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/BPF.cpp
new file mode 100644
index 000000000000..2849222f7a18
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/BPF.cpp
@@ -0,0 +1,100 @@
+//===- BPF.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// BPF ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class BPFABIInfo : public DefaultABIInfo {
+public:
+ BPFABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+ ABIArgInfo classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (isAggregateTypeForABI(Ty)) {
+ uint64_t Bits = getContext().getTypeSize(Ty);
+ if (Bits == 0)
+ return ABIArgInfo::getIgnore();
+
+ // If the aggregate needs 1 or 2 registers, do not use reference.
+ if (Bits <= 128) {
+ llvm::Type *CoerceTy;
+ if (Bits <= 64) {
+ CoerceTy =
+ llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
+ } else {
+ llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), 64);
+ CoerceTy = llvm::ArrayType::get(RegTy, 2);
+ }
+ return ABIArgInfo::getDirect(CoerceTy);
+ } else {
+ return getNaturalAlignIndirect(Ty);
+ }
+ }
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ ASTContext &Context = getContext();
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty))
+ return getNaturalAlignIndirect(Ty);
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy))
+ return getNaturalAlignIndirect(RetTy);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ ASTContext &Context = getContext();
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > Context.getTypeSize(Context.Int128Ty))
+ return getNaturalAlignIndirect(RetTy);
+
+ // Caller will do necessary sign/zero extension.
+ return ABIArgInfo::getDirect();
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+};
+
+class BPFTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ BPFTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<BPFABIInfo>(CGT)) {}
+};
+
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createBPFTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<BPFTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/CSKY.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/CSKY.cpp
new file mode 100644
index 000000000000..d8720afd1a71
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/CSKY.cpp
@@ -0,0 +1,173 @@
+//===- CSKY.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// CSKY ABI Implementation
+//===----------------------------------------------------------------------===//
+namespace {
+class CSKYABIInfo : public DefaultABIInfo {
+ static const int NumArgGPRs = 4;
+ static const int NumArgFPRs = 4;
+
+ static const unsigned XLen = 32;
+ unsigned FLen;
+
+public:
+ CSKYABIInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
+ : DefaultABIInfo(CGT), FLen(FLen) {}
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ ABIArgInfo classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
+ int &ArgFPRsLeft,
+ bool isReturnType = false) const;
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+} // end anonymous namespace
+
+void CSKYABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ QualType RetTy = FI.getReturnType();
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(RetTy);
+
+ bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
+
+ // We must track the number of GPRs used in order to conform to the CSKY
+ // ABI, as integer scalars passed in registers should have signext/zeroext
+ // when promoted.
+ int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
+ int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
+
+ for (auto &ArgInfo : FI.arguments()) {
+ ArgInfo.info = classifyArgumentType(ArgInfo.type, ArgGPRsLeft, ArgFPRsLeft);
+ }
+}
+
+RValue CSKYABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return Slot.asRValue();
+
+ auto TInfo = getContext().getTypeInfoInChars(Ty);
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, false, TInfo, SlotSize,
+ /*AllowHigherAlign=*/true, Slot);
+}
+
+ABIArgInfo CSKYABIInfo::classifyArgumentType(QualType Ty, int &ArgGPRsLeft,
+ int &ArgFPRsLeft,
+ bool isReturnType) const {
+ assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always passed indirectly.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ if (ArgGPRsLeft)
+ ArgGPRsLeft -= 1;
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ if (!Ty->getAsUnionType())
+ if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ // Pass floating point values via FPRs if possible.
+ if (Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size &&
+ ArgFPRsLeft) {
+ ArgFPRsLeft--;
+ return ABIArgInfo::getDirect();
+ }
+
+ // Complex types for the hard float ABI must be passed direct rather than
+ // using CoerceAndExpand.
+ if (Ty->isComplexType() && FLen && !isReturnType) {
+ QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
+ if (getContext().getTypeSize(EltTy) <= FLen) {
+ ArgFPRsLeft -= 2;
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // All integral types are promoted to XLen width, unless passed on the
+ // stack.
+ if (Size < XLen && Ty->isIntegralOrEnumerationType())
+ return ABIArgInfo::getExtend(Ty);
+
+ if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ if (EIT->getNumBits() < XLen)
+ return ABIArgInfo::getExtend(Ty);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ // For argument type, the first 4*XLen parts of aggregate will be passed
+ // in registers, and the rest will be passed in stack.
+ // So we can coerce to integers directly and let backend handle it correctly.
+ // For return type, aggregate which <= 2*XLen will be returned in registers.
+ // Otherwise, aggregate will be returned indirectly.
+ if (!isReturnType || (isReturnType && Size <= 2 * XLen)) {
+ if (Size <= XLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), XLen));
+ } else {
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(
+ llvm::IntegerType::get(getVMContext(), XLen), (Size + 31) / XLen));
+ }
+ }
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo CSKYABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ int ArgGPRsLeft = 2;
+ int ArgFPRsLeft = FLen ? 1 : 0;
+
+ // The rules for return and argument types are the same, so defer to
+ // classifyArgumentType.
+ return classifyArgumentType(RetTy, ArgGPRsLeft, ArgFPRsLeft, true);
+}
+
+namespace {
+class CSKYTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ CSKYTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned FLen)
+ : TargetCodeGenInfo(std::make_unique<CSKYABIInfo>(CGT, FLen)) {}
+};
+} // end anonymous namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen) {
+ return std::make_unique<CSKYTargetCodeGenInfo>(CGM.getTypes(), FLen);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/Hexagon.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/Hexagon.cpp
new file mode 100644
index 000000000000..8fd2a81494d9
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/Hexagon.cpp
@@ -0,0 +1,426 @@
+//===- Hexagon.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Hexagon ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class HexagonABIInfo : public DefaultABIInfo {
+public:
+ HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+ Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
+ QualType Ty) const;
+ Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
+ QualType Ty) const;
+ Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
+ QualType Ty) const;
+};
+
+class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 29;
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &GCM) const override {
+ if (GV->isDeclaration())
+ return;
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD)
+ return;
+ }
+};
+
+} // namespace
+
+void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ unsigned RegsLeft = 6;
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, &RegsLeft);
+}
+
+static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
+ assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
+ " through registers");
+
+ if (*RegsLeft == 0)
+ return false;
+
+ if (Size <= 32) {
+ (*RegsLeft)--;
+ return true;
+ }
+
+ if (2 <= (*RegsLeft & (~1U))) {
+ *RegsLeft = (*RegsLeft & (~1U)) - 2;
+ return true;
+ }
+
+ // Next available register was r5 but candidate was greater than 32-bits so it
+ // has to go on the stack. However we still consume r5
+ if (*RegsLeft == 1)
+ *RegsLeft = 0;
+
+ return false;
+}
+
+ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
+ unsigned *RegsLeft) const {
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size <= 64)
+ HexagonAdjustRegsLeft(Size, RegsLeft);
+
+ if (Size > 64 && Ty->isBitIntType())
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+ return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect();
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Ignore empty records.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ unsigned Align = getContext().getTypeAlign(Ty);
+
+ if (Size > 64)
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+ if (HexagonAdjustRegsLeft(Size, RegsLeft))
+ Align = Size <= 32 ? 32 : 64;
+ if (Size <= Align) {
+ // Pass in the smallest viable integer type.
+ Size = llvm::bit_ceil(Size);
+ return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
+ }
+ return DefaultABIInfo::classifyArgumentType(Ty);
+}
+
+ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ const TargetInfo &T = CGT.getTarget();
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ if (RetTy->getAs<VectorType>()) {
+ // HVX vectors are returned in vector registers or register pairs.
+ if (T.hasFeature("hvx")) {
+ assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
+ uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
+ if (Size == VecSize || Size == 2*VecSize)
+ return ABIArgInfo::getDirectInReg();
+ }
+ // Large vector types should be returned via memory.
+ if (Size > 64)
+ return getNaturalAlignIndirect(RetTy);
+ }
+
+ if (!isAggregateTypeForABI(RetTy)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (Size > 64 && RetTy->isBitIntType())
+ return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+
+ return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect();
+ }
+
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Aggregates <= 8 bytes are returned in registers, other aggregates
+ // are returned indirectly.
+ if (Size <= 64) {
+ // Return in the smallest viable integer type.
+ Size = llvm::bit_ceil(Size);
+ return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
+ }
+ return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
+}
+
+Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
+ Address VAListAddr,
+ QualType Ty) const {
+ // Load the overflow area pointer.
+ Address __overflow_area_pointer_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
+ llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
+ __overflow_area_pointer_p, "__overflow_area_pointer");
+
+ uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+ if (Align > 4) {
+ // Alignment should be a power of 2.
+ assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
+
+ // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
+
+ // Add offset to the current pointer to access the argument.
+ __overflow_area_pointer =
+ CGF.Builder.CreateGEP(CGF.Int8Ty, __overflow_area_pointer, Offset);
+ llvm::Value *AsInt =
+ CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
+
+ // Create a mask which should be "AND"ed
+ // with (overflow_arg_area + align - 1)
+ llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
+ __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
+ CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
+ "__overflow_area_pointer.align");
+ }
+
+ // Get the type of the argument from memory and bitcast
+ // overflow area pointer to the argument type.
+ llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
+ Address AddrTyped =
+ Address(__overflow_area_pointer, PTy, CharUnits::fromQuantity(Align));
+
+ // Round up to the minimum stack alignment for varargs which is 4 bytes.
+ uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
+
+ __overflow_area_pointer = CGF.Builder.CreateGEP(
+ CGF.Int8Ty, __overflow_area_pointer,
+ llvm::ConstantInt::get(CGF.Int32Ty, Offset),
+ "__overflow_area_pointer.next");
+ CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
+
+ return AddrTyped;
+}
+
+Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
+ Address VAListAddr,
+ QualType Ty) const {
+ // FIXME: Need to handle alignment
+ llvm::Type *BP = CGF.Int8PtrTy;
+ CGBuilderTy &Builder = CGF.Builder;
+ Address VAListAddrAsBPP = VAListAddr.withElementType(BP);
+ llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+ // Handle address alignment for type alignment > 32 bits
+ uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
+ if (TyAlign > 4) {
+ assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
+ llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
+ AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
+ AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
+ Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
+ }
+ Address AddrTyped =
+ Address(Addr, CGF.ConvertType(Ty), CharUnits::fromQuantity(TyAlign));
+
+ uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
+ llvm::Value *NextAddr = Builder.CreateGEP(
+ CGF.Int8Ty, Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
+ Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+ return AddrTyped;
+}
+
+Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
+ Address VAListAddr,
+ QualType Ty) const {
+ int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
+
+ if (ArgSize > 8)
+ return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
+
+ // Here we have check if the argument is in register area or
+ // in overflow area.
+ // If the saved register area pointer + argsize rounded up to alignment >
+ // saved register area end pointer, argument is in overflow area.
+ unsigned RegsLeft = 6;
+ Ty = CGF.getContext().getCanonicalType(Ty);
+ (void)classifyArgumentType(Ty, &RegsLeft);
+
+ llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+
+ // Get rounded size of the argument.GCC does not allow vararg of
+ // size < 4 bytes. We follow the same logic here.
+ ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
+ int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
+
+ // Argument may be in saved register area
+ CGF.EmitBlock(MaybeRegBlock);
+
+ // Load the current saved register area pointer.
+ Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
+ VAListAddr, 0, "__current_saved_reg_area_pointer_p");
+ llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
+ __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
+
+ // Load the saved register area end pointer.
+ Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
+ VAListAddr, 1, "__saved_reg_area_end_pointer_p");
+ llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
+ __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
+
+ // If the size of argument is > 4 bytes, check if the stack
+ // location is aligned to 8 bytes
+ if (ArgAlign > 4) {
+
+ llvm::Value *__current_saved_reg_area_pointer_int =
+ CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
+ CGF.Int32Ty);
+
+ __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
+ __current_saved_reg_area_pointer_int,
+ llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
+ "align_current_saved_reg_area_pointer");
+
+ __current_saved_reg_area_pointer_int =
+ CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
+ llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
+ "align_current_saved_reg_area_pointer");
+
+ __current_saved_reg_area_pointer =
+ CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
+ __current_saved_reg_area_pointer->getType(),
+ "align_current_saved_reg_area_pointer");
+ }
+
+ llvm::Value *__new_saved_reg_area_pointer =
+ CGF.Builder.CreateGEP(CGF.Int8Ty, __current_saved_reg_area_pointer,
+ llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
+ "__new_saved_reg_area_pointer");
+
+ llvm::Value *UsingStack = nullptr;
+ UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
+ __saved_reg_area_end_pointer);
+
+ CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
+
+ // Argument in saved register area
+ // Implement the block where argument is in register saved area
+ CGF.EmitBlock(InRegBlock);
+
+ llvm::Type *PTy = CGF.ConvertType(Ty);
+ llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
+ __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
+
+ CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
+ __current_saved_reg_area_pointer_p);
+
+ CGF.EmitBranch(ContBlock);
+
+ // Argument in overflow area
+ // Implement the block where the argument is in overflow area.
+ CGF.EmitBlock(OnStackBlock);
+
+ // Load the overflow area pointer
+ Address __overflow_area_pointer_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
+ llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
+ __overflow_area_pointer_p, "__overflow_area_pointer");
+
+ // Align the overflow area pointer according to the alignment of the argument
+ if (ArgAlign > 4) {
+ llvm::Value *__overflow_area_pointer_int =
+ CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
+
+ __overflow_area_pointer_int =
+ CGF.Builder.CreateAdd(__overflow_area_pointer_int,
+ llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
+ "align_overflow_area_pointer");
+
+ __overflow_area_pointer_int =
+ CGF.Builder.CreateAnd(__overflow_area_pointer_int,
+ llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
+ "align_overflow_area_pointer");
+
+ __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
+ __overflow_area_pointer_int, __overflow_area_pointer->getType(),
+ "align_overflow_area_pointer");
+ }
+
+ // Get the pointer for next argument in overflow area and store it
+ // to overflow area pointer.
+ llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
+ CGF.Int8Ty, __overflow_area_pointer,
+ llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
+ "__overflow_area_pointer.next");
+
+ CGF.Builder.CreateStore(__new_overflow_area_pointer,
+ __overflow_area_pointer_p);
+
+ CGF.Builder.CreateStore(__new_overflow_area_pointer,
+ __current_saved_reg_area_pointer_p);
+
+ // Bitcast the overflow area pointer to the type of argument.
+ llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
+ __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
+
+ CGF.EmitBranch(ContBlock);
+
+ // Get the correct pointer to load the variable argument
+ // Implement the ContBlock
+ CGF.EmitBlock(ContBlock);
+
+ llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Type *MemPTy = llvm::PointerType::getUnqual(MemTy);
+ llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
+ ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
+ ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
+
+ return Address(ArgAddr, MemTy, CharUnits::fromQuantity(ArgAlign));
+}
+
+RValue HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+
+ if (getTarget().getTriple().isMusl())
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty), Ty),
+ Slot);
+
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(EmitVAArgForHexagon(CGF, VAListAddr, Ty), Ty), Slot);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createHexagonTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<HexagonTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/Lanai.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/Lanai.cpp
new file mode 100644
index 000000000000..2578fc0291e7
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/Lanai.cpp
@@ -0,0 +1,154 @@
+//===- Lanai.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Lanai ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class LanaiABIInfo : public DefaultABIInfo {
+ struct CCState {
+ unsigned FreeRegs;
+ };
+
+public:
+ LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+ bool shouldUseInReg(QualType Ty, CCState &State) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ CCState State;
+ // Lanai uses 4 registers to pass arguments unless the function has the
+ // regparm attribute set.
+ if (FI.getHasRegParm()) {
+ State.FreeRegs = FI.getRegParm();
+ } else {
+ State.FreeRegs = 4;
+ }
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, State);
+ }
+
+ ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
+};
+} // end anonymous namespace
+
+bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
+ unsigned Size = getContext().getTypeSize(Ty);
+ unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
+
+ if (SizeInRegs == 0)
+ return false;
+
+ if (SizeInRegs > State.FreeRegs) {
+ State.FreeRegs = 0;
+ return false;
+ }
+
+ State.FreeRegs -= SizeInRegs;
+
+ return true;
+}
+
+ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+ CCState &State) const {
+ if (!ByVal) {
+ if (State.FreeRegs) {
+ --State.FreeRegs; // Non-byval indirects just use one pointer.
+ return getNaturalAlignIndirectInReg(Ty);
+ }
+ return getNaturalAlignIndirect(Ty, false);
+ }
+
+ // Compute the byval alignment.
+ const unsigned MinABIStackAlignInBytes = 4;
+ unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
+ /*Realign=*/TypeAlign >
+ MinABIStackAlignInBytes);
+}
+
+ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
+ CCState &State) const {
+ // Check with the C++ ABI first.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+ if (RAA == CGCXXABI::RAA_Indirect) {
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+ }
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Structures with flexible arrays are always indirect.
+ if (RT && RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectResult(Ty, /*ByVal=*/true, State);
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ llvm::LLVMContext &LLVMContext = getVMContext();
+ unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
+ if (SizeInRegs <= State.FreeRegs) {
+ llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+ SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
+ llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+ State.FreeRegs -= SizeInRegs;
+ return ABIArgInfo::getDirectInReg(Result);
+ } else {
+ State.FreeRegs = 0;
+ }
+ return getIndirectResult(Ty, true, State);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const auto *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ bool InReg = shouldUseInReg(Ty, State);
+
+ // Don't pass >64 bit integers in registers.
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > 64)
+ return getIndirectResult(Ty, /*ByVal=*/true, State);
+
+ if (isPromotableIntegerTypeForABI(Ty)) {
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getExtend(Ty);
+ }
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+}
+
+namespace {
+class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
+};
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createLanaiTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<LanaiTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/LoongArch.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/LoongArch.cpp
new file mode 100644
index 000000000000..6af9375461f0
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/LoongArch.cpp
@@ -0,0 +1,460 @@
+//===- LoongArch.cpp ------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+// LoongArch ABI Implementation. Documented at
+// https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
+//
+//===----------------------------------------------------------------------===//
+
+namespace {
+class LoongArchABIInfo : public DefaultABIInfo {
+private:
+ // Size of the integer ('r') registers in bits.
+ unsigned GRLen;
+ // Size of the floating point ('f') registers in bits.
+ unsigned FRLen;
+ // Number of general-purpose argument registers.
+ static const int NumGARs = 8;
+ // Number of floating-point argument registers.
+ static const int NumFARs = 8;
+ bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff,
+ llvm::Type *&Field1Ty,
+ CharUnits &Field1Off,
+ llvm::Type *&Field2Ty,
+ CharUnits &Field2Off) const;
+
+public:
+ LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen)
+ : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {}
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft,
+ int &FARsLeft) const;
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ ABIArgInfo extendType(QualType Ty) const;
+
+ bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
+ CharUnits &Field1Off, llvm::Type *&Field2Ty,
+ CharUnits &Field2Off, int &NeededArgGPRs,
+ int &NeededArgFPRs) const;
+ ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty,
+ CharUnits Field1Off,
+ llvm::Type *Field2Ty,
+ CharUnits Field2Off) const;
+};
+} // end anonymous namespace
+
+void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ QualType RetTy = FI.getReturnType();
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(RetTy);
+
+ // IsRetIndirect is true if classifyArgumentType indicated the value should
+ // be passed indirect, or if the type size is a scalar greater than 2*GRLen
+ // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct
+ // in LLVM IR, relying on the backend lowering code to rewrite the argument
+ // list and pass indirectly on LA32.
+ bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
+ if (!IsRetIndirect && RetTy->isScalarType() &&
+ getContext().getTypeSize(RetTy) > (2 * GRLen)) {
+ if (RetTy->isComplexType() && FRLen) {
+ QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
+ IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen;
+ } else {
+ // This is a normal scalar > 2*GRLen, such as fp128 on LA32.
+ IsRetIndirect = true;
+ }
+ }
+
+ // We must track the number of GARs and FARs used in order to conform to the
+ // LoongArch ABI. As GAR usage is different for variadic arguments, we must
+ // also track whether we are examining a vararg or not.
+ int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs;
+ int FARsLeft = FRLen ? NumFARs : 0;
+ int NumFixedArgs = FI.getNumRequiredArgs();
+
+ int ArgNum = 0;
+ for (auto &ArgInfo : FI.arguments()) {
+ ArgInfo.info = classifyArgumentType(
+ ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft);
+ ArgNum++;
+ }
+}
+
+// Returns true if the struct is a potential candidate to be passed in FARs (and
+// GARs). If this function returns true, the caller is responsible for checking
+// that if there is only a single field then that field is a float.
+bool LoongArchABIInfo::detectFARsEligibleStructHelper(
+ QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off,
+ llvm::Type *&Field2Ty, CharUnits &Field2Off) const {
+ bool IsInt = Ty->isIntegralOrEnumerationType();
+ bool IsFloat = Ty->isRealFloatingType();
+
+ if (IsInt || IsFloat) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (IsInt && Size > GRLen)
+ return false;
+ // Can't be eligible if larger than the FP registers. Half precision isn't
+ // currently supported on LoongArch and the ABI hasn't been confirmed, so
+ // default to the integer ABI in that case.
+ if (IsFloat && (Size > FRLen || Size < 32))
+ return false;
+ // Can't be eligible if an integer type was already found (int+int pairs
+ // are not eligible).
+ if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
+ return false;
+ if (!Field1Ty) {
+ Field1Ty = CGT.ConvertType(Ty);
+ Field1Off = CurOff;
+ return true;
+ }
+ if (!Field2Ty) {
+ Field2Ty = CGT.ConvertType(Ty);
+ Field2Off = CurOff;
+ return true;
+ }
+ return false;
+ }
+
+ if (auto CTy = Ty->getAs<ComplexType>()) {
+ if (Field1Ty)
+ return false;
+ QualType EltTy = CTy->getElementType();
+ if (getContext().getTypeSize(EltTy) > FRLen)
+ return false;
+ Field1Ty = CGT.ConvertType(EltTy);
+ Field1Off = CurOff;
+ Field2Ty = Field1Ty;
+ Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
+ return true;
+ }
+
+ if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
+ uint64_t ArraySize = ATy->getZExtSize();
+ QualType EltTy = ATy->getElementType();
+ // Non-zero-length arrays of empty records make the struct ineligible to be
+ // passed via FARs in C++.
+ if (const auto *RTy = EltTy->getAs<RecordType>()) {
+ if (ArraySize != 0 && isa<CXXRecordDecl>(RTy->getDecl()) &&
+ isEmptyRecord(getContext(), EltTy, true, true))
+ return false;
+ }
+ CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
+ for (uint64_t i = 0; i < ArraySize; ++i) {
+ if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off,
+ Field2Ty, Field2Off))
+ return false;
+ CurOff += EltSize;
+ }
+ return true;
+ }
+
+ if (const auto *RTy = Ty->getAs<RecordType>()) {
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are not eligible for the FP calling convention.
+ if (getRecordArgABI(Ty, CGT.getCXXABI()))
+ return false;
+ const RecordDecl *RD = RTy->getDecl();
+ if (isEmptyRecord(getContext(), Ty, true, true) &&
+ (!RD->isUnion() || !isa<CXXRecordDecl>(RD)))
+ return true;
+ // Unions aren't eligible unless they're empty in C (which is caught above).
+ if (RD->isUnion())
+ return false;
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const CXXBaseSpecifier &B : CXXRD->bases()) {
+ const auto *BDecl =
+ cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
+ if (!detectFARsEligibleStructHelper(
+ B.getType(), CurOff + Layout.getBaseClassOffset(BDecl),
+ Field1Ty, Field1Off, Field2Ty, Field2Off))
+ return false;
+ }
+ }
+ for (const FieldDecl *FD : RD->fields()) {
+ QualType QTy = FD->getType();
+ if (FD->isBitField()) {
+ unsigned BitWidth = FD->getBitWidthValue(getContext());
+ // Zero-width bitfields are ignored.
+ if (BitWidth == 0)
+ continue;
+ // Allow a bitfield with a type greater than GRLen as long as the
+ // bitwidth is GRLen or less.
+ if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) {
+ QTy = getContext().getIntTypeForBitwidth(GRLen, false);
+ }
+ }
+
+ if (!detectFARsEligibleStructHelper(
+ QTy,
+ CurOff + getContext().toCharUnitsFromBits(
+ Layout.getFieldOffset(FD->getFieldIndex())),
+ Field1Ty, Field1Off, Field2Ty, Field2Off))
+ return false;
+ }
+ return Field1Ty != nullptr;
+ }
+
+ return false;
+}
+
+// Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when
+// flattened it contains a single fp value, fp+fp, or int+fp of appropriate
+// size). If so, NeededFARs and NeededGARs are incremented appropriately.
+bool LoongArchABIInfo::detectFARsEligibleStruct(
+ QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off,
+ llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs,
+ int &NeededFARs) const {
+ Field1Ty = nullptr;
+ Field2Ty = nullptr;
+ NeededGARs = 0;
+ NeededFARs = 0;
+ if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty,
+ Field1Off, Field2Ty, Field2Off))
+ return false;
+ if (!Field1Ty)
+ return false;
+ // Not really a candidate if we have a single int but no float.
+ if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
+ return false;
+ if (Field1Ty && Field1Ty->isFloatingPointTy())
+ NeededFARs++;
+ else if (Field1Ty)
+ NeededGARs++;
+ if (Field2Ty && Field2Ty->isFloatingPointTy())
+ NeededFARs++;
+ else if (Field2Ty)
+ NeededGARs++;
+ return true;
+}
+
+// Call getCoerceAndExpand for the two-element flattened struct described by
+// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
+// appropriate coerceToType and unpaddedCoerceToType.
+ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct(
+ llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
+ CharUnits Field2Off) const {
+ SmallVector<llvm::Type *, 3> CoerceElts;
+ SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
+ if (!Field1Off.isZero())
+ CoerceElts.push_back(llvm::ArrayType::get(
+ llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
+
+ CoerceElts.push_back(Field1Ty);
+ UnpaddedCoerceElts.push_back(Field1Ty);
+
+ if (!Field2Ty) {
+ return ABIArgInfo::getCoerceAndExpand(
+ llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
+ UnpaddedCoerceElts[0]);
+ }
+
+ CharUnits Field2Align =
+ CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
+ CharUnits Field1End =
+ Field1Off +
+ CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
+ CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
+
+ CharUnits Padding = CharUnits::Zero();
+ if (Field2Off > Field2OffNoPadNoPack)
+ Padding = Field2Off - Field2OffNoPadNoPack;
+ else if (Field2Off != Field2Align && Field2Off > Field1End)
+ Padding = Field2Off - Field1End;
+
+ bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
+
+ if (!Padding.isZero())
+ CoerceElts.push_back(llvm::ArrayType::get(
+ llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
+
+ CoerceElts.push_back(Field2Ty);
+ UnpaddedCoerceElts.push_back(Field2Ty);
+
+ return ABIArgInfo::getCoerceAndExpand(
+ llvm::StructType::get(getVMContext(), CoerceElts, IsPacked),
+ llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked));
+}
+
+ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
+ int &GARsLeft,
+ int &FARsLeft) const {
+ assert(GARsLeft <= NumGARs && "GAR tracking underflow");
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always passed indirectly.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ if (GARsLeft)
+ GARsLeft -= 1;
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // Ignore empty struct or union whose size is zero, e.g. `struct { }` in C or
+ // `struct { int a[0]; }` in C++. In C++, `struct { }` is empty but it's size
+ // is 1 byte and g++ doesn't ignore it; clang++ matches this behaviour.
+ if (isEmptyRecord(getContext(), Ty, true) && Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ // Pass floating point values via FARs if possible.
+ if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
+ FRLen >= Size && FARsLeft) {
+ FARsLeft--;
+ return ABIArgInfo::getDirect();
+ }
+
+ // Complex types for the *f or *d ABI must be passed directly rather than
+ // using CoerceAndExpand.
+ if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) {
+ QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
+ if (getContext().getTypeSize(EltTy) <= FRLen) {
+ FARsLeft -= 2;
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ if (IsFixed && FRLen && Ty->isStructureOrClassType()) {
+ llvm::Type *Field1Ty = nullptr;
+ llvm::Type *Field2Ty = nullptr;
+ CharUnits Field1Off = CharUnits::Zero();
+ CharUnits Field2Off = CharUnits::Zero();
+ int NeededGARs = 0;
+ int NeededFARs = 0;
+ bool IsCandidate = detectFARsEligibleStruct(
+ Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs);
+ if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) {
+ GARsLeft -= NeededGARs;
+ FARsLeft -= NeededFARs;
+ return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty,
+ Field2Off);
+ }
+ }
+
+ uint64_t NeededAlign = getContext().getTypeAlign(Ty);
+ // Determine the number of GARs needed to pass the current argument
+ // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned"
+ // register pairs, so may consume 3 registers.
+ int NeededGARs = 1;
+ if (!IsFixed && NeededAlign == 2 * GRLen)
+ NeededGARs = 2 + (GARsLeft % 2);
+ else if (Size > GRLen && Size <= 2 * GRLen)
+ NeededGARs = 2;
+
+ if (NeededGARs > GARsLeft)
+ NeededGARs = GARsLeft;
+
+ GARsLeft -= NeededGARs;
+
+ if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // All integral types are promoted to GRLen width.
+ if (Size < GRLen && Ty->isIntegralOrEnumerationType())
+ return extendType(Ty);
+
+ if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ if (EIT->getNumBits() < GRLen)
+ return extendType(Ty);
+ if (EIT->getNumBits() > 128 ||
+ (!getContext().getTargetInfo().hasInt128Type() &&
+ EIT->getNumBits() > 64))
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ // Aggregates which are <= 2*GRLen will be passed in registers if possible,
+ // so coerce to integers.
+ if (Size <= 2 * GRLen) {
+ // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is
+ // required, and a 2-element GRLen array if only GRLen alignment is
+ // required.
+ if (Size <= GRLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), GRLen));
+ }
+ if (getContext().getTypeAlign(Ty) == 2 * GRLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), 2 * GRLen));
+ }
+ return ABIArgInfo::getDirect(
+ llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2));
+ }
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+ // The rules for return and argument types are the same, so defer to
+ // classifyArgumentType.
+ int GARsLeft = 2;
+ int FARsLeft = FRLen ? 2 : 0;
+ return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft);
+}
+
+RValue LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return Slot.asRValue();
+
+ auto TInfo = getContext().getTypeInfoInChars(Ty);
+
+ // Arguments bigger than 2*GRLen bytes are passed indirectly.
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty,
+ /*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo,
+ SlotSize,
+ /*AllowHigherAlign=*/true, Slot);
+}
+
+ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const {
+ int TySize = getContext().getTypeSize(Ty);
+ // LA64 ABI requires unsigned 32 bit integers to be sign extended.
+ if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+ return ABIArgInfo::getSignExtend(Ty);
+ return ABIArgInfo::getExtend(Ty);
+}
+
+namespace {
+class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen,
+ unsigned FRLen)
+ : TargetCodeGenInfo(
+ std::make_unique<LoongArchABIInfo>(CGT, GRLen, FRLen)) {}
+};
+} // namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen,
+ unsigned FLen) {
+ return std::make_unique<LoongArchTargetCodeGenInfo>(CGM.getTypes(), GRLen,
+ FLen);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/M68k.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/M68k.cpp
new file mode 100644
index 000000000000..120022105f34
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/M68k.cpp
@@ -0,0 +1,55 @@
+//===- M68k.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// M68k ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class M68kTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ M68kTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+} // namespace
+
+void M68kTargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+ if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (const auto *attr = FD->getAttr<M68kInterruptAttr>()) {
+ // Handle 'interrupt' attribute:
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Step 1: Set ISR calling convention.
+ F->setCallingConv(llvm::CallingConv::M68k_INTR);
+
+ // Step 2: Add attributes goodness.
+ F->addFnAttr(llvm::Attribute::NoInline);
+
+ // Step 3: Emit ISR vector alias.
+ unsigned Num = attr->getNumber() / 2;
+ llvm::GlobalAlias::create(llvm::Function::ExternalLinkage,
+ "__isr_" + Twine(Num), F);
+ }
+ }
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createM68kTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<M68kTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/MSP430.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/MSP430.cpp
new file mode 100644
index 000000000000..8ce70e2111cc
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/MSP430.cpp
@@ -0,0 +1,97 @@
+//===- MSP430.cpp ---------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// MSP430 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class MSP430ABIInfo : public DefaultABIInfo {
+ static ABIArgInfo complexArgInfo() {
+ ABIArgInfo Info = ABIArgInfo::getDirect();
+ Info.setCanBeFlattened(false);
+ return Info;
+ }
+
+public:
+ MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const {
+ if (RetTy->isAnyComplexType())
+ return complexArgInfo();
+
+ return DefaultABIInfo::classifyReturnType(RetTy);
+ }
+
+ ABIArgInfo classifyArgumentType(QualType RetTy) const {
+ if (RetTy->isAnyComplexType())
+ return complexArgInfo();
+
+ return DefaultABIInfo::classifyArgumentType(RetTy);
+ }
+
+ // Just copy the original implementations because
+ // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override {
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(
+ EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)), Ty),
+ Slot);
+ }
+};
+
+class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+}
+
+void MSP430TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
+ if (!InterruptAttr)
+ return;
+
+ // Handle 'interrupt' attribute:
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Step 1: Set ISR calling convention.
+ F->setCallingConv(llvm::CallingConv::MSP430_INTR);
+
+ // Step 2: Add attributes goodness.
+ F->addFnAttr(llvm::Attribute::NoInline);
+ F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
+ }
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createMSP430TargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<MSP430TargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/Mips.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/Mips.cpp
new file mode 100644
index 000000000000..06d9b6d4a576
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/Mips.cpp
@@ -0,0 +1,438 @@
+//===- Mips.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// MIPS ABI Implementation. This works for both little-endian and
+// big-endian variants.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class MipsABIInfo : public ABIInfo {
+ bool IsO32;
+ const unsigned MinABIStackAlignInBytes, StackAlignInBytes;
+ void CoerceToIntArgs(uint64_t TySize,
+ SmallVectorImpl<llvm::Type *> &ArgList) const;
+ llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
+ llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
+ llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
+public:
+ MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
+ ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
+ StackAlignInBytes(IsO32 ? 8 : 16) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+ ABIArgInfo extendType(QualType Ty) const;
+};
+
+class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
+ unsigned SizeOfUnwindException;
+public:
+ MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
+ : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
+ SizeOfUnwindException(IsO32 ? 24 : 32) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 29;
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) return;
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+
+ if (FD->hasAttr<MipsLongCallAttr>())
+ Fn->addFnAttr("long-call");
+ else if (FD->hasAttr<MipsShortCallAttr>())
+ Fn->addFnAttr("short-call");
+
+ // Other attributes do not have a meaning for declarations.
+ if (GV->isDeclaration())
+ return;
+
+ if (FD->hasAttr<Mips16Attr>()) {
+ Fn->addFnAttr("mips16");
+ }
+ else if (FD->hasAttr<NoMips16Attr>()) {
+ Fn->addFnAttr("nomips16");
+ }
+
+ if (FD->hasAttr<MicroMipsAttr>())
+ Fn->addFnAttr("micromips");
+ else if (FD->hasAttr<NoMicroMipsAttr>())
+ Fn->addFnAttr("nomicromips");
+
+ const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
+ if (!Attr)
+ return;
+
+ const char *Kind;
+ switch (Attr->getInterrupt()) {
+ case MipsInterruptAttr::eic: Kind = "eic"; break;
+ case MipsInterruptAttr::sw0: Kind = "sw0"; break;
+ case MipsInterruptAttr::sw1: Kind = "sw1"; break;
+ case MipsInterruptAttr::hw0: Kind = "hw0"; break;
+ case MipsInterruptAttr::hw1: Kind = "hw1"; break;
+ case MipsInterruptAttr::hw2: Kind = "hw2"; break;
+ case MipsInterruptAttr::hw3: Kind = "hw3"; break;
+ case MipsInterruptAttr::hw4: Kind = "hw4"; break;
+ case MipsInterruptAttr::hw5: Kind = "hw5"; break;
+ }
+
+ Fn->addFnAttr("interrupt", Kind);
+
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ unsigned getSizeOfUnwindException() const override {
+ return SizeOfUnwindException;
+ }
+};
+}
+
+void MipsABIInfo::CoerceToIntArgs(
+ uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
+ llvm::IntegerType *IntTy =
+ llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
+
+ // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
+ for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
+ ArgList.push_back(IntTy);
+
+ // If necessary, add one more integer type to ArgList.
+ unsigned R = TySize % (MinABIStackAlignInBytes * 8);
+
+ if (R)
+ ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
+}
+
+// In N32/64, an aligned double precision floating point field is passed in
+// a register.
+llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
+ SmallVector<llvm::Type*, 8> ArgList, IntArgList;
+
+ if (IsO32) {
+ CoerceToIntArgs(TySize, ArgList);
+ return llvm::StructType::get(getVMContext(), ArgList);
+ }
+
+ if (Ty->isComplexType())
+ return CGT.ConvertType(Ty);
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+
+ // Unions/vectors are passed in integer registers.
+ if (!RT || !RT->isStructureOrClassType()) {
+ CoerceToIntArgs(TySize, ArgList);
+ return llvm::StructType::get(getVMContext(), ArgList);
+ }
+
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
+
+ uint64_t LastOffset = 0;
+ unsigned idx = 0;
+ llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
+
+ // Iterate over fields in the struct/class and check if there are any aligned
+ // double fields.
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ const QualType Ty = i->getType();
+ const BuiltinType *BT = Ty->getAs<BuiltinType>();
+
+ if (!BT || BT->getKind() != BuiltinType::Double)
+ continue;
+
+ uint64_t Offset = Layout.getFieldOffset(idx);
+ if (Offset % 64) // Ignore doubles that are not aligned.
+ continue;
+
+ // Add ((Offset - LastOffset) / 64) args of type i64.
+ for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
+ ArgList.push_back(I64);
+
+ // Add double type.
+ ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
+ LastOffset = Offset + 64;
+ }
+
+ CoerceToIntArgs(TySize - LastOffset, IntArgList);
+ ArgList.append(IntArgList.begin(), IntArgList.end());
+
+ return llvm::StructType::get(getVMContext(), ArgList);
+}
+
+llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
+ uint64_t Offset) const {
+ if (OrigOffset + MinABIStackAlignInBytes > Offset)
+ return nullptr;
+
+ return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
+}
+
+ABIArgInfo
+MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ uint64_t OrigOffset = Offset;
+ uint64_t TySize = getContext().getTypeSize(Ty);
+ uint64_t Align = getContext().getTypeAlign(Ty) / 8;
+
+ Align = std::clamp(Align, (uint64_t)MinABIStackAlignInBytes,
+ (uint64_t)StackAlignInBytes);
+ unsigned CurrOffset = llvm::alignTo(Offset, Align);
+ Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
+
+ if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
+ // Ignore empty aggregates.
+ if (TySize == 0)
+ return ABIArgInfo::getIgnore();
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ Offset = OrigOffset + MinABIStackAlignInBytes;
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ // If we have reached here, aggregates are passed directly by coercing to
+ // another structure type. Padding is inserted if the offset of the
+ // aggregate is unaligned.
+ ABIArgInfo ArgInfo =
+ ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
+ getPaddingType(OrigOffset, CurrOffset));
+ ArgInfo.setInReg(true);
+ return ArgInfo;
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Make sure we pass indirectly things that are too large.
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > 128 ||
+ (EIT->getNumBits() > 64 &&
+ !getContext().getTargetInfo().hasInt128Type()))
+ return getNaturalAlignIndirect(Ty);
+
+ // All integral types are promoted to the GPR width.
+ if (Ty->isIntegralOrEnumerationType())
+ return extendType(Ty);
+
+ return ABIArgInfo::getDirect(
+ nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
+}
+
+llvm::Type*
+MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
+ const RecordType *RT = RetTy->getAs<RecordType>();
+ SmallVector<llvm::Type*, 8> RTList;
+
+ if (RT && RT->isStructureOrClassType()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ unsigned FieldCnt = Layout.getFieldCount();
+
+ // N32/64 returns struct/classes in floating point registers if the
+ // following conditions are met:
+ // 1. The size of the struct/class is no larger than 128-bit.
+ // 2. The struct/class has one or two fields all of which are floating
+ // point types.
+ // 3. The offset of the first field is zero (this follows what gcc does).
+ //
+ // Any other composite results are returned in integer registers.
+ //
+ if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
+ RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
+ for (; b != e; ++b) {
+ const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
+
+ if (!BT || !BT->isFloatingPoint())
+ break;
+
+ RTList.push_back(CGT.ConvertType(b->getType()));
+ }
+
+ if (b == e)
+ return llvm::StructType::get(getVMContext(), RTList,
+ RD->hasAttr<PackedAttr>());
+
+ RTList.clear();
+ }
+ }
+
+ CoerceToIntArgs(Size, RTList);
+ return llvm::StructType::get(getVMContext(), RTList);
+}
+
+ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // O32 doesn't treat zero-sized structs differently from other structs.
+ // However, N32/N64 ignores zero sized return values.
+ if (!IsO32 && Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
+ if (Size <= 128) {
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // O32 returns integer vectors in registers and N32/N64 returns all small
+ // aggregates in registers.
+ if (!IsO32 ||
+ (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
+ ABIArgInfo ArgInfo =
+ ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
+ ArgInfo.setInReg(true);
+ return ArgInfo;
+ }
+ }
+
+ return getNaturalAlignIndirect(RetTy);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ // Make sure we pass indirectly things that are too large.
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > 128 ||
+ (EIT->getNumBits() > 64 &&
+ !getContext().getTargetInfo().hasInt128Type()))
+ return getNaturalAlignIndirect(RetTy);
+
+ if (isPromotableIntegerTypeForABI(RetTy))
+ return ABIArgInfo::getExtend(RetTy);
+
+ if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
+ RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
+ return ABIArgInfo::getSignExtend(RetTy);
+
+ return ABIArgInfo::getDirect();
+}
+
+void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ ABIArgInfo &RetInfo = FI.getReturnInfo();
+ if (!getCXXABI().classifyReturnType(FI))
+ RetInfo = classifyReturnType(FI.getReturnType());
+
+ // Check if a pointer to an aggregate is passed as a hidden argument.
+ uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type, Offset);
+}
+
+RValue MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType OrigTy, AggValueSlot Slot) const {
+ QualType Ty = OrigTy;
+
+ // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
+ // Pointers are also promoted in the same way but this only matters for N32.
+ unsigned SlotSizeInBits = IsO32 ? 32 : 64;
+ unsigned PtrWidth = getTarget().getPointerWidth(LangAS::Default);
+ bool DidPromote = false;
+ if ((Ty->isIntegerType() &&
+ getContext().getIntWidth(Ty) < SlotSizeInBits) ||
+ (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
+ DidPromote = true;
+ Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
+ Ty->isSignedIntegerType());
+ }
+
+ auto TyInfo = getContext().getTypeInfoInChars(Ty);
+
+ // The alignment of things in the argument area is never larger than
+ // StackAlignInBytes.
+ TyInfo.Align =
+ std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
+
+ // MinABIStackAlignInBytes is the size of argument slots on the stack.
+ CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
+
+ RValue Res = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, TyInfo,
+ ArgSlotSize, /*AllowHigherAlign*/ true, Slot);
+
+ // If there was a promotion, "unpromote".
+ // TODO: can we just use a pointer into a subset of the original slot?
+ if (DidPromote) {
+ llvm::Type *ValTy = CGF.ConvertType(OrigTy);
+ llvm::Value *Promoted = Res.getScalarVal();
+
+ // Truncate down to the right width.
+ llvm::Type *IntTy = (OrigTy->isIntegerType() ? ValTy : CGF.IntPtrTy);
+ llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
+ if (OrigTy->isPointerType())
+ V = CGF.Builder.CreateIntToPtr(V, ValTy);
+
+ return RValue::get(V);
+ }
+
+ return Res;
+}
+
+ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
+ int TySize = getContext().getTypeSize(Ty);
+
+ // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
+ if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+ return ABIArgInfo::getSignExtend(Ty);
+
+ return ABIArgInfo::getExtend(Ty);
+}
+
+bool
+MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This information comes from gcc's implementation, which seems to
+ // as canonical as it gets.
+
+ // Everything on MIPS is 4 bytes. Double-precision FP registers
+ // are aliased to pairs of single-precision FP registers.
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-31 are the general purpose registers, $0 - $31.
+ // 32-63 are the floating-point registers, $f0 - $f31.
+ // 64 and 65 are the multiply/divide registers, $hi and $lo.
+ // 66 is the (notional, I think) register for signal-handler return.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
+
+ // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
+ // They are one bit wide and ignored here.
+
+ // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
+ // (coprocessor 1 is the FP unit)
+ // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
+ // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
+ // 176-181 are the DSP accumulator registers.
+ AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
+ return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32) {
+ return std::make_unique<MIPSTargetCodeGenInfo>(CGM.getTypes(), IsOS32);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/NVPTX.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/NVPTX.cpp
new file mode 100644
index 000000000000..ec7f1c439b18
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/NVPTX.cpp
@@ -0,0 +1,366 @@
+//===- NVPTX.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "llvm/IR/IntrinsicsNVPTX.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// NVPTX ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class NVPTXTargetCodeGenInfo;
+
+class NVPTXABIInfo : public ABIInfo {
+ NVPTXTargetCodeGenInfo &CGInfo;
+
+public:
+ NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
+ : ABIInfo(CGT), CGInfo(Info) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+ bool isUnsupportedType(QualType T) const;
+ ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
+};
+
+class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+ bool shouldEmitStaticExternCAliases() const override;
+
+ llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
+ llvm::PointerType *T,
+ QualType QT) const override;
+
+ llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
+ // On the device side, surface reference is represented as an object handle
+ // in 64-bit integer.
+ return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
+ }
+
+ llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
+ // On the device side, texture reference is represented as an object handle
+ // in 64-bit integer.
+ return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
+ }
+
+ bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
+ LValue Src) const override {
+ emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
+ return true;
+ }
+
+ bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
+ LValue Src) const override {
+ emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
+ return true;
+ }
+
+ // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
+ // resulting MDNode to the nvvm.annotations MDNode.
+ static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
+ int Operand);
+
+private:
+ static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
+ LValue Src) {
+ llvm::Value *Handle = nullptr;
+ llvm::Constant *C =
+ llvm::dyn_cast<llvm::Constant>(Src.getAddress().emitRawPointer(CGF));
+ // Lookup `addrspacecast` through the constant pointer if any.
+ if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
+ C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
+ if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
+ // Load the handle from the specific global variable using
+ // `nvvm.texsurf.handle.internal` intrinsic.
+ Handle = CGF.EmitRuntimeCall(
+ CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
+ {GV->getType()}),
+ {GV}, "texsurf_handle");
+ } else
+ Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
+ CGF.EmitStoreOfScalar(Handle, Dst);
+ }
+};
+
+/// Checks if the type is unsupported directly by the current target.
+bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
+ ASTContext &Context = getContext();
+ if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
+ return true;
+ if (!Context.getTargetInfo().hasFloat128Type() &&
+ (T->isFloat128Type() ||
+ (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
+ return true;
+ if (const auto *EIT = T->getAs<BitIntType>())
+ return EIT->getNumBits() >
+ (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
+ if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
+ Context.getTypeSize(T) > 64U)
+ return true;
+ if (const auto *AT = T->getAsArrayTypeUnsafe())
+ return isUnsupportedType(AT->getElementType());
+ const auto *RT = T->getAs<RecordType>();
+ if (!RT)
+ return false;
+ const RecordDecl *RD = RT->getDecl();
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ for (const CXXBaseSpecifier &I : CXXRD->bases())
+ if (isUnsupportedType(I.getType()))
+ return true;
+
+ for (const FieldDecl *I : RD->fields())
+ if (isUnsupportedType(I->getType()))
+ return true;
+ return false;
+}
+
+/// Coerce the given type into an array with maximum allowed size of elements.
+ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
+ unsigned MaxSize) const {
+ // Alignment and Size are measured in bits.
+ const uint64_t Size = getContext().getTypeSize(Ty);
+ const uint64_t Alignment = getContext().getTypeAlign(Ty);
+ const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
+ llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
+ const uint64_t NumElements = (Size + Div - 1) / Div;
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
+}
+
+ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (getContext().getLangOpts().OpenMP &&
+ getContext().getLangOpts().OpenMPIsTargetDevice &&
+ isUnsupportedType(RetTy))
+ return coerceToIntArrayWithLimit(RetTy, 64);
+
+ // note: this is different from default ABI
+ if (!RetTy->isScalarType())
+ return ABIArgInfo::getDirect();
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Return aggregates type as indirect by value
+ if (isAggregateTypeForABI(Ty)) {
+ // Under CUDA device compilation, tex/surf builtin types are replaced with
+ // object types and passed directly.
+ if (getContext().getLangOpts().CUDAIsDevice) {
+ if (Ty->isCUDADeviceBuiltinSurfaceType())
+ return ABIArgInfo::getDirect(
+ CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
+ if (Ty->isCUDADeviceBuiltinTextureType())
+ return ABIArgInfo::getDirect(
+ CGInfo.getCUDADeviceBuiltinTextureDeviceType());
+ }
+ return getNaturalAlignIndirect(Ty, /* byval */ true);
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ if ((EIT->getNumBits() > 128) ||
+ (!getContext().getTargetInfo().hasInt128Type() &&
+ EIT->getNumBits() > 64))
+ return getNaturalAlignIndirect(Ty, /* byval */ true);
+ }
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+}
+
+void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &&[ArgumentsCount, I] : llvm::enumerate(FI.arguments()))
+ I.info = ArgumentsCount < FI.getNumRequiredArgs()
+ ? classifyArgumentType(I.type)
+ : ABIArgInfo::getDirect();
+
+ // Always honor user-specified calling convention.
+ if (FI.getCallingConvention() != llvm::CallingConv::C)
+ return;
+
+ FI.setEffectiveCallingConvention(getRuntimeCC());
+}
+
+RValue NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*IsIndirect=*/false,
+ getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(1),
+ /*AllowHigherAlign=*/true, Slot);
+}
+
+void NVPTXTargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+ if (GV->isDeclaration())
+ return;
+ const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
+ if (VD) {
+ if (M.getLangOpts().CUDA) {
+ if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
+ addNVVMMetadata(GV, "surface", 1);
+ else if (VD->getType()->isCUDADeviceBuiltinTextureType())
+ addNVVMMetadata(GV, "texture", 1);
+ return;
+ }
+ }
+
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ // Perform special handling in OpenCL mode
+ if (M.getLangOpts().OpenCL) {
+ // Use OpenCL function attributes to check for kernel functions
+ // By default, all functions are device functions
+ if (FD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL __kernel functions get kernel metadata
+ // Create !{<func-ref>, metadata !"kernel", i32 1} node
+ addNVVMMetadata(F, "kernel", 1);
+ // And kernel functions are not subject to inlining
+ F->addFnAttr(llvm::Attribute::NoInline);
+ }
+ }
+
+ // Perform special handling in CUDA mode.
+ if (M.getLangOpts().CUDA) {
+ // CUDA __global__ functions get a kernel metadata entry. Since
+ // __global__ functions cannot be called from the device, we do not
+ // need to set the noinline attribute.
+ if (FD->hasAttr<CUDAGlobalAttr>()) {
+ // Create !{<func-ref>, metadata !"kernel", i32 1} node
+ addNVVMMetadata(F, "kernel", 1);
+ }
+ if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>())
+ M.handleCUDALaunchBoundsAttr(F, Attr);
+ }
+
+ // Attach kernel metadata directly if compiling for NVPTX.
+ if (FD->hasAttr<NVPTXKernelAttr>()) {
+ addNVVMMetadata(F, "kernel", 1);
+ }
+}
+
+void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
+ StringRef Name, int Operand) {
+ llvm::Module *M = GV->getParent();
+ llvm::LLVMContext &Ctx = M->getContext();
+
+ // Get "nvvm.annotations" metadata node
+ llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
+
+ llvm::Metadata *MDVals[] = {
+ llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
+ // Append metadata to nvvm.annotations
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+
+bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
+ return false;
+}
+
+llvm::Constant *
+NVPTXTargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
+ llvm::PointerType *PT,
+ QualType QT) const {
+ auto &Ctx = CGM.getContext();
+ if (PT->getAddressSpace() != Ctx.getTargetAddressSpace(LangAS::opencl_local))
+ return llvm::ConstantPointerNull::get(PT);
+
+ auto NPT = llvm::PointerType::get(
+ PT->getContext(), Ctx.getTargetAddressSpace(LangAS::opencl_generic));
+ return llvm::ConstantExpr::getAddrSpaceCast(
+ llvm::ConstantPointerNull::get(NPT), PT);
+}
+}
+
+void CodeGenModule::handleCUDALaunchBoundsAttr(llvm::Function *F,
+ const CUDALaunchBoundsAttr *Attr,
+ int32_t *MaxThreadsVal,
+ int32_t *MinBlocksVal,
+ int32_t *MaxClusterRankVal) {
+ // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
+ llvm::APSInt MaxThreads(32);
+ MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(getContext());
+ if (MaxThreads > 0) {
+ if (MaxThreadsVal)
+ *MaxThreadsVal = MaxThreads.getExtValue();
+ if (F) {
+ // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
+ NVPTXTargetCodeGenInfo::addNVVMMetadata(F, "maxntidx",
+ MaxThreads.getExtValue());
+ }
+ }
+
+ // min and max blocks is an optional argument for CUDALaunchBoundsAttr. If it
+ // was not specified in __launch_bounds__ or if the user specified a 0 value,
+ // we don't have to add a PTX directive.
+ if (Attr->getMinBlocks()) {
+ llvm::APSInt MinBlocks(32);
+ MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(getContext());
+ if (MinBlocks > 0) {
+ if (MinBlocksVal)
+ *MinBlocksVal = MinBlocks.getExtValue();
+ if (F) {
+ // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
+ NVPTXTargetCodeGenInfo::addNVVMMetadata(F, "minctasm",
+ MinBlocks.getExtValue());
+ }
+ }
+ }
+ if (Attr->getMaxBlocks()) {
+ llvm::APSInt MaxBlocks(32);
+ MaxBlocks = Attr->getMaxBlocks()->EvaluateKnownConstInt(getContext());
+ if (MaxBlocks > 0) {
+ if (MaxClusterRankVal)
+ *MaxClusterRankVal = MaxBlocks.getExtValue();
+ if (F) {
+ // Create !{<func-ref>, metadata !"maxclusterrank", i32 <val>} node
+ NVPTXTargetCodeGenInfo::addNVVMMetadata(F, "maxclusterrank",
+ MaxBlocks.getExtValue());
+ }
+ }
+ }
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createNVPTXTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<NVPTXTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/PNaCl.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/PNaCl.cpp
new file mode 100644
index 000000000000..9b7d757df3a3
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/PNaCl.cpp
@@ -0,0 +1,112 @@
+//===- PNaCl.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// le32/PNaCl bitcode ABI Implementation
+//
+// This is a simplified version of the x86_32 ABI. Arguments and return values
+// are always passed on the stack.
+//===----------------------------------------------------------------------===//
+
+class PNaClABIInfo : public ABIInfo {
+ public:
+ PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
+ public:
+ PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
+};
+
+void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+}
+
+RValue PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // The PNaCL ABI is a bit odd, in that varargs don't use normal
+ // function classification. Structs get passed directly for varargs
+ // functions, through a rewriting transform in
+ // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
+ // this target to actually support a va_arg instructions with an
+ // aggregate type, unlike other targets.
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(
+ EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()), Ty),
+ Slot);
+}
+
+/// Classify argument of given type \p Ty.
+ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
+ if (isAggregateTypeForABI(Ty)) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+ return getNaturalAlignIndirect(Ty);
+ } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
+ // Treat an enum type as its underlying type.
+ Ty = EnumTy->getDecl()->getIntegerType();
+ } else if (Ty->isFloatingType()) {
+ // Floating-point types don't go inreg.
+ return ABIArgInfo::getDirect();
+ } else if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ // Treat bit-precise integers as integers if <= 64, otherwise pass
+ // indirectly.
+ if (EIT->getNumBits() > 64)
+ return getNaturalAlignIndirect(Ty);
+ return ABIArgInfo::getDirect();
+ }
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ // In the PNaCl ABI we always return records/structures on the stack.
+ if (isAggregateTypeForABI(RetTy))
+ return getNaturalAlignIndirect(RetTy);
+
+ // Treat bit-precise integers as integers if <= 64, otherwise pass indirectly.
+ if (const auto *EIT = RetTy->getAs<BitIntType>()) {
+ if (EIT->getNumBits() > 64)
+ return getNaturalAlignIndirect(RetTy);
+ return ABIArgInfo::getDirect();
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createPNaClTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<PNaClTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/PPC.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/PPC.cpp
new file mode 100644
index 000000000000..e4155810963e
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/PPC.cpp
@@ -0,0 +1,1050 @@
+//===- PPC.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+static RValue complexTempStructure(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, CharUnits SlotSize,
+ CharUnits EltSize, const ComplexType *CTy) {
+ Address Addr =
+ emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2,
+ SlotSize, SlotSize, /*AllowHigher*/ true);
+
+ Address RealAddr = Addr;
+ Address ImagAddr = RealAddr;
+ if (CGF.CGM.getDataLayout().isBigEndian()) {
+ RealAddr =
+ CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize);
+ ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
+ 2 * SlotSize - EltSize);
+ } else {
+ ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
+ }
+
+ llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
+ RealAddr = RealAddr.withElementType(EltTy);
+ ImagAddr = ImagAddr.withElementType(EltTy);
+ llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
+ llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
+
+ return RValue::getComplex(Real, Imag);
+}
+
+static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address, bool Is64Bit,
+ bool IsAIX) {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all PPC ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
+
+ // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
+
+ // 32-63: fp0-31, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 32, 63);
+
+ // 64-67 are various 4-byte or 8-byte special-purpose registers:
+ // 64: mq
+ // 65: lr
+ // 66: ctr
+ // 67: ap
+ AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
+
+ // 68-76 are various 4-byte special-purpose registers:
+ // 68-75 cr0-7
+ // 76: xer
+ AssignToArrayRange(Builder, Address, Four8, 68, 76);
+
+ // 77-108: v0-31, the 16-byte vector registers
+ AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
+
+ // 109: vrsave
+ // 110: vscr
+ AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
+
+ // AIX does not utilize the rest of the registers.
+ if (IsAIX)
+ return false;
+
+ // 111: spe_acc
+ // 112: spefscr
+ // 113: sfp
+ AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
+
+ if (!Is64Bit)
+ return false;
+
+ // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
+ // or above CPU.
+ // 64-bit only registers:
+ // 114: tfhar
+ // 115: tfiar
+ // 116: texasr
+ AssignToArrayRange(Builder, Address, Eight8, 114, 116);
+
+ return false;
+}
+
+// AIX
+namespace {
+/// AIXABIInfo - The AIX XCOFF ABI information.
+class AIXABIInfo : public ABIInfo {
+ const bool Is64Bit;
+ const unsigned PtrByteSize;
+ CharUnits getParamTypeAlignment(QualType Ty) const;
+
+public:
+ AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
+ : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
+
+ bool isPromotableTypeForABI(QualType Ty) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
+ const bool Is64Bit;
+
+public:
+ AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
+ : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
+ Is64Bit(Is64Bit) {}
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+} // namespace
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 32/64 bits.
+bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (getContext().isPromotableIntegerType(Ty))
+ return true;
+
+ if (!Is64Bit)
+ return false;
+
+ // For 64 bit mode, in addition to the usual promotable integer types, we also
+ // need to extend all 32-bit types, since the ABI requires promotion to 64
+ // bits.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ if (RetTy->isVectorType())
+ return ABIArgInfo::getDirect();
+
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (isAggregateTypeForABI(RetTy))
+ return getNaturalAlignIndirect(RetTy);
+
+ return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (Ty->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ if (Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Records with non-trivial destructors/copy-constructors should not be
+ // passed by value.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ CharUnits CCAlign = getParamTypeAlignment(Ty);
+ CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
+
+ return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
+ /*Realign*/ TyAlign > CCAlign);
+ }
+
+ return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+}
+
+CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
+ // Complex types are passed just like their elements.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ if (Ty->isVectorType())
+ return CharUnits::fromQuantity(16);
+
+ // If the structure contains a vector type, the alignment is 16.
+ if (isRecordWithSIMDVectorType(getContext(), Ty))
+ return CharUnits::fromQuantity(16);
+
+ return CharUnits::fromQuantity(PtrByteSize);
+}
+
+RValue AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+
+ auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+ TypeInfo.Align = getParamTypeAlignment(Ty);
+
+ CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
+
+ // If we have a complex type and the base type is smaller than the register
+ // size, the ABI calls for the real and imaginary parts to be right-adjusted
+ // in separate words in 32bit mode or doublewords in 64bit mode. However,
+ // Clang expects us to produce a pointer to a structure with the two parts
+ // packed tightly. So generate loads of the real and imaginary parts relative
+ // to the va_list pointer, and store them to a temporary structure. We do the
+ // same as the PPC64ABI here.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+ CharUnits EltSize = TypeInfo.Width / 2;
+ if (EltSize < SlotSize)
+ return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
+ }
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
+ SlotSize, /*AllowHigher*/ true, Slot);
+}
+
+bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
+ return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
+}
+
+void AIXTargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+ if (!isa<llvm::GlobalVariable>(GV))
+ return;
+
+ auto *GVar = cast<llvm::GlobalVariable>(GV);
+ auto GVId = GV->getName();
+
+ // Is this a global variable specified by the user as toc-data?
+ bool UserSpecifiedTOC =
+ llvm::binary_search(M.getCodeGenOpts().TocDataVarsUserSpecified, GVId);
+ // Assumes the same variable cannot be in both TocVarsUserSpecified and
+ // NoTocVars.
+ if (UserSpecifiedTOC ||
+ ((M.getCodeGenOpts().AllTocData) &&
+ !llvm::binary_search(M.getCodeGenOpts().NoTocDataVars, GVId))) {
+ const unsigned long PointerSize =
+ GV->getParent()->getDataLayout().getPointerSizeInBits() / 8;
+ auto *VarD = dyn_cast<VarDecl>(D);
+ assert(VarD && "Invalid declaration of global variable.");
+
+ ASTContext &Context = D->getASTContext();
+ unsigned Alignment = Context.toBits(Context.getDeclAlign(D)) / 8;
+ const auto *Ty = VarD->getType().getTypePtr();
+ const RecordDecl *RDecl =
+ Ty->isRecordType() ? Ty->getAs<RecordType>()->getDecl() : nullptr;
+
+ bool EmitDiagnostic = UserSpecifiedTOC && GV->hasExternalLinkage();
+ auto reportUnsupportedWarning = [&](bool ShouldEmitWarning, StringRef Msg) {
+ if (ShouldEmitWarning)
+ M.getDiags().Report(D->getLocation(), diag::warn_toc_unsupported_type)
+ << GVId << Msg;
+ };
+ if (!Ty || Ty->isIncompleteType())
+ reportUnsupportedWarning(EmitDiagnostic, "of incomplete type");
+ else if (RDecl && RDecl->hasFlexibleArrayMember())
+ reportUnsupportedWarning(EmitDiagnostic,
+ "it contains a flexible array member");
+ else if (VarD->getTLSKind() != VarDecl::TLS_None)
+ reportUnsupportedWarning(EmitDiagnostic, "of thread local storage");
+ else if (PointerSize < Context.getTypeInfo(VarD->getType()).Width / 8)
+ reportUnsupportedWarning(EmitDiagnostic,
+ "variable is larger than a pointer");
+ else if (PointerSize < Alignment)
+ reportUnsupportedWarning(EmitDiagnostic,
+ "variable is aligned wider than a pointer");
+ else if (D->hasAttr<SectionAttr>())
+ reportUnsupportedWarning(EmitDiagnostic,
+ "variable has a section attribute");
+ else if (GV->hasExternalLinkage() ||
+ (M.getCodeGenOpts().AllTocData && !GV->hasLocalLinkage()))
+ GVar->addAttribute("toc-data");
+ }
+}
+
+// PowerPC-32
+namespace {
+/// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
+class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
+ bool IsSoftFloatABI;
+ bool IsRetSmallStructInRegABI;
+
+ CharUnits getParamTypeAlignment(QualType Ty) const;
+
+public:
+ PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
+ bool RetSmallStructInRegABI)
+ : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
+ IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments())
+ I.info = classifyArgumentType(I.type);
+ }
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
+ bool RetSmallStructInRegABI)
+ : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
+ CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
+
+ static bool isStructReturnInRegABI(const llvm::Triple &Triple,
+ const CodeGenOptions &Opts);
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+}
+
+CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
+ // Complex types are passed just like their elements.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ if (Ty->isVectorType())
+ return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
+ : 4);
+
+ // For single-element float/vector structs, we consider the whole type
+ // to have the same alignment requirements as its single element.
+ const Type *AlignTy = nullptr;
+ if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
+ const BuiltinType *BT = EltType->getAs<BuiltinType>();
+ if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
+ (BT && BT->isFloatingPoint()))
+ AlignTy = EltType;
+ }
+
+ if (AlignTy)
+ return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
+ return CharUnits::fromQuantity(4);
+}
+
+ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
+ uint64_t Size;
+
+ // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
+ if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
+ (Size = getContext().getTypeSize(RetTy)) <= 64) {
+ // System V ABI (1995), page 3-22, specified:
+ // > A structure or union whose size is less than or equal to 8 bytes
+ // > shall be returned in r3 and r4, as if it were first stored in the
+ // > 8-byte aligned memory area and then the low addressed word were
+ // > loaded into r3 and the high-addressed word into r4. Bits beyond
+ // > the last member of the structure or union are not defined.
+ //
+ // GCC for big-endian PPC32 inserts the pad before the first member,
+ // not "beyond the last member" of the struct. To stay compatible
+ // with GCC, we coerce the struct to an integer of the same size.
+ // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
+ if (Size == 0)
+ return ABIArgInfo::getIgnore();
+ else {
+ llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ return DefaultABIInfo::classifyReturnType(RetTy);
+}
+
+// TODO: this implementation is now likely redundant with
+// DefaultABIInfo::EmitVAArg.
+RValue PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
+ QualType Ty, AggValueSlot Slot) const {
+ if (getTarget().getTriple().isOSDarwin()) {
+ auto TI = getContext().getTypeInfoInChars(Ty);
+ TI.Align = getParamTypeAlignment(Ty);
+
+ CharUnits SlotSize = CharUnits::fromQuantity(4);
+ return emitVoidPtrVAArg(CGF, VAList, Ty,
+ classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
+ /*AllowHigherAlign=*/true, Slot);
+ }
+
+ const unsigned OverflowLimit = 8;
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+ // TODO: Implement this. For now ignore.
+ (void)CTy;
+ return RValue::getAggregate(Address::invalid()); // FIXME?
+ }
+
+ // struct __va_list_tag {
+ // unsigned char gpr;
+ // unsigned char fpr;
+ // unsigned short reserved;
+ // void *overflow_arg_area;
+ // void *reg_save_area;
+ // };
+
+ bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
+ bool isInt = !Ty->isFloatingType();
+ bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
+
+ // All aggregates are passed indirectly? That doesn't seem consistent
+ // with the argument-lowering code.
+ bool isIndirect = isAggregateTypeForABI(Ty);
+
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // The calling convention either uses 1-2 GPRs or 1 FPR.
+ Address NumRegsAddr = Address::invalid();
+ if (isInt || IsSoftFloatABI) {
+ NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
+ } else {
+ NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
+ }
+
+ llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
+
+ // "Align" the register count when TY is i64.
+ if (isI64 || (isF64 && IsSoftFloatABI)) {
+ NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
+ NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
+ }
+
+ llvm::Value *CC =
+ Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
+
+ llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
+ llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
+ llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+
+ Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
+
+ llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy;
+ if (isIndirect)
+ DirectTy = CGF.UnqualPtrTy;
+
+ // Case 1: consume registers.
+ Address RegAddr = Address::invalid();
+ {
+ CGF.EmitBlock(UsingRegs);
+
+ Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
+ RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty,
+ CharUnits::fromQuantity(8));
+ assert(RegAddr.getElementType() == CGF.Int8Ty);
+
+ // Floating-point registers start after the general-purpose registers.
+ if (!(isInt || IsSoftFloatABI)) {
+ RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
+ CharUnits::fromQuantity(32));
+ }
+
+ // Get the address of the saved value by scaling the number of
+ // registers we've used by the number of
+ CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
+ llvm::Value *RegOffset =
+ Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
+ RegAddr = Address(Builder.CreateInBoundsGEP(
+ CGF.Int8Ty, RegAddr.emitRawPointer(CGF), RegOffset),
+ DirectTy,
+ RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
+
+ // Increase the used-register count.
+ NumRegs =
+ Builder.CreateAdd(NumRegs,
+ Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
+ Builder.CreateStore(NumRegs, NumRegsAddr);
+
+ CGF.EmitBranch(Cont);
+ }
+
+ // Case 2: consume space in the overflow area.
+ Address MemAddr = Address::invalid();
+ {
+ CGF.EmitBlock(UsingOverflow);
+
+ Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
+
+ // Everything in the overflow area is rounded up to a size of at least 4.
+ CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
+
+ CharUnits Size;
+ if (!isIndirect) {
+ auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
+ Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
+ } else {
+ Size = CGF.getPointerSize();
+ }
+
+ Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
+ Address OverflowArea =
+ Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty,
+ OverflowAreaAlign);
+ // Round up address of argument to alignment
+ CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
+ if (Align > OverflowAreaAlign) {
+ llvm::Value *Ptr = OverflowArea.emitRawPointer(CGF);
+ OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
+ OverflowArea.getElementType(), Align);
+ }
+
+ MemAddr = OverflowArea.withElementType(DirectTy);
+
+ // Increase the overflow area.
+ OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
+ Builder.CreateStore(OverflowArea.emitRawPointer(CGF), OverflowAreaAddr);
+ CGF.EmitBranch(Cont);
+ }
+
+ CGF.EmitBlock(Cont);
+
+ // Merge the cases with a phi.
+ Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
+ "vaarg.addr");
+
+ // Load the pointer if the argument was passed indirectly.
+ if (isIndirect) {
+ Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy,
+ getContext().getTypeAlignInChars(Ty));
+ }
+
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(Result, Ty), Slot);
+}
+
+bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+ assert(Triple.isPPC32());
+
+ switch (Opts.getStructReturnConvention()) {
+ case CodeGenOptions::SRCK_Default:
+ break;
+ case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
+ return false;
+ case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
+ return true;
+ }
+
+ if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
+ return true;
+
+ return false;
+}
+
+bool
+PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
+ /*IsAIX*/ false);
+}
+
+// PowerPC-64
+
+namespace {
+
+/// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
+class PPC64_SVR4_ABIInfo : public ABIInfo {
+ static const unsigned GPRBits = 64;
+ PPC64_SVR4_ABIKind Kind;
+ bool IsSoftFloatABI;
+
+public:
+ PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind,
+ bool SoftFloatABI)
+ : ABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
+
+ bool isPromotableTypeForABI(QualType Ty) const;
+ CharUnits getParamTypeAlignment(QualType Ty) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override;
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t Members) const override;
+
+ // TODO: We can add more logic to computeInfo to improve performance.
+ // Example: For aggregate arguments that fit in a register, we could
+ // use getDirectInReg (as is done below for structs containing a single
+ // floating-point value) to avoid pushing them to memory on function
+ // entry. This would require changing the logic in PPCISelLowering
+ // when lowering the parameters in the caller and args in the callee.
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &I : FI.arguments()) {
+ // We rely on the default argument classification for the most part.
+ // One exception: An aggregate containing a single floating-point
+ // or vector item must be passed in a register if one is available.
+ const Type *T = isSingleElementStruct(I.type, getContext());
+ if (T) {
+ const BuiltinType *BT = T->getAs<BuiltinType>();
+ if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
+ (BT && BT->isFloatingPoint())) {
+ QualType QT(T, 0);
+ I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
+ continue;
+ }
+ }
+ I.info = classifyArgumentType(I.type);
+ }
+ }
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
+
+public:
+ PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind,
+ bool SoftFloatABI)
+ : TargetCodeGenInfo(
+ std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+ }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+ void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
+ const llvm::MapVector<GlobalDecl, StringRef>
+ &MangledDeclNames) const override;
+};
+
+class PPC64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ PPC64TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ // This is recovered from gcc output.
+ return 1; // r1 is the dedicated stack pointer
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+};
+}
+
+// Return true if the ABI requires Ty to be passed sign- or zero-
+// extended to 64 bits.
+bool
+PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (isPromotableIntegerTypeForABI(Ty))
+ return true;
+
+ // In addition to the usual promotable integer types, we also need to
+ // extend all 32-bit types, since the ABI requires promotion to 64 bits.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ break;
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() < 64)
+ return true;
+
+ return false;
+}
+
+/// isAlignedParamType - Determine whether a type requires 16-byte or
+/// higher alignment in the parameter area. Always returns at least 8.
+CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
+ // Complex types are passed just like their elements.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ auto FloatUsesVector = [this](QualType Ty){
+ return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics(
+ Ty) == &llvm::APFloat::IEEEquad();
+ };
+
+ // Only vector types of size 16 bytes need alignment (larger types are
+ // passed via reference, smaller types are not aligned).
+ if (Ty->isVectorType()) {
+ return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
+ } else if (FloatUsesVector(Ty)) {
+ // According to ABI document section 'Optional Save Areas': If extended
+ // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
+ // format are supported, map them to a single quadword, quadword aligned.
+ return CharUnits::fromQuantity(16);
+ }
+
+ // For single-element float/vector structs, we consider the whole type
+ // to have the same alignment requirements as its single element.
+ const Type *AlignAsType = nullptr;
+ const Type *EltType = isSingleElementStruct(Ty, getContext());
+ if (EltType) {
+ const BuiltinType *BT = EltType->getAs<BuiltinType>();
+ if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
+ (BT && BT->isFloatingPoint()))
+ AlignAsType = EltType;
+ }
+
+ // Likewise for ELFv2 homogeneous aggregates.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (!AlignAsType && Kind == PPC64_SVR4_ABIKind::ELFv2 &&
+ isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
+ AlignAsType = Base;
+
+ // With special case aggregates, only vector base types need alignment.
+ if (AlignAsType) {
+ bool UsesVector = AlignAsType->isVectorType() ||
+ FloatUsesVector(QualType(AlignAsType, 0));
+ return CharUnits::fromQuantity(UsesVector ? 16 : 8);
+ }
+
+ // Otherwise, we only need alignment for any aggregate type that
+ // has an alignment requirement of >= 16 bytes.
+ if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
+ return CharUnits::fromQuantity(16);
+ }
+
+ return CharUnits::fromQuantity(8);
+}
+
+bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
+ // Homogeneous aggregates for ELFv2 must have base types of float,
+ // double, long double, or 128-bit vectors.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->getKind() == BuiltinType::Float ||
+ BT->getKind() == BuiltinType::Double ||
+ BT->getKind() == BuiltinType::LongDouble ||
+ BT->getKind() == BuiltinType::Ibm128 ||
+ (getContext().getTargetInfo().hasFloat128Type() &&
+ (BT->getKind() == BuiltinType::Float128))) {
+ if (IsSoftFloatABI)
+ return false;
+ return true;
+ }
+ }
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ if (getContext().getTypeSize(VT) == 128)
+ return true;
+ }
+ return false;
+}
+
+bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
+ const Type *Base, uint64_t Members) const {
+ // Vector and fp128 types require one register, other floating point types
+ // require one or two registers depending on their size.
+ uint32_t NumRegs =
+ ((getContext().getTargetInfo().hasFloat128Type() &&
+ Base->isFloat128Type()) ||
+ Base->isVectorType()) ? 1
+ : (getContext().getTypeSize(Base) + 63) / 64;
+
+ // Homogeneous Aggregates may occupy at most 8 registers.
+ return Members * NumRegs <= 8;
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (Ty->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
+ // or via reference (larger than 16 bytes).
+ if (Ty->isVectorType()) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size > 128)
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+ else if (Size < 128) {
+ llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() > 128)
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
+
+ if (isAggregateTypeForABI(Ty)) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
+ uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
+
+ // ELFv2 homogeneous aggregates are passed as array types.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (Kind == PPC64_SVR4_ABIKind::ELFv2 &&
+ isHomogeneousAggregate(Ty, Base, Members)) {
+ llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+ llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // If an aggregate may end up fully in registers, we do not
+ // use the ByVal method, but pass the aggregate as array.
+ // This is usually beneficial since we avoid forcing the
+ // back-end to store the argument to memory.
+ uint64_t Bits = getContext().getTypeSize(Ty);
+ if (Bits > 0 && Bits <= 8 * GPRBits) {
+ llvm::Type *CoerceTy;
+
+ // Types up to 8 bytes are passed as integer type (which will be
+ // properly aligned in the argument save area doubleword).
+ if (Bits <= GPRBits)
+ CoerceTy =
+ llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
+ // Larger types are passed as arrays, with the base type selected
+ // according to the required alignment in the save area.
+ else {
+ uint64_t RegBits = ABIAlign * 8;
+ uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
+ llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
+ CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
+ }
+
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // All other aggregates are passed ByVal.
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
+ /*ByVal=*/true,
+ /*Realign=*/TyAlign > ABIAlign);
+ }
+
+ return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo
+PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (RetTy->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+
+ // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
+ // or via reference (larger than 16 bytes).
+ if (RetTy->isVectorType()) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+ if (Size > 128)
+ return getNaturalAlignIndirect(RetTy);
+ else if (Size < 128) {
+ llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+ }
+
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > 128)
+ return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+
+ if (isAggregateTypeForABI(RetTy)) {
+ // ELFv2 homogeneous aggregates are returned as array types.
+ const Type *Base = nullptr;
+ uint64_t Members = 0;
+ if (Kind == PPC64_SVR4_ABIKind::ELFv2 &&
+ isHomogeneousAggregate(RetTy, Base, Members)) {
+ llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
+ llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // ELFv2 small aggregates are returned in up to two registers.
+ uint64_t Bits = getContext().getTypeSize(RetTy);
+ if (Kind == PPC64_SVR4_ABIKind::ELFv2 && Bits <= 2 * GPRBits) {
+ if (Bits == 0)
+ return ABIArgInfo::getIgnore();
+
+ llvm::Type *CoerceTy;
+ if (Bits > GPRBits) {
+ CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
+ CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
+ } else
+ CoerceTy =
+ llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
+ return ABIArgInfo::getDirect(CoerceTy);
+ }
+
+ // All other aggregates are returned indirectly.
+ return getNaturalAlignIndirect(RetTy);
+ }
+
+ return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+// Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
+RValue PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+ TypeInfo.Align = getParamTypeAlignment(Ty);
+
+ CharUnits SlotSize = CharUnits::fromQuantity(8);
+
+ // If we have a complex type and the base type is smaller than 8 bytes,
+ // the ABI calls for the real and imaginary parts to be right-adjusted
+ // in separate doublewords. However, Clang expects us to produce a
+ // pointer to a structure with the two parts packed tightly. So generate
+ // loads of the real and imaginary parts relative to the va_list pointer,
+ // and store them to a temporary structure.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
+ CharUnits EltSize = TypeInfo.Width / 2;
+ if (EltSize < SlotSize)
+ return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy);
+ }
+
+ // Otherwise, just use the general rule.
+ //
+ // The PPC64 ABI passes some arguments in integer registers, even to variadic
+ // functions. To allow va_list to use the simple "void*" representation,
+ // variadic calls allocate space in the argument area for the integer argument
+ // registers, and variadic functions spill their integer argument registers to
+ // this area in their prologues. When aggregates smaller than a register are
+ // passed this way, they are passed in the least significant bits of the
+ // register, which means that after spilling on big-endian targets they will
+ // be right-aligned in their argument slot. This is uncommon; for a variety of
+ // reasons, other big-endian targets don't end up right-aligning aggregate
+ // types this way, and so right-alignment only applies to fundamental types.
+ // So on PPC64, we must force the use of right-alignment even for aggregates.
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
+ SlotSize, /*AllowHigher*/ true, Slot,
+ /*ForceRightAdjust*/ true);
+}
+
+bool
+PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
+ /*IsAIX*/ false);
+}
+
+void PPC64_SVR4_TargetCodeGenInfo::emitTargetMetadata(
+ CodeGen::CodeGenModule &CGM,
+ const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
+ if (CGM.getTypes().isLongDoubleReferenced()) {
+ llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+ const auto *flt = &CGM.getTarget().getLongDoubleFormat();
+ if (flt == &llvm::APFloat::PPCDoubleDouble())
+ CGM.getModule().addModuleFlag(llvm::Module::Error, "float-abi",
+ llvm::MDString::get(Ctx, "doubledouble"));
+ else if (flt == &llvm::APFloat::IEEEquad())
+ CGM.getModule().addModuleFlag(llvm::Module::Error, "float-abi",
+ llvm::MDString::get(Ctx, "ieeequad"));
+ else if (flt == &llvm::APFloat::IEEEdouble())
+ CGM.getModule().addModuleFlag(llvm::Module::Error, "float-abi",
+ llvm::MDString::get(Ctx, "ieeedouble"));
+ }
+}
+
+bool
+PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
+ /*IsAIX*/ false);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit) {
+ return std::make_unique<AIXTargetCodeGenInfo>(CGM.getTypes(), Is64Bit);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI) {
+ bool RetSmallStructInRegABI = PPC32TargetCodeGenInfo::isStructReturnInRegABI(
+ CGM.getTriple(), CGM.getCodeGenOpts());
+ return std::make_unique<PPC32TargetCodeGenInfo>(CGM.getTypes(), SoftFloatABI,
+ RetSmallStructInRegABI);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createPPC64TargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<PPC64TargetCodeGenInfo>(CGM.getTypes());
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createPPC64_SVR4_TargetCodeGenInfo(
+ CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind, bool SoftFloatABI) {
+ return std::make_unique<PPC64_SVR4_TargetCodeGenInfo>(CGM.getTypes(), Kind,
+ SoftFloatABI);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/RISCV.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/RISCV.cpp
new file mode 100644
index 000000000000..f2add9351c03
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/RISCV.cpp
@@ -0,0 +1,563 @@
+//===- RISCV.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// RISC-V ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+class RISCVABIInfo : public DefaultABIInfo {
+private:
+ // Size of the integer ('x') registers in bits.
+ unsigned XLen;
+ // Size of the floating point ('f') registers in bits. Note that the target
+ // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
+ // with soft float ABI has FLen==0).
+ unsigned FLen;
+ const int NumArgGPRs;
+ const int NumArgFPRs;
+ const bool EABI;
+ bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
+ llvm::Type *&Field1Ty,
+ CharUnits &Field1Off,
+ llvm::Type *&Field2Ty,
+ CharUnits &Field2Off) const;
+
+public:
+ RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen,
+ bool EABI)
+ : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen), NumArgGPRs(EABI ? 6 : 8),
+ NumArgFPRs(FLen != 0 ? 8 : 0), EABI(EABI) {}
+
+ // DefaultABIInfo's classifyReturnType and classifyArgumentType are
+ // non-virtual, but computeInfo is virtual, so we overload it.
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
+ int &ArgFPRsLeft) const;
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ ABIArgInfo extendType(QualType Ty) const;
+
+ bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
+ CharUnits &Field1Off, llvm::Type *&Field2Ty,
+ CharUnits &Field2Off, int &NeededArgGPRs,
+ int &NeededArgFPRs) const;
+ ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
+ CharUnits Field1Off,
+ llvm::Type *Field2Ty,
+ CharUnits Field2Off) const;
+
+ ABIArgInfo coerceVLSVector(QualType Ty) const;
+};
+} // end anonymous namespace
+
+void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ QualType RetTy = FI.getReturnType();
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(RetTy);
+
+ // IsRetIndirect is true if classifyArgumentType indicated the value should
+ // be passed indirect, or if the type size is a scalar greater than 2*XLen
+ // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
+ // in LLVM IR, relying on the backend lowering code to rewrite the argument
+ // list and pass indirectly on RV32.
+ bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
+ if (!IsRetIndirect && RetTy->isScalarType() &&
+ getContext().getTypeSize(RetTy) > (2 * XLen)) {
+ if (RetTy->isComplexType() && FLen) {
+ QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
+ IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
+ } else {
+ // This is a normal scalar > 2*XLen, such as fp128 on RV32.
+ IsRetIndirect = true;
+ }
+ }
+
+ int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
+ int ArgFPRsLeft = NumArgFPRs;
+ int NumFixedArgs = FI.getNumRequiredArgs();
+
+ int ArgNum = 0;
+ for (auto &ArgInfo : FI.arguments()) {
+ bool IsFixed = ArgNum < NumFixedArgs;
+ ArgInfo.info =
+ classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
+ ArgNum++;
+ }
+}
+
+// Returns true if the struct is a potential candidate for the floating point
+// calling convention. If this function returns true, the caller is
+// responsible for checking that if there is only a single field then that
+// field is a float.
+bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
+ llvm::Type *&Field1Ty,
+ CharUnits &Field1Off,
+ llvm::Type *&Field2Ty,
+ CharUnits &Field2Off) const {
+ bool IsInt = Ty->isIntegralOrEnumerationType();
+ bool IsFloat = Ty->isRealFloatingType();
+
+ if (IsInt || IsFloat) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (IsInt && Size > XLen)
+ return false;
+ // Can't be eligible if larger than the FP registers. Handling of half
+ // precision values has been specified in the ABI, so don't block those.
+ if (IsFloat && Size > FLen)
+ return false;
+ // Can't be eligible if an integer type was already found (int+int pairs
+ // are not eligible).
+ if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
+ return false;
+ if (!Field1Ty) {
+ Field1Ty = CGT.ConvertType(Ty);
+ Field1Off = CurOff;
+ return true;
+ }
+ if (!Field2Ty) {
+ Field2Ty = CGT.ConvertType(Ty);
+ Field2Off = CurOff;
+ return true;
+ }
+ return false;
+ }
+
+ if (auto CTy = Ty->getAs<ComplexType>()) {
+ if (Field1Ty)
+ return false;
+ QualType EltTy = CTy->getElementType();
+ if (getContext().getTypeSize(EltTy) > FLen)
+ return false;
+ Field1Ty = CGT.ConvertType(EltTy);
+ Field1Off = CurOff;
+ Field2Ty = Field1Ty;
+ Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
+ return true;
+ }
+
+ if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
+ uint64_t ArraySize = ATy->getZExtSize();
+ QualType EltTy = ATy->getElementType();
+ // Non-zero-length arrays of empty records make the struct ineligible for
+ // the FP calling convention in C++.
+ if (const auto *RTy = EltTy->getAs<RecordType>()) {
+ if (ArraySize != 0 && isa<CXXRecordDecl>(RTy->getDecl()) &&
+ isEmptyRecord(getContext(), EltTy, true, true))
+ return false;
+ }
+ CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
+ for (uint64_t i = 0; i < ArraySize; ++i) {
+ bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
+ Field1Off, Field2Ty, Field2Off);
+ if (!Ret)
+ return false;
+ CurOff += EltSize;
+ }
+ return true;
+ }
+
+ if (const auto *RTy = Ty->getAs<RecordType>()) {
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are not eligible for the FP calling convention.
+ if (getRecordArgABI(Ty, CGT.getCXXABI()))
+ return false;
+ if (isEmptyRecord(getContext(), Ty, true, true))
+ return true;
+ const RecordDecl *RD = RTy->getDecl();
+ // Unions aren't eligible unless they're empty (which is caught above).
+ if (RD->isUnion())
+ return false;
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const CXXBaseSpecifier &B : CXXRD->bases()) {
+ const auto *BDecl =
+ cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
+ CharUnits BaseOff = Layout.getBaseClassOffset(BDecl);
+ bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff,
+ Field1Ty, Field1Off, Field2Ty,
+ Field2Off);
+ if (!Ret)
+ return false;
+ }
+ }
+ int ZeroWidthBitFieldCount = 0;
+ for (const FieldDecl *FD : RD->fields()) {
+ uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
+ QualType QTy = FD->getType();
+ if (FD->isBitField()) {
+ unsigned BitWidth = FD->getBitWidthValue(getContext());
+ // Allow a bitfield with a type greater than XLen as long as the
+ // bitwidth is XLen or less.
+ if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
+ QTy = getContext().getIntTypeForBitwidth(XLen, false);
+ if (BitWidth == 0) {
+ ZeroWidthBitFieldCount++;
+ continue;
+ }
+ }
+
+ bool Ret = detectFPCCEligibleStructHelper(
+ QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
+ Field1Ty, Field1Off, Field2Ty, Field2Off);
+ if (!Ret)
+ return false;
+
+ // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
+ // or int+fp structs, but are ignored for a struct with an fp field and
+ // any number of zero-width bitfields.
+ if (Field2Ty && ZeroWidthBitFieldCount > 0)
+ return false;
+ }
+ return Field1Ty != nullptr;
+ }
+
+ return false;
+}
+
+// Determine if a struct is eligible for passing according to the floating
+// point calling convention (i.e., when flattened it contains a single fp
+// value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
+// NeededArgGPRs are incremented appropriately.
+bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
+ CharUnits &Field1Off,
+ llvm::Type *&Field2Ty,
+ CharUnits &Field2Off,
+ int &NeededArgGPRs,
+ int &NeededArgFPRs) const {
+ Field1Ty = nullptr;
+ Field2Ty = nullptr;
+ NeededArgGPRs = 0;
+ NeededArgFPRs = 0;
+ bool IsCandidate = detectFPCCEligibleStructHelper(
+ Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
+ if (!Field1Ty)
+ return false;
+ // Not really a candidate if we have a single int but no float.
+ if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
+ return false;
+ if (!IsCandidate)
+ return false;
+ if (Field1Ty && Field1Ty->isFloatingPointTy())
+ NeededArgFPRs++;
+ else if (Field1Ty)
+ NeededArgGPRs++;
+ if (Field2Ty && Field2Ty->isFloatingPointTy())
+ NeededArgFPRs++;
+ else if (Field2Ty)
+ NeededArgGPRs++;
+ return true;
+}
+
+// Call getCoerceAndExpand for the two-element flattened struct described by
+// Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
+// appropriate coerceToType and unpaddedCoerceToType.
+ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
+ llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
+ CharUnits Field2Off) const {
+ SmallVector<llvm::Type *, 3> CoerceElts;
+ SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
+ if (!Field1Off.isZero())
+ CoerceElts.push_back(llvm::ArrayType::get(
+ llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
+
+ CoerceElts.push_back(Field1Ty);
+ UnpaddedCoerceElts.push_back(Field1Ty);
+
+ if (!Field2Ty) {
+ return ABIArgInfo::getCoerceAndExpand(
+ llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
+ UnpaddedCoerceElts[0]);
+ }
+
+ CharUnits Field2Align =
+ CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty));
+ CharUnits Field1End = Field1Off +
+ CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
+ CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
+
+ CharUnits Padding = CharUnits::Zero();
+ if (Field2Off > Field2OffNoPadNoPack)
+ Padding = Field2Off - Field2OffNoPadNoPack;
+ else if (Field2Off != Field2Align && Field2Off > Field1End)
+ Padding = Field2Off - Field1End;
+
+ bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
+
+ if (!Padding.isZero())
+ CoerceElts.push_back(llvm::ArrayType::get(
+ llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
+
+ CoerceElts.push_back(Field2Ty);
+ UnpaddedCoerceElts.push_back(Field2Ty);
+
+ auto CoerceToType =
+ llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
+ auto UnpaddedCoerceToType =
+ llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
+
+ return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
+}
+
+// Fixed-length RVV vectors are represented as scalable vectors in function
+// args/return and must be coerced from fixed vectors.
+ABIArgInfo RISCVABIInfo::coerceVLSVector(QualType Ty) const {
+ assert(Ty->isVectorType() && "expected vector type!");
+
+ const auto *VT = Ty->castAs<VectorType>();
+ assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
+
+ auto VScale =
+ getContext().getTargetInfo().getVScaleRange(getContext().getLangOpts());
+
+ unsigned NumElts = VT->getNumElements();
+ llvm::Type *EltType;
+ if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask) {
+ NumElts *= 8;
+ EltType = llvm::Type::getInt1Ty(getVMContext());
+ } else {
+ assert(VT->getVectorKind() == VectorKind::RVVFixedLengthData &&
+ "Unexpected vector kind");
+ EltType = CGT.ConvertType(VT->getElementType());
+ }
+
+ // The MinNumElts is simplified from equation:
+ // NumElts / VScale =
+ // (EltSize * NumElts / (VScale * RVVBitsPerBlock))
+ // * (RVVBitsPerBlock / EltSize)
+ llvm::ScalableVectorType *ResType =
+ llvm::ScalableVectorType::get(EltType, NumElts / VScale->first);
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
+ int &ArgGPRsLeft,
+ int &ArgFPRsLeft) const {
+ assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Structures with either a non-trivial destructor or a non-trivial
+ // copy constructor are always passed indirectly.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
+ if (ArgGPRsLeft)
+ ArgGPRsLeft -= 1;
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
+ CGCXXABI::RAA_DirectInMemory);
+ }
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // Ignore empty structs/unions whose size is zero. According to the calling
+ // convention empty structs/unions are required to be sized types in C++.
+ if (isEmptyRecord(getContext(), Ty, true) && Size == 0)
+ return ABIArgInfo::getIgnore();
+
+ // Pass floating point values via FPRs if possible.
+ if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
+ FLen >= Size && ArgFPRsLeft) {
+ ArgFPRsLeft--;
+ return ABIArgInfo::getDirect();
+ }
+
+ // Complex types for the hard float ABI must be passed direct rather than
+ // using CoerceAndExpand.
+ if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
+ QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
+ if (getContext().getTypeSize(EltTy) <= FLen) {
+ ArgFPRsLeft -= 2;
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ if (IsFixed && FLen && Ty->isStructureOrClassType()) {
+ llvm::Type *Field1Ty = nullptr;
+ llvm::Type *Field2Ty = nullptr;
+ CharUnits Field1Off = CharUnits::Zero();
+ CharUnits Field2Off = CharUnits::Zero();
+ int NeededArgGPRs = 0;
+ int NeededArgFPRs = 0;
+ bool IsCandidate =
+ detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
+ NeededArgGPRs, NeededArgFPRs);
+ if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
+ NeededArgFPRs <= ArgFPRsLeft) {
+ ArgGPRsLeft -= NeededArgGPRs;
+ ArgFPRsLeft -= NeededArgFPRs;
+ return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
+ Field2Off);
+ }
+ }
+
+ uint64_t NeededAlign = getContext().getTypeAlign(Ty);
+ // Determine the number of GPRs needed to pass the current argument
+ // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
+ // register pairs, so may consume 3 registers.
+ // TODO: To be compatible with GCC's behaviors, we don't align registers
+ // currently if we are using ILP32E calling convention. This behavior may be
+ // changed when RV32E/ILP32E is ratified.
+ int NeededArgGPRs = 1;
+ if (!IsFixed && NeededAlign == 2 * XLen)
+ NeededArgGPRs = 2 + (EABI && XLen == 32 ? 0 : (ArgGPRsLeft % 2));
+ else if (Size > XLen && Size <= 2 * XLen)
+ NeededArgGPRs = 2;
+
+ if (NeededArgGPRs > ArgGPRsLeft) {
+ NeededArgGPRs = ArgGPRsLeft;
+ }
+
+ ArgGPRsLeft -= NeededArgGPRs;
+
+ if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // All integral types are promoted to XLen width
+ if (Size < XLen && Ty->isIntegralOrEnumerationType()) {
+ return extendType(Ty);
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ if (EIT->getNumBits() < XLen)
+ return extendType(Ty);
+ if (EIT->getNumBits() > 128 ||
+ (!getContext().getTargetInfo().hasInt128Type() &&
+ EIT->getNumBits() > 64))
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+ }
+
+ ABIArgInfo Info = ABIArgInfo::getDirect();
+
+ // If it is tuple type, it can't be flattened.
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)))
+ Info.setCanBeFlattened(!STy->containsHomogeneousScalableVectorTypes());
+
+ return Info;
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>())
+ if (VT->getVectorKind() == VectorKind::RVVFixedLengthData ||
+ VT->getVectorKind() == VectorKind::RVVFixedLengthMask)
+ return coerceVLSVector(Ty);
+
+ // Aggregates which are <= 2*XLen will be passed in registers if possible,
+ // so coerce to integers.
+ if (Size <= 2 * XLen) {
+ unsigned Alignment = getContext().getTypeAlign(Ty);
+
+ // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
+ // required, and a 2-element XLen array if only XLen alignment is required.
+ if (Size <= XLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), XLen));
+ } else if (Alignment == 2 * XLen) {
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), 2 * XLen));
+ } else {
+ return ABIArgInfo::getDirect(llvm::ArrayType::get(
+ llvm::IntegerType::get(getVMContext(), XLen), 2));
+ }
+ }
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+}
+
+ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ int ArgGPRsLeft = 2;
+ int ArgFPRsLeft = FLen ? 2 : 0;
+
+ // The rules for return and argument types are the same, so defer to
+ // classifyArgumentType.
+ return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
+ ArgFPRsLeft);
+}
+
+RValue RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return Slot.asRValue();
+
+ auto TInfo = getContext().getTypeInfoInChars(Ty);
+
+ // TODO: To be compatible with GCC's behaviors, we force arguments with
+ // 2×XLEN-bit alignment and size at most 2×XLEN bits like `long long`,
+ // `unsigned long long` and `double` to have 4-byte alignment. This
+ // behavior may be changed when RV32E/ILP32E is ratified.
+ if (EABI && XLen == 32)
+ TInfo.Align = std::min(TInfo.Align, CharUnits::fromQuantity(4));
+
+ // Arguments bigger than 2*Xlen bytes are passed indirectly.
+ bool IsIndirect = TInfo.Width > 2 * SlotSize;
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, SlotSize,
+ /*AllowHigherAlign=*/true, Slot);
+}
+
+ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
+ int TySize = getContext().getTypeSize(Ty);
+ // RV64 ABI requires unsigned 32 bit integers to be sign extended.
+ if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
+ return ABIArgInfo::getSignExtend(Ty);
+ return ABIArgInfo::getExtend(Ty);
+}
+
+namespace {
+class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
+ unsigned FLen, bool EABI)
+ : TargetCodeGenInfo(
+ std::make_unique<RISCVABIInfo>(CGT, XLen, FLen, EABI)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) return;
+
+ const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
+ if (!Attr)
+ return;
+
+ const char *Kind;
+ switch (Attr->getInterrupt()) {
+ case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
+ case RISCVInterruptAttr::machine: Kind = "machine"; break;
+ }
+
+ auto *Fn = cast<llvm::Function>(GV);
+
+ Fn->addFnAttr("interrupt", Kind);
+ }
+};
+} // namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen,
+ unsigned FLen, bool EABI) {
+ return std::make_unique<RISCVTargetCodeGenInfo>(CGM.getTypes(), XLen, FLen,
+ EABI);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/SPIR.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/SPIR.cpp
new file mode 100644
index 000000000000..cf068cbc4fcd
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/SPIR.cpp
@@ -0,0 +1,218 @@
+//===- SPIR.cpp -----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// Base ABI and target codegen info implementation common between SPIR and
+// SPIR-V.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class CommonSPIRABIInfo : public DefaultABIInfo {
+public:
+ CommonSPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
+
+private:
+ void setCCs();
+};
+
+class SPIRVABIInfo : public CommonSPIRABIInfo {
+public:
+ SPIRVABIInfo(CodeGenTypes &CGT) : CommonSPIRABIInfo(CGT) {}
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+private:
+ ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
+};
+} // end anonymous namespace
+namespace {
+class CommonSPIRTargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ CommonSPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<CommonSPIRABIInfo>(CGT)) {}
+ CommonSPIRTargetCodeGenInfo(std::unique_ptr<ABIInfo> ABIInfo)
+ : TargetCodeGenInfo(std::move(ABIInfo)) {}
+
+ LangAS getASTAllocaAddressSpace() const override {
+ return getLangASFromTargetAS(
+ getABIInfo().getDataLayout().getAllocaAddrSpace());
+ }
+
+ unsigned getOpenCLKernelCallingConv() const override;
+ llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const override;
+};
+class SPIRVTargetCodeGenInfo : public CommonSPIRTargetCodeGenInfo {
+public:
+ SPIRVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
+ : CommonSPIRTargetCodeGenInfo(std::make_unique<SPIRVABIInfo>(CGT)) {}
+ void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
+};
+} // End anonymous namespace.
+
+void CommonSPIRABIInfo::setCCs() {
+ assert(getRuntimeCC() == llvm::CallingConv::C);
+ RuntimeCC = llvm::CallingConv::SPIR_FUNC;
+}
+
+ABIArgInfo SPIRVABIInfo::classifyKernelArgumentType(QualType Ty) const {
+ if (getContext().getLangOpts().CUDAIsDevice) {
+ // Coerce pointer arguments with default address space to CrossWorkGroup
+ // pointers for HIPSPV/CUDASPV. When the language mode is HIP/CUDA, the
+ // SPIRTargetInfo maps cuda_device to SPIR-V's CrossWorkGroup address space.
+ llvm::Type *LTy = CGT.ConvertType(Ty);
+ auto DefaultAS = getContext().getTargetAddressSpace(LangAS::Default);
+ auto GlobalAS = getContext().getTargetAddressSpace(LangAS::cuda_device);
+ auto *PtrTy = llvm::dyn_cast<llvm::PointerType>(LTy);
+ if (PtrTy && PtrTy->getAddressSpace() == DefaultAS) {
+ LTy = llvm::PointerType::get(PtrTy->getContext(), GlobalAS);
+ return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
+ }
+
+ // Force copying aggregate type in kernel arguments by value when
+ // compiling CUDA targeting SPIR-V. This is required for the object
+ // copied to be valid on the device.
+ // This behavior follows the CUDA spec
+ // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-function-argument-processing,
+ // and matches the NVPTX implementation.
+ if (isAggregateTypeForABI(Ty))
+ return getNaturalAlignIndirect(Ty, /* byval */ true);
+ }
+ return classifyArgumentType(Ty);
+}
+
+void SPIRVABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ // The logic is same as in DefaultABIInfo with an exception on the kernel
+ // arguments handling.
+ llvm::CallingConv::ID CC = FI.getCallingConvention();
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+
+ for (auto &I : FI.arguments()) {
+ if (CC == llvm::CallingConv::SPIR_KERNEL) {
+ I.info = classifyKernelArgumentType(I.type);
+ } else {
+ I.info = classifyArgumentType(I.type);
+ }
+ }
+}
+
+namespace clang {
+namespace CodeGen {
+void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
+ if (CGM.getTarget().getTriple().isSPIRV())
+ SPIRVABIInfo(CGM.getTypes()).computeInfo(FI);
+ else
+ CommonSPIRABIInfo(CGM.getTypes()).computeInfo(FI);
+}
+}
+}
+
+unsigned CommonSPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
+ return llvm::CallingConv::SPIR_KERNEL;
+}
+
+void SPIRVTargetCodeGenInfo::setCUDAKernelCallingConvention(
+ const FunctionType *&FT) const {
+ // Convert HIP kernels to SPIR-V kernels.
+ if (getABIInfo().getContext().getLangOpts().HIP) {
+ FT = getABIInfo().getContext().adjustFunctionType(
+ FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
+ return;
+ }
+}
+
+/// Construct a SPIR-V target extension type for the given OpenCL image type.
+static llvm::Type *getSPIRVImageType(llvm::LLVMContext &Ctx, StringRef BaseType,
+ StringRef OpenCLName,
+ unsigned AccessQualifier) {
+ // These parameters compare to the operands of OpTypeImage (see
+ // https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpTypeImage
+ // for more details). The first 6 integer parameters all default to 0, and
+ // will be changed to 1 only for the image type(s) that set the parameter to
+ // one. The 7th integer parameter is the access qualifier, which is tacked on
+ // at the end.
+ SmallVector<unsigned, 7> IntParams = {0, 0, 0, 0, 0, 0};
+
+ // Choose the dimension of the image--this corresponds to the Dim enum in
+ // SPIR-V (first integer parameter of OpTypeImage).
+ if (OpenCLName.starts_with("image2d"))
+ IntParams[0] = 1; // 1D
+ else if (OpenCLName.starts_with("image3d"))
+ IntParams[0] = 2; // 2D
+ else if (OpenCLName == "image1d_buffer")
+ IntParams[0] = 5; // Buffer
+ else
+ assert(OpenCLName.starts_with("image1d") && "Unknown image type");
+
+ // Set the other integer parameters of OpTypeImage if necessary. Note that the
+ // OpenCL image types don't provide any information for the Sampled or
+ // Image Format parameters.
+ if (OpenCLName.contains("_depth"))
+ IntParams[1] = 1;
+ if (OpenCLName.contains("_array"))
+ IntParams[2] = 1;
+ if (OpenCLName.contains("_msaa"))
+ IntParams[3] = 1;
+
+ // Access qualifier
+ IntParams.push_back(AccessQualifier);
+
+ return llvm::TargetExtType::get(Ctx, BaseType, {llvm::Type::getVoidTy(Ctx)},
+ IntParams);
+}
+
+llvm::Type *CommonSPIRTargetCodeGenInfo::getOpenCLType(CodeGenModule &CGM,
+ const Type *Ty) const {
+ llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+ if (auto *PipeTy = dyn_cast<PipeType>(Ty))
+ return llvm::TargetExtType::get(Ctx, "spirv.Pipe", {},
+ {!PipeTy->isReadOnly()});
+ if (auto *BuiltinTy = dyn_cast<BuiltinType>(Ty)) {
+ enum AccessQualifier : unsigned { AQ_ro = 0, AQ_wo = 1, AQ_rw = 2 };
+ switch (BuiltinTy->getKind()) {
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id: \
+ return getSPIRVImageType(Ctx, "spirv.Image", #ImgType, AQ_##Suffix);
+#include "clang/Basic/OpenCLImageTypes.def"
+ case BuiltinType::OCLSampler:
+ return llvm::TargetExtType::get(Ctx, "spirv.Sampler");
+ case BuiltinType::OCLEvent:
+ return llvm::TargetExtType::get(Ctx, "spirv.Event");
+ case BuiltinType::OCLClkEvent:
+ return llvm::TargetExtType::get(Ctx, "spirv.DeviceEvent");
+ case BuiltinType::OCLQueue:
+ return llvm::TargetExtType::get(Ctx, "spirv.Queue");
+ case BuiltinType::OCLReserveID:
+ return llvm::TargetExtType::get(Ctx, "spirv.ReserveId");
+#define INTEL_SUBGROUP_AVC_TYPE(Name, Id) \
+ case BuiltinType::OCLIntelSubgroupAVC##Id: \
+ return llvm::TargetExtType::get(Ctx, "spirv.Avc" #Id "INTEL");
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ default:
+ return nullptr;
+ }
+ }
+
+ return nullptr;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<CommonSPIRTargetCodeGenInfo>(CGM.getTypes());
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSPIRVTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<SPIRVTargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/Sparc.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/Sparc.cpp
new file mode 100644
index 000000000000..da8c7219be26
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/Sparc.cpp
@@ -0,0 +1,414 @@
+//===- Sparc.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// SPARC v8 ABI Implementation.
+// Based on the SPARC Compliance Definition version 2.4.1.
+//
+// Ensures that complex values are passed in registers.
+//
+namespace {
+class SparcV8ABIInfo : public DefaultABIInfo {
+public:
+ SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+};
+} // end anonymous namespace
+
+
+ABIArgInfo
+SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
+ if (Ty->isAnyComplexType()) {
+ return ABIArgInfo::getDirect();
+ }
+ else {
+ return DefaultABIInfo::classifyReturnType(Ty);
+ }
+}
+
+void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &Arg : FI.arguments())
+ Arg.info = classifyArgumentType(Arg.type);
+}
+
+namespace {
+class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
+
+ llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ int Offset;
+ if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
+ Offset = 12;
+ else
+ Offset = 8;
+ return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+ llvm::ConstantInt::get(CGF.Int32Ty, Offset));
+ }
+
+ llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ int Offset;
+ if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
+ Offset = -12;
+ else
+ Offset = -8;
+ return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+ llvm::ConstantInt::get(CGF.Int32Ty, Offset));
+ }
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// SPARC v9 ABI Implementation.
+// Based on the SPARC Compliance Definition version 2.4.1.
+//
+// Function arguments a mapped to a nominal "parameter array" and promoted to
+// registers depending on their type. Each argument occupies 8 or 16 bytes in
+// the array, structs larger than 16 bytes are passed indirectly.
+//
+// One case requires special care:
+//
+// struct mixed {
+// int i;
+// float f;
+// };
+//
+// When a struct mixed is passed by value, it only occupies 8 bytes in the
+// parameter array, but the int is passed in an integer register, and the float
+// is passed in a floating point register. This is represented as two arguments
+// with the LLVM IR inreg attribute:
+//
+// declare void f(i32 inreg %i, float inreg %f)
+//
+// The code generator will only allocate 4 bytes from the parameter array for
+// the inreg arguments. All other arguments are allocated a multiple of 8
+// bytes.
+//
+namespace {
+class SparcV9ABIInfo : public ABIInfo {
+public:
+ SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
+
+private:
+ ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ // Coercion type builder for structs passed in registers. The coercion type
+ // serves two purposes:
+ //
+ // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
+ // in registers.
+ // 2. Expose aligned floating point elements as first-level elements, so the
+ // code generator knows to pass them in floating point registers.
+ //
+ // We also compute the InReg flag which indicates that the struct contains
+ // aligned 32-bit floats.
+ //
+ struct CoerceBuilder {
+ llvm::LLVMContext &Context;
+ const llvm::DataLayout &DL;
+ SmallVector<llvm::Type*, 8> Elems;
+ uint64_t Size;
+ bool InReg;
+
+ CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
+ : Context(c), DL(dl), Size(0), InReg(false) {}
+
+ // Pad Elems with integers until Size is ToSize.
+ void pad(uint64_t ToSize) {
+ assert(ToSize >= Size && "Cannot remove elements");
+ if (ToSize == Size)
+ return;
+
+ // Finish the current 64-bit word.
+ uint64_t Aligned = llvm::alignTo(Size, 64);
+ if (Aligned > Size && Aligned <= ToSize) {
+ Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
+ Size = Aligned;
+ }
+
+ // Add whole 64-bit words.
+ while (Size + 64 <= ToSize) {
+ Elems.push_back(llvm::Type::getInt64Ty(Context));
+ Size += 64;
+ }
+
+ // Final in-word padding.
+ if (Size < ToSize) {
+ Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
+ Size = ToSize;
+ }
+ }
+
+ // Add a floating point element at Offset.
+ void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
+ // Unaligned floats are treated as integers.
+ if (Offset % Bits)
+ return;
+ // The InReg flag is only required if there are any floats < 64 bits.
+ if (Bits < 64)
+ InReg = true;
+ pad(Offset);
+ Elems.push_back(Ty);
+ Size = Offset + Bits;
+ }
+
+ // Add a struct type to the coercion type, starting at Offset (in bits).
+ void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
+ const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
+ for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
+ llvm::Type *ElemTy = StrTy->getElementType(i);
+ uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
+ switch (ElemTy->getTypeID()) {
+ case llvm::Type::StructTyID:
+ addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
+ break;
+ case llvm::Type::FloatTyID:
+ addFloat(ElemOffset, ElemTy, 32);
+ break;
+ case llvm::Type::DoubleTyID:
+ addFloat(ElemOffset, ElemTy, 64);
+ break;
+ case llvm::Type::FP128TyID:
+ addFloat(ElemOffset, ElemTy, 128);
+ break;
+ case llvm::Type::PointerTyID:
+ if (ElemOffset % 64 == 0) {
+ pad(ElemOffset);
+ Elems.push_back(ElemTy);
+ Size += 64;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ // Check if Ty is a usable substitute for the coercion type.
+ bool isUsableType(llvm::StructType *Ty) const {
+ return llvm::ArrayRef(Elems) == Ty->elements();
+ }
+
+ // Get the coercion type as a literal struct type.
+ llvm::Type *getType() const {
+ if (Elems.size() == 1)
+ return Elems.front();
+ else
+ return llvm::StructType::get(Context, Elems);
+ }
+ };
+};
+} // end anonymous namespace
+
+ABIArgInfo
+SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // Anything too big to fit in registers is passed with an explicit indirect
+ // pointer / sret pointer.
+ if (Size > SizeLimit)
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Integer types smaller than a register are extended.
+ if (Size < 64 && Ty->isIntegerType())
+ return ABIArgInfo::getExtend(Ty);
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() < 64)
+ return ABIArgInfo::getExtend(Ty);
+
+ // Other non-aggregates go in registers.
+ if (!isAggregateTypeForABI(Ty))
+ return ABIArgInfo::getDirect();
+
+ // If a C++ object has either a non-trivial copy constructor or a non-trivial
+ // destructor, it is passed with an explicit indirect pointer / sret pointer.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // This is a small aggregate type that should be passed in registers.
+ // Build a coercion type from the LLVM struct type.
+ llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
+ if (!StrTy)
+ return ABIArgInfo::getDirect();
+
+ CoerceBuilder CB(getVMContext(), getDataLayout());
+ CB.addStruct(0, StrTy);
+ // All structs, even empty ones, should take up a register argument slot,
+ // so pin the minimum struct size to one bit.
+ CB.pad(llvm::alignTo(
+ std::max(CB.DL.getTypeSizeInBits(StrTy).getKnownMinValue(), uint64_t(1)),
+ 64));
+
+ // Try to use the original type for coercion.
+ llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
+
+ if (CB.InReg)
+ return ABIArgInfo::getDirectInReg(CoerceTy);
+ else
+ return ABIArgInfo::getDirect(CoerceTy);
+}
+
+RValue SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ ABIArgInfo AI = classifyType(Ty, 16 * 8);
+ llvm::Type *ArgTy = CGT.ConvertType(Ty);
+ if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+ AI.setCoerceToType(ArgTy);
+
+ CharUnits SlotSize = CharUnits::fromQuantity(8);
+
+ CGBuilderTy &Builder = CGF.Builder;
+ Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
+ getVAListElementType(CGF), SlotSize);
+ llvm::Type *ArgPtrTy = CGF.UnqualPtrTy;
+
+ auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+
+ Address ArgAddr = Address::invalid();
+ CharUnits Stride;
+ switch (AI.getKind()) {
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::CoerceAndExpand:
+ case ABIArgInfo::InAlloca:
+ llvm_unreachable("Unsupported ABI kind for va_arg");
+
+ case ABIArgInfo::Extend: {
+ Stride = SlotSize;
+ CharUnits Offset = SlotSize - TypeInfo.Width;
+ ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
+ break;
+ }
+
+ case ABIArgInfo::Direct: {
+ auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
+ Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
+ ArgAddr = Addr;
+ break;
+ }
+
+ case ABIArgInfo::Indirect:
+ case ABIArgInfo::IndirectAliased:
+ Stride = SlotSize;
+ ArgAddr = Addr.withElementType(ArgPtrTy);
+ ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
+ TypeInfo.Align);
+ break;
+
+ case ABIArgInfo::Ignore:
+ return Slot.asRValue();
+ }
+
+ // Update VAList.
+ Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
+ Builder.CreateStore(NextPtr.emitRawPointer(CGF), VAListAddr);
+
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(ArgAddr.withElementType(ArgTy), Ty), Slot);
+}
+
+void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
+ for (auto &I : FI.arguments())
+ I.info = classifyType(I.type, 16 * 8);
+}
+
+namespace {
+class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
+ return 14;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+ llvm::ConstantInt::get(CGF.Int32Ty, 8));
+ }
+
+ llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
+ llvm::ConstantInt::get(CGF.Int32Ty, -8));
+ }
+};
+} // end anonymous namespace
+
+bool
+SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ // This is calculated from the LLVM and GCC tables and verified
+ // against gcc output. AFAIK all ABIs use the same encoding.
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::IntegerType *i8 = CGF.Int8Ty;
+ llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
+ llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
+
+ // 0-31: the 8-byte general-purpose registers
+ AssignToArrayRange(Builder, Address, Eight8, 0, 31);
+
+ // 32-63: f0-31, the 4-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Four8, 32, 63);
+
+ // Y = 64
+ // PSR = 65
+ // WIM = 66
+ // TBR = 67
+ // PC = 68
+ // NPC = 69
+ // FSR = 70
+ // CSR = 71
+ AssignToArrayRange(Builder, Address, Eight8, 64, 71);
+
+ // 72-87: d0-15, the 8-byte floating-point registers
+ AssignToArrayRange(Builder, Address, Eight8, 72, 87);
+
+ return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<SparcV8TargetCodeGenInfo>(CGM.getTypes());
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<SparcV9TargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/SystemZ.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/SystemZ.cpp
new file mode 100644
index 000000000000..4d61f5137934
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/SystemZ.cpp
@@ -0,0 +1,540 @@
+//===- SystemZ.cpp --------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/Builtins.h"
+#include "llvm/IR/IntrinsicsS390.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// SystemZ ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class SystemZABIInfo : public ABIInfo {
+ bool HasVector;
+ bool IsSoftFloatABI;
+
+public:
+ SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
+ : ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
+
+ bool isPromotableIntegerTypeForABI(QualType Ty) const;
+ bool isCompoundType(QualType Ty) const;
+ bool isVectorArgumentType(QualType Ty) const;
+ bool isFPArgumentType(QualType Ty) const;
+ QualType GetSingleElementType(QualType Ty) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType ArgTy) const;
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
+ ASTContext &Ctx;
+
+ // These are used for speeding up the search for a visible vector ABI.
+ mutable bool HasVisibleVecABIFlag = false;
+ mutable std::set<const Type *> SeenTypes;
+
+ // Returns true (the first time) if Ty is, or is found to include, a vector
+ // type that exposes the vector ABI. This is any vector >=16 bytes which
+ // with vector support are aligned to only 8 bytes. When IsParam is true,
+ // the type belongs to a value as passed between functions. If it is a
+ // vector <=16 bytes it will be passed in a vector register (if supported).
+ bool isVectorTypeBased(const Type *Ty, bool IsParam) const;
+
+public:
+ SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
+ : TargetCodeGenInfo(
+ std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)),
+ Ctx(CGT.getContext()) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+ }
+
+ // The vector ABI is different when the vector facility is present and when
+ // a module e.g. defines an externally visible vector variable, a flag
+ // indicating a visible vector ABI is added. Eventually this will result in
+ // a GNU attribute indicating the vector ABI of the module. Ty is the type
+ // of a variable or function parameter that is globally visible.
+ void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M,
+ bool IsParam) const {
+ if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) {
+ M.getModule().addModuleFlag(llvm::Module::Warning,
+ "s390x-visible-vector-ABI", 1);
+ HasVisibleVecABIFlag = true;
+ }
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override {
+ if (!D)
+ return;
+
+ // Check if the vector ABI becomes visible by an externally visible
+ // variable or function.
+ if (const auto *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->isExternallyVisible())
+ handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M,
+ /*IsParam*/false);
+ }
+ else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isExternallyVisible())
+ handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M,
+ /*IsParam*/false);
+ }
+ }
+
+ llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
+ CGBuilderTy &Builder,
+ CodeGenModule &CGM) const override {
+ assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
+ // Only use TDC in constrained FP mode.
+ if (!Builder.getIsFPConstrained())
+ return nullptr;
+
+ llvm::Type *Ty = V->getType();
+ if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
+ llvm::Module &M = CGM.getModule();
+ auto &Ctx = M.getContext();
+ llvm::Function *TDCFunc =
+ llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
+ unsigned TDCBits = 0;
+ switch (BuiltinID) {
+ case Builtin::BI__builtin_isnan:
+ TDCBits = 0xf;
+ break;
+ case Builtin::BIfinite:
+ case Builtin::BI__finite:
+ case Builtin::BIfinitef:
+ case Builtin::BI__finitef:
+ case Builtin::BIfinitel:
+ case Builtin::BI__finitel:
+ case Builtin::BI__builtin_isfinite:
+ TDCBits = 0xfc0;
+ break;
+ case Builtin::BI__builtin_isinf:
+ TDCBits = 0x30;
+ break;
+ default:
+ break;
+ }
+ if (TDCBits)
+ return Builder.CreateCall(
+ TDCFunc,
+ {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
+ }
+ return nullptr;
+ }
+};
+}
+
+bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ // Promotable integer types are required to be promoted by the ABI.
+ if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
+ return true;
+
+ if (const auto *EIT = Ty->getAs<BitIntType>())
+ if (EIT->getNumBits() < 64)
+ return true;
+
+ // 32-bit values must also be promoted.
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Int:
+ case BuiltinType::UInt:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+bool SystemZABIInfo::isCompoundType(QualType Ty) const {
+ return (Ty->isAnyComplexType() ||
+ Ty->isVectorType() ||
+ isAggregateTypeForABI(Ty));
+}
+
+bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
+ return (HasVector &&
+ Ty->isVectorType() &&
+ getContext().getTypeSize(Ty) <= 128);
+}
+
+bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
+ if (IsSoftFloatABI)
+ return false;
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
+ switch (BT->getKind()) {
+ case BuiltinType::Float:
+ case BuiltinType::Double:
+ return true;
+ default:
+ return false;
+ }
+
+ return false;
+}
+
+QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
+ const RecordType *RT = Ty->getAs<RecordType>();
+
+ if (RT && RT->isStructureOrClassType()) {
+ const RecordDecl *RD = RT->getDecl();
+ QualType Found;
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ if (CXXRD->hasDefinition())
+ for (const auto &I : CXXRD->bases()) {
+ QualType Base = I.getType();
+
+ // Empty bases don't affect things either way.
+ if (isEmptyRecord(getContext(), Base, true))
+ continue;
+
+ if (!Found.isNull())
+ return Ty;
+ Found = GetSingleElementType(Base);
+ }
+
+ // Check the fields.
+ for (const auto *FD : RD->fields()) {
+ // Unlike isSingleElementStruct(), empty structure and array fields
+ // do count. So do anonymous bitfields that aren't zero-sized.
+
+ // Like isSingleElementStruct(), ignore C++20 empty data members.
+ if (FD->hasAttr<NoUniqueAddressAttr>() &&
+ isEmptyRecord(getContext(), FD->getType(), true))
+ continue;
+
+ // Unlike isSingleElementStruct(), arrays do not count.
+ // Nested structures still do though.
+ if (!Found.isNull())
+ return Ty;
+ Found = GetSingleElementType(FD->getType());
+ }
+
+ // Unlike isSingleElementStruct(), trailing padding is allowed.
+ // An 8-byte aligned struct s { float f; } is passed as a double.
+ if (!Found.isNull())
+ return Found;
+ }
+
+ return Ty;
+}
+
+RValue SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i64 __gpr;
+ // i64 __fpr;
+ // i8 *__overflow_arg_area;
+ // i8 *__reg_save_area;
+ // };
+
+ // Every non-vector argument occupies 8 bytes and is passed by preference
+ // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
+ // always passed on the stack.
+ const SystemZTargetCodeGenInfo &SZCGI =
+ static_cast<const SystemZTargetCodeGenInfo &>(
+ CGT.getCGM().getTargetCodeGenInfo());
+ Ty = getContext().getCanonicalType(Ty);
+ auto TyInfo = getContext().getTypeInfoInChars(Ty);
+ llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Type *DirectTy = ArgTy;
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ bool IsIndirect = AI.isIndirect();
+ bool InFPRs = false;
+ bool IsVector = false;
+ CharUnits UnpaddedSize;
+ CharUnits DirectAlign;
+ SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(),
+ /*IsParam*/true);
+ if (IsIndirect) {
+ DirectTy = llvm::PointerType::getUnqual(DirectTy);
+ UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
+ } else {
+ if (AI.getCoerceToType())
+ ArgTy = AI.getCoerceToType();
+ InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
+ IsVector = ArgTy->isVectorTy();
+ UnpaddedSize = TyInfo.Width;
+ DirectAlign = TyInfo.Align;
+ }
+ CharUnits PaddedSize = CharUnits::fromQuantity(8);
+ if (IsVector && UnpaddedSize > PaddedSize)
+ PaddedSize = CharUnits::fromQuantity(16);
+ assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
+
+ CharUnits Padding = (PaddedSize - UnpaddedSize);
+
+ llvm::Type *IndexTy = CGF.Int64Ty;
+ llvm::Value *PaddedSizeV =
+ llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
+
+ if (IsVector) {
+ // Work out the address of a vector argument on the stack.
+ // Vector arguments are always passed in the high bits of a
+ // single (8 byte) or double (16 byte) stack slot.
+ Address OverflowArgAreaPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
+ Address OverflowArgArea =
+ Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
+ CGF.Int8Ty, TyInfo.Align);
+ Address MemAddr = OverflowArgArea.withElementType(DirectTy);
+
+ // Update overflow_arg_area_ptr pointer
+ llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
+ OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
+ PaddedSizeV, "overflow_arg_area");
+ CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(MemAddr, Ty), Slot);
+ }
+
+ assert(PaddedSize.getQuantity() == 8);
+
+ unsigned MaxRegs, RegCountField, RegSaveIndex;
+ CharUnits RegPadding;
+ if (InFPRs) {
+ MaxRegs = 4; // Maximum of 4 FPR arguments
+ RegCountField = 1; // __fpr
+ RegSaveIndex = 16; // save offset for f0
+ RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
+ } else {
+ MaxRegs = 5; // Maximum of 5 GPR arguments
+ RegCountField = 0; // __gpr
+ RegSaveIndex = 2; // save offset for r2
+ RegPadding = Padding; // values are passed in the low bits of a GPR
+ }
+
+ Address RegCountPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
+ llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
+ llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
+ llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
+ "fits_in_regs");
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+ CGF.EmitBlock(InRegBlock);
+
+ // Work out the address of an argument register.
+ llvm::Value *ScaledRegCount =
+ CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
+ llvm::Value *RegBase =
+ llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
+ + RegPadding.getQuantity());
+ llvm::Value *RegOffset =
+ CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
+ Address RegSaveAreaPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
+ llvm::Value *RegSaveArea =
+ CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
+ Address RawRegAddr(
+ CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
+ CGF.Int8Ty, PaddedSize);
+ Address RegAddr = RawRegAddr.withElementType(DirectTy);
+
+ // Update the register count
+ llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
+ llvm::Value *NewRegCount =
+ CGF.Builder.CreateAdd(RegCount, One, "reg_count");
+ CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+ CGF.EmitBlock(InMemBlock);
+
+ // Work out the address of a stack argument.
+ Address OverflowArgAreaPtr =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
+ Address OverflowArgArea =
+ Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
+ CGF.Int8Ty, PaddedSize);
+ Address RawMemAddr =
+ CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
+ Address MemAddr = RawMemAddr.withElementType(DirectTy);
+
+ // Update overflow_arg_area_ptr pointer
+ llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
+ OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
+ PaddedSizeV, "overflow_arg_area");
+ CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
+ CGF.EmitBranch(ContBlock);
+
+ // Return the appropriate result.
+ CGF.EmitBlock(ContBlock);
+ Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
+ "va_arg.addr");
+
+ if (IsIndirect)
+ ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
+ TyInfo.Align);
+
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
+}
+
+ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+ if (isVectorArgumentType(RetTy))
+ return ABIArgInfo::getDirect();
+ if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
+ return getNaturalAlignIndirect(RetTy);
+ return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
+ // Handle transparent union types.
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ // Handle the generic C++ ABI.
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Integers and enums are extended to full register width.
+ if (isPromotableIntegerTypeForABI(Ty))
+ return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
+
+ // Handle vector types and vector-like structure types. Note that
+ // as opposed to float-like structure types, we do not allow any
+ // padding for vector-like structures, so verify the sizes match.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ QualType SingleElementTy = GetSingleElementType(Ty);
+ if (isVectorArgumentType(SingleElementTy) &&
+ getContext().getTypeSize(SingleElementTy) == Size)
+ return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
+
+ // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
+ if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ // Handle small structures.
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ // Structures with flexible arrays have variable length, so really
+ // fail the size test above.
+ const RecordDecl *RD = RT->getDecl();
+ if (RD->hasFlexibleArrayMember())
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ // The structure is passed as an unextended integer, a float, or a double.
+ llvm::Type *PassTy;
+ if (isFPArgumentType(SingleElementTy)) {
+ assert(Size == 32 || Size == 64);
+ if (Size == 32)
+ PassTy = llvm::Type::getFloatTy(getVMContext());
+ else
+ PassTy = llvm::Type::getDoubleTy(getVMContext());
+ } else
+ PassTy = llvm::IntegerType::get(getVMContext(), Size);
+ return ABIArgInfo::getDirect(PassTy);
+ }
+
+ // Non-structure compounds are passed indirectly.
+ if (isCompoundType(Ty))
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ return ABIArgInfo::getDirect(nullptr);
+}
+
+void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ const SystemZTargetCodeGenInfo &SZCGI =
+ static_cast<const SystemZTargetCodeGenInfo &>(
+ CGT.getCGM().getTargetCodeGenInfo());
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ unsigned Idx = 0;
+ for (auto &I : FI.arguments()) {
+ I.info = classifyArgumentType(I.type);
+ if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs())
+ // Check if a vararg vector argument is passed, in which case the
+ // vector ABI becomes visible as the va_list could be passed on to
+ // other functions.
+ SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(),
+ /*IsParam*/true);
+ }
+}
+
+bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
+ bool IsParam) const {
+ if (!SeenTypes.insert(Ty).second)
+ return false;
+
+ if (IsParam) {
+ // A narrow (<16 bytes) vector will as a parameter also expose the ABI as
+ // it will be passed in a vector register. A wide (>16 bytes) vector will
+ // be passed via "hidden" pointer where any extra alignment is not
+ // required (per GCC).
+ const Type *SingleEltTy = getABIInfo<SystemZABIInfo>()
+ .GetSingleElementType(QualType(Ty, 0))
+ .getTypePtr();
+ bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() &&
+ Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty);
+ if (Ty->isVectorType() || SingleVecEltStruct)
+ return Ctx.getTypeSize(Ty) / 8 <= 16;
+ }
+
+ // Assume pointers are dereferenced.
+ while (Ty->isPointerType() || Ty->isArrayType())
+ Ty = Ty->getPointeeOrArrayElementType();
+
+ // Vectors >= 16 bytes expose the ABI through alignment requirements.
+ if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16)
+ return true;
+
+ if (const auto *RecordTy = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RecordTy->getDecl();
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
+ if (CXXRD->hasDefinition())
+ for (const auto &I : CXXRD->bases())
+ if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false))
+ return true;
+ for (const auto *FD : RD->fields())
+ if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false))
+ return true;
+ }
+
+ if (const auto *FT = Ty->getAs<FunctionType>())
+ if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true))
+ return true;
+ if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>())
+ for (const auto &ParamType : Proto->getParamTypes())
+ if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true))
+ return true;
+
+ return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
+ bool SoftFloatABI) {
+ return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
+ SoftFloatABI);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/TCE.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/TCE.cpp
new file mode 100644
index 000000000000..d7178b4b8a94
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/TCE.cpp
@@ -0,0 +1,82 @@
+//===- TCE.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
+// Currently subclassed only to implement custom OpenCL C function attribute
+// handling.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class TCETargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ TCETargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &M) const override;
+};
+
+void TCETargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
+ if (GV->isDeclaration())
+ return;
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
+ if (!FD) return;
+
+ llvm::Function *F = cast<llvm::Function>(GV);
+
+ if (M.getLangOpts().OpenCL) {
+ if (FD->hasAttr<OpenCLKernelAttr>()) {
+ // OpenCL C Kernel functions are not subject to inlining
+ F->addFnAttr(llvm::Attribute::NoInline);
+ const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
+ if (Attr) {
+ // Convert the reqd_work_group_size() attributes to metadata.
+ llvm::LLVMContext &Context = F->getContext();
+ llvm::NamedMDNode *OpenCLMetadata =
+ M.getModule().getOrInsertNamedMetadata(
+ "opencl.kernel_wg_size_info");
+
+ SmallVector<llvm::Metadata *, 5> Operands;
+ Operands.push_back(llvm::ConstantAsMetadata::get(F));
+
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+ M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+ M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
+ M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
+
+ // Add a boolean constant operand for "required" (true) or "hint"
+ // (false) for implementing the work_group_size_hint attr later.
+ // Currently always true as the hint is not yet implemented.
+ Operands.push_back(
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
+ OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
+ }
+ }
+ }
+}
+
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createTCETargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<TCETargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/VE.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/VE.cpp
new file mode 100644
index 000000000000..a7acc249cc2b
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/VE.cpp
@@ -0,0 +1,71 @@
+//===- VE.cpp -------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// VE ABI Implementation.
+//
+namespace {
+class VEABIInfo : public DefaultABIInfo {
+public:
+ VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy) const;
+ void computeInfo(CGFunctionInfo &FI) const override;
+};
+} // end anonymous namespace
+
+ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
+ if (Ty->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size < 64 && Ty->isIntegerType())
+ return ABIArgInfo::getExtend(Ty);
+ return DefaultABIInfo::classifyReturnType(Ty);
+}
+
+ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
+ if (Ty->isAnyComplexType())
+ return ABIArgInfo::getDirect();
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (Size < 64 && Ty->isIntegerType())
+ return ABIArgInfo::getExtend(Ty);
+ return DefaultABIInfo::classifyArgumentType(Ty);
+}
+
+void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &Arg : FI.arguments())
+ Arg.info = classifyArgumentType(Arg.type);
+}
+
+namespace {
+class VETargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ VETargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
+ // VE ABI requires the arguments of variadic and prototype-less functions
+ // are passed in both registers and memory.
+ bool isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const override {
+ return true;
+ }
+};
+} // end anonymous namespace
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createVETargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<VETargetCodeGenInfo>(CGM.getTypes());
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/WebAssembly.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/WebAssembly.cpp
new file mode 100644
index 000000000000..70a968fe93ca
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/WebAssembly.cpp
@@ -0,0 +1,173 @@
+//===- WebAssembly.cpp ----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// WebAssembly ABI Implementation
+//
+// This is a very simple ABI that relies a lot on DefaultABIInfo.
+//===----------------------------------------------------------------------===//
+
+class WebAssemblyABIInfo final : public ABIInfo {
+ DefaultABIInfo defaultInfo;
+ WebAssemblyABIKind Kind;
+
+public:
+ explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT,
+ WebAssemblyABIKind Kind)
+ : ABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
+
+private:
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+ ABIArgInfo classifyArgumentType(QualType Ty) const;
+
+ // DefaultABIInfo's classifyReturnType and classifyArgumentType are
+ // non-virtual, but computeInfo and EmitVAArg are virtual, so we
+ // overload them.
+ void computeInfo(CGFunctionInfo &FI) const override {
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ for (auto &Arg : FI.arguments())
+ Arg.info = classifyArgumentType(Arg.type);
+ }
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
+public:
+ explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ WebAssemblyABIKind K)
+ : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ llvm::AttrBuilder B(GV->getContext());
+ B.addAttribute("wasm-import-module", Attr->getImportModule());
+ Fn->addFnAttrs(B);
+ }
+ if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ llvm::AttrBuilder B(GV->getContext());
+ B.addAttribute("wasm-import-name", Attr->getImportName());
+ Fn->addFnAttrs(B);
+ }
+ if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ llvm::AttrBuilder B(GV->getContext());
+ B.addAttribute("wasm-export-name", Attr->getExportName());
+ Fn->addFnAttrs(B);
+ }
+ }
+
+ if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
+ Fn->addFnAttr("no-prototype");
+ }
+ }
+
+ /// Return the WebAssembly externref reference type.
+ virtual llvm::Type *getWasmExternrefReferenceType() const override {
+ return llvm::Type::getWasm_ExternrefTy(getABIInfo().getVMContext());
+ }
+ /// Return the WebAssembly funcref reference type.
+ virtual llvm::Type *getWasmFuncrefReferenceType() const override {
+ return llvm::Type::getWasm_FuncrefTy(getABIInfo().getVMContext());
+ }
+};
+
+/// Classify argument of given type \p Ty.
+ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Records with non-trivial destructors/copy-constructors should not be
+ // passed by value.
+ if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+ // Lower single-element structs to just pass a regular value. TODO: We
+ // could do reasonable-size multiple-element structs too, using getExpand(),
+ // though watch out for things like bitfields.
+ if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+ // For the experimental multivalue ABI, fully expand all other aggregates
+ if (Kind == WebAssemblyABIKind::ExperimentalMV) {
+ const RecordType *RT = Ty->getAs<RecordType>();
+ assert(RT);
+ bool HasBitField = false;
+ for (auto *Field : RT->getDecl()->fields()) {
+ if (Field->isBitField()) {
+ HasBitField = true;
+ break;
+ }
+ }
+ if (!HasBitField)
+ return ABIArgInfo::getExpand();
+ }
+ }
+
+ // Otherwise just do the default thing.
+ return defaultInfo.classifyArgumentType(Ty);
+}
+
+ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
+ if (isAggregateTypeForABI(RetTy)) {
+ // Records with non-trivial destructors/copy-constructors should not be
+ // returned by value.
+ if (!getRecordArgABI(RetTy, getCXXABI())) {
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+ // Lower single-element structs to just return a regular value. TODO: We
+ // could do reasonable-size multiple-element structs too, using
+ // ABIArgInfo::getDirect().
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+ // For the experimental multivalue ABI, return all other aggregates
+ if (Kind == WebAssemblyABIKind::ExperimentalMV)
+ return ABIArgInfo::getDirect();
+ }
+ }
+
+ // Otherwise just do the default thing.
+ return defaultInfo.classifyReturnType(RetTy);
+}
+
+RValue WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ bool IsIndirect = isAggregateTypeForABI(Ty) &&
+ !isEmptyRecord(getContext(), Ty, true) &&
+ !isSingleElementStruct(Ty, getContext());
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(4),
+ /*AllowHigherAlign=*/true, Slot);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM,
+ WebAssemblyABIKind K) {
+ return std::make_unique<WebAssemblyTargetCodeGenInfo>(CGM.getTypes(), K);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp
new file mode 100644
index 000000000000..1dc3172a6bdf
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp
@@ -0,0 +1,3459 @@
+//===- X86.cpp ------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+#include "clang/Basic/DiagnosticFrontend.h"
+#include "llvm/ADT/SmallBitVector.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+namespace {
+
+/// IsX86_MMXType - Return true if this is an MMX type.
+bool IsX86_MMXType(llvm::Type *IRType) {
+ // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
+ return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
+ cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
+ IRType->getScalarSizeInBits() != 64;
+}
+
+static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) {
+ bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
+ .Cases("y", "&y", "^Ym", true)
+ .Default(false);
+ if (IsMMXCons && Ty->isVectorTy()) {
+ if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
+ 64) {
+ // Invalid MMX constraint
+ return nullptr;
+ }
+
+ return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
+ }
+
+ if (Constraint == "k") {
+ llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
+ return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
+ }
+
+ // No operation needed
+ return Ty;
+}
+
+/// Returns true if this type can be passed in SSE registers with the
+/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
+ if (BT->getKind() == BuiltinType::LongDouble) {
+ if (&Context.getTargetInfo().getLongDoubleFormat() ==
+ &llvm::APFloat::x87DoubleExtended())
+ return false;
+ }
+ return true;
+ }
+ } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
+ // registers specially.
+ unsigned VecSize = Context.getTypeSize(VT);
+ if (VecSize == 128 || VecSize == 256 || VecSize == 512)
+ return true;
+ }
+ return false;
+}
+
+/// Returns true if this aggregate is small enough to be passed in SSE registers
+/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
+static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
+ return NumMembers <= 4;
+}
+
+/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
+static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
+ auto AI = ABIArgInfo::getDirect(T);
+ AI.setInReg(true);
+ AI.setCanBeFlattened(false);
+ return AI;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-32 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+/// Similar to llvm::CCState, but for Clang.
+struct CCState {
+ CCState(CGFunctionInfo &FI)
+ : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
+ Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
+
+ llvm::SmallBitVector IsPreassigned;
+ unsigned CC = CallingConv::CC_C;
+ unsigned FreeRegs = 0;
+ unsigned FreeSSERegs = 0;
+ RequiredArgs Required;
+ bool IsDelegateCall = false;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+ enum Class {
+ Integer,
+ Float
+ };
+
+ static const unsigned MinABIStackAlignInBytes = 4;
+
+ bool IsDarwinVectorABI;
+ bool IsRetSmallStructInRegABI;
+ bool IsWin32StructABI;
+ bool IsSoftFloatABI;
+ bool IsMCUABI;
+ bool IsLinuxABI;
+ unsigned DefaultNumRegisterParameters;
+
+ static bool isRegisterSize(unsigned Size) {
+ return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+ }
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorTypeForVectorCall(getContext(), Ty);
+ }
+
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t NumMembers) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorCallAggregateSmallEnough(NumMembers);
+ }
+
+ bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
+
+ ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
+
+ /// Return the alignment to use for the given type on the stack.
+ unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
+
+ Class classify(QualType Ty) const;
+ ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
+ ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
+ unsigned ArgIndex) const;
+
+ /// Updates the number of available free registers, returns
+ /// true if any registers were allocated.
+ bool updateFreeRegs(QualType Ty, CCState &State) const;
+
+ bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
+ bool &NeedsPadding) const;
+ bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
+
+ bool canExpandIndirectArgument(QualType Ty) const;
+
+ /// Rewrite the function info so that all memory arguments use
+ /// inalloca.
+ void rewriteWithInAlloca(CGFunctionInfo &FI) const;
+
+ void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ CharUnits &StackOffset, ABIArgInfo &Info,
+ QualType Type) const;
+ void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
+
+public:
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
+ bool RetSmallStructInRegABI, bool Win32StructABI,
+ unsigned NumRegisterParameters, bool SoftFloatABI)
+ : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
+ IsRetSmallStructInRegABI(RetSmallStructInRegABI),
+ IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
+ IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
+ IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
+ CGT.getTarget().getTriple().isOSCygMing()),
+ DefaultNumRegisterParameters(NumRegisterParameters) {}
+};
+
+class X86_32SwiftABIInfo : public SwiftABIInfo {
+public:
+ explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
+ : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
+
+ bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
+ bool AsReturnValue) const override {
+ // LLVM's x86-32 lowering currently only assigns up to three
+ // integer registers and three fp registers. Oddly, it'll use up to
+ // four vector registers for vectors, but those can overlap with the
+ // scalar registers.
+ return occupiesMoreThan(ComponentTys, /*total=*/3);
+ }
+};
+
+class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
+ bool RetSmallStructInRegABI, bool Win32StructABI,
+ unsigned NumRegisterParameters, bool SoftFloatABI)
+ : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
+ CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+ NumRegisterParameters, SoftFloatABI)) {
+ SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
+ }
+
+ static bool isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts);
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ // Darwin uses different dwarf register numbers for EH.
+ if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
+ return 4;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override;
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
+ std::string &Constraints,
+ std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<LValue> &ResultRegDests,
+ std::string &AsmString,
+ unsigned NumOutputs) const override;
+
+ StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
+ return "movl\t%ebp, %ebp"
+ "\t\t// marker for objc_retainAutoreleaseReturnValue";
+ }
+};
+
+}
+
+/// Rewrite input constraint references after adding some output constraints.
+/// In the case where there is one output and one input and we add one output,
+/// we need to replace all operand references greater than or equal to 1:
+/// mov $0, $1
+/// mov eax, $1
+/// The result will be:
+/// mov $0, $2
+/// mov eax, $2
+static void rewriteInputConstraintReferences(unsigned FirstIn,
+ unsigned NumNewOuts,
+ std::string &AsmString) {
+ std::string Buf;
+ llvm::raw_string_ostream OS(Buf);
+ size_t Pos = 0;
+ while (Pos < AsmString.size()) {
+ size_t DollarStart = AsmString.find('$', Pos);
+ if (DollarStart == std::string::npos)
+ DollarStart = AsmString.size();
+ size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
+ if (DollarEnd == std::string::npos)
+ DollarEnd = AsmString.size();
+ OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
+ Pos = DollarEnd;
+ size_t NumDollars = DollarEnd - DollarStart;
+ if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
+ // We have an operand reference.
+ size_t DigitStart = Pos;
+ if (AsmString[DigitStart] == '{') {
+ OS << '{';
+ ++DigitStart;
+ }
+ size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
+ if (DigitEnd == std::string::npos)
+ DigitEnd = AsmString.size();
+ StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
+ unsigned OperandIndex;
+ if (!OperandStr.getAsInteger(10, OperandIndex)) {
+ if (OperandIndex >= FirstIn)
+ OperandIndex += NumNewOuts;
+ OS << OperandIndex;
+ } else {
+ OS << OperandStr;
+ }
+ Pos = DigitEnd;
+ }
+ }
+ AsmString = std::move(OS.str());
+}
+
+/// Add output constraints for EAX:EDX because they are return registers.
+void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
+ CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
+ std::vector<llvm::Type *> &ResultRegTypes,
+ std::vector<llvm::Type *> &ResultTruncRegTypes,
+ std::vector<LValue> &ResultRegDests, std::string &AsmString,
+ unsigned NumOutputs) const {
+ uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
+
+ // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
+ // larger.
+ if (!Constraints.empty())
+ Constraints += ',';
+ if (RetWidth <= 32) {
+ Constraints += "={eax}";
+ ResultRegTypes.push_back(CGF.Int32Ty);
+ } else {
+ // Use the 'A' constraint for EAX:EDX.
+ Constraints += "=A";
+ ResultRegTypes.push_back(CGF.Int64Ty);
+ }
+
+ // Truncate EAX or EAX:EDX to an integer of the appropriate size.
+ llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
+ ResultTruncRegTypes.push_back(CoerceTy);
+
+ // Coerce the integer by bitcasting the return slot pointer.
+ ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
+ ResultRegDests.push_back(ReturnSlot);
+
+ rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
+}
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// returned in a register (for the Darwin and MCU ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+ ASTContext &Context) const {
+ uint64_t Size = Context.getTypeSize(Ty);
+
+ // For i386, type must be register sized.
+ // For the MCU ABI, it only needs to be <= 8-byte
+ if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
+ return false;
+
+ if (Ty->isVectorType()) {
+ // 64- and 128- bit vectors inside structures are not returned in
+ // registers.
+ if (Size == 64 || Size == 128)
+ return false;
+
+ return true;
+ }
+
+ // If this is a builtin, pointer, enum, complex type, member pointer, or
+ // member function pointer it is ok.
+ if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
+ Ty->isAnyComplexType() || Ty->isEnumeralType() ||
+ Ty->isBlockPointerType() || Ty->isMemberPointerType())
+ return true;
+
+ // Arrays are treated like records.
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+ return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+ // Otherwise, it must be a record type.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT) return false;
+
+ // FIXME: Traverse bases here too.
+
+ // Structure types are passed in register if all fields would be
+ // passed in a register.
+ for (const auto *FD : RT->getDecl()->fields()) {
+ // Empty fields are ignored.
+ if (isEmptyField(Context, FD, true))
+ continue;
+
+ // Check fields recursively.
+ if (!shouldReturnTypeInRegister(FD->getType(), Context))
+ return false;
+ }
+ return true;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+ // Treat complex types as the element type.
+ if (const ComplexType *CTy = Ty->getAs<ComplexType>())
+ Ty = CTy->getElementType();
+
+ // Check for a type which we know has a simple scalar argument-passing
+ // convention without any padding. (We're specifically looking for 32
+ // and 64-bit integer and integer-equivalents, float, and double.)
+ if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
+ !Ty->isEnumeralType() && !Ty->isBlockPointerType())
+ return false;
+
+ uint64_t Size = Context.getTypeSize(Ty);
+ return Size == 32 || Size == 64;
+}
+
+static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
+ uint64_t &Size) {
+ for (const auto *FD : RD->fields()) {
+ // Scalar arguments on the stack get 4 byte alignment on x86. If the
+ // argument is smaller than 32-bits, expanding the struct will create
+ // alignment padding.
+ if (!is32Or64BitBasicType(FD->getType(), Context))
+ return false;
+
+ // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+ // how to expand them yet, and the predicate for telling if a bitfield still
+ // counts as "basic" is more complicated than what we were doing previously.
+ if (FD->isBitField())
+ return false;
+
+ Size += Context.getTypeSize(FD->getType());
+ }
+ return true;
+}
+
+static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
+ uint64_t &Size) {
+ // Don't do this if there are any non-empty bases.
+ for (const CXXBaseSpecifier &Base : RD->bases()) {
+ if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
+ Size))
+ return false;
+ }
+ if (!addFieldSizes(Context, RD, Size))
+ return false;
+ return true;
+}
+
+/// Test whether an argument type which is to be passed indirectly (on the
+/// stack) would have the equivalent layout if it was expanded into separate
+/// arguments. If so, we prefer to do the latter to avoid inhibiting
+/// optimizations.
+bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
+ // We can only expand structure types.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (!RT)
+ return false;
+ const RecordDecl *RD = RT->getDecl();
+ uint64_t Size = 0;
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ if (!IsWin32StructABI) {
+ // On non-Windows, we have to conservatively match our old bitcode
+ // prototypes in order to be ABI-compatible at the bitcode level.
+ if (!CXXRD->isCLike())
+ return false;
+ } else {
+ // Don't do this for dynamic classes.
+ if (CXXRD->isDynamicClass())
+ return false;
+ }
+ if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
+ return false;
+ } else {
+ if (!addFieldSizes(getContext(), RD, Size))
+ return false;
+ }
+
+ // We can do this if there was no alignment padding.
+ return Size == getContext().getTypeSize(Ty);
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (State.CC != llvm::CallingConv::X86_FastCall &&
+ State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
+ --State.FreeRegs;
+ if (!IsMCUABI)
+ return getNaturalAlignIndirectInReg(RetTy);
+ }
+ return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
+ CCState &State) const {
+ if (RetTy->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if ((State.CC == llvm::CallingConv::X86_VectorCall ||
+ State.CC == llvm::CallingConv::X86_RegCall) &&
+ isHomogeneousAggregate(RetTy, Base, NumElts)) {
+ // The LLVM struct type for such an aggregate should lower properly.
+ return ABIArgInfo::getDirect();
+ }
+
+ if (const VectorType *VT = RetTy->getAs<VectorType>()) {
+ // On Darwin, some vectors are returned in registers.
+ if (IsDarwinVectorABI) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // 128-bit vectors are a special case; they are returned in
+ // registers and we need to make sure to pick a type the LLVM
+ // backend will like.
+ if (Size == 128)
+ return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2));
+
+ // Always return in register if it fits in a general purpose
+ // register, or if it is 64 bits and has a single element.
+ if ((Size == 8 || Size == 16 || Size == 32) ||
+ (Size == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+
+ return getIndirectReturnResult(RetTy, State);
+ }
+
+ return ABIArgInfo::getDirect();
+ }
+
+ if (isAggregateTypeForABI(RetTy)) {
+ if (const RecordType *RT = RetTy->getAs<RecordType>()) {
+ // Structures with flexible arrays are always indirect.
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectReturnResult(RetTy, State);
+ }
+
+ // If specified, structs and unions are always indirect.
+ if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
+ return getIndirectReturnResult(RetTy, State);
+
+ // Ignore empty structs/unions.
+ if (isEmptyRecord(getContext(), RetTy, true))
+ return ABIArgInfo::getIgnore();
+
+ // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
+ if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
+ QualType ET = getContext().getCanonicalType(CT->getElementType());
+ if (ET->isFloat16Type())
+ return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+ llvm::Type::getHalfTy(getVMContext()), 2));
+ }
+
+ // Small structures which are register sized are generally returned
+ // in a register.
+ if (shouldReturnTypeInRegister(RetTy, getContext())) {
+ uint64_t Size = getContext().getTypeSize(RetTy);
+
+ // As a special-case, if the struct is a "single-element" struct, and
+ // the field is of type "float" or "double", return it in a
+ // floating-point register. (MSVC does not apply this special case.)
+ // We apply a similar transformation for pointer types to improve the
+ // quality of the generated IR.
+ if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
+ if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
+ || SeltTy->hasPointerRepresentation())
+ return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
+
+ // FIXME: We should be able to narrow this integer in cases with dead
+ // padding.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
+ }
+
+ return getIndirectReturnResult(RetTy, State);
+ }
+
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (const auto *EIT = RetTy->getAs<BitIntType>())
+ if (EIT->getNumBits() > 64)
+ return getIndirectReturnResult(RetTy, State);
+
+ return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
+ : ABIArgInfo::getDirect());
+}
+
+unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
+ unsigned Align) const {
+ // Otherwise, if the alignment is less than or equal to the minimum ABI
+ // alignment, just use the default; the backend will handle this.
+ if (Align <= MinABIStackAlignInBytes)
+ return 0; // Use default alignment.
+
+ if (IsLinuxABI) {
+ // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
+ // want to spend any effort dealing with the ramifications of ABI breaks.
+ //
+ // If the vector type is __m128/__m256/__m512, return the default alignment.
+ if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
+ return Align;
+ }
+ // On non-Darwin, the stack type alignment is always 4.
+ if (!IsDarwinVectorABI) {
+ // Set explicit alignment, since we may need to realign the top.
+ return MinABIStackAlignInBytes;
+ }
+
+ // Otherwise, if the type contains an SSE vector type, the alignment is 16.
+ if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
+ isRecordWithSIMDVectorType(getContext(), Ty)))
+ return 16;
+
+ return MinABIStackAlignInBytes;
+}
+
+ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
+ CCState &State) const {
+ if (!ByVal) {
+ if (State.FreeRegs) {
+ --State.FreeRegs; // Non-byval indirects just use one pointer.
+ if (!IsMCUABI)
+ return getNaturalAlignIndirectInReg(Ty);
+ }
+ return getNaturalAlignIndirect(Ty, false);
+ }
+
+ // Compute the byval alignment.
+ unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
+ unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
+ if (StackAlign == 0)
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
+
+ // If the stack alignment is less than the type alignment, realign the
+ // argument.
+ bool Realign = TypeAlign > StackAlign;
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
+ /*ByVal=*/true, Realign);
+}
+
+X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
+ const Type *T = isSingleElementStruct(Ty, getContext());
+ if (!T)
+ T = Ty.getTypePtr();
+
+ if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+ BuiltinType::Kind K = BT->getKind();
+ if (K == BuiltinType::Float || K == BuiltinType::Double)
+ return Float;
+ }
+ return Integer;
+}
+
+bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
+ if (!IsSoftFloatABI) {
+ Class C = classify(Ty);
+ if (C == Float)
+ return false;
+ }
+
+ unsigned Size = getContext().getTypeSize(Ty);
+ unsigned SizeInRegs = (Size + 31) / 32;
+
+ if (SizeInRegs == 0)
+ return false;
+
+ if (!IsMCUABI) {
+ if (SizeInRegs > State.FreeRegs) {
+ State.FreeRegs = 0;
+ return false;
+ }
+ } else {
+ // The MCU psABI allows passing parameters in-reg even if there are
+ // earlier parameters that are passed on the stack. Also,
+ // it does not allow passing >8-byte structs in-register,
+ // even if there are 3 free registers available.
+ if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
+ return false;
+ }
+
+ State.FreeRegs -= SizeInRegs;
+ return true;
+}
+
+bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
+ bool &InReg,
+ bool &NeedsPadding) const {
+ // On Windows, aggregates other than HFAs are never passed in registers, and
+ // they do not consume register slots. Homogenous floating-point aggregates
+ // (HFAs) have already been dealt with at this point.
+ if (IsWin32StructABI && isAggregateTypeForABI(Ty))
+ return false;
+
+ NeedsPadding = false;
+ InReg = !IsMCUABI;
+
+ if (!updateFreeRegs(Ty, State))
+ return false;
+
+ if (IsMCUABI)
+ return true;
+
+ if (State.CC == llvm::CallingConv::X86_FastCall ||
+ State.CC == llvm::CallingConv::X86_VectorCall ||
+ State.CC == llvm::CallingConv::X86_RegCall) {
+ if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
+ NeedsPadding = true;
+
+ return false;
+ }
+
+ return true;
+}
+
+bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
+ bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
+ (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
+ Ty->isReferenceType());
+
+ if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
+ State.CC == llvm::CallingConv::X86_VectorCall))
+ return false;
+
+ if (!updateFreeRegs(Ty, State))
+ return false;
+
+ if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
+ return false;
+
+ // Return true to apply inreg to all legal parameters except for MCU targets.
+ return !IsMCUABI;
+}
+
+void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
+ // Vectorcall x86 works subtly different than in x64, so the format is
+ // a bit different than the x64 version. First, all vector types (not HVAs)
+ // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
+ // This differs from the x64 implementation, where the first 6 by INDEX get
+ // registers.
+ // In the second pass over the arguments, HVAs are passed in the remaining
+ // vector registers if possible, or indirectly by address. The address will be
+ // passed in ECX/EDX if available. Any other arguments are passed according to
+ // the usual fastcall rules.
+ MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
+ for (int I = 0, E = Args.size(); I < E; ++I) {
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ const QualType &Ty = Args[I].type;
+ if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (State.FreeSSERegs >= NumElts) {
+ State.FreeSSERegs -= NumElts;
+ Args[I].info = ABIArgInfo::getDirectInReg();
+ State.IsPreassigned.set(I);
+ }
+ }
+ }
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
+ unsigned ArgIndex) const {
+ // FIXME: Set alignment on indirect arguments.
+ bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
+ bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
+ bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
+
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+ TypeInfo TI = getContext().getTypeInfo(Ty);
+
+ // Check with the C++ ABI first.
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
+ if (RAA == CGCXXABI::RAA_Indirect) {
+ return getIndirectResult(Ty, false, State);
+ } else if (State.IsDelegateCall) {
+ // Avoid having different alignments on delegate call args by always
+ // setting the alignment to 4, which is what we do for inallocas.
+ ABIArgInfo Res = getIndirectResult(Ty, false, State);
+ Res.setIndirectAlign(CharUnits::fromQuantity(4));
+ return Res;
+ } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
+ // The field index doesn't matter, we'll fix it up later.
+ return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
+ }
+ }
+
+ // Regcall uses the concept of a homogenous vector aggregate, similar
+ // to other targets.
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ if ((IsRegCall || IsVectorCall) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (State.FreeSSERegs >= NumElts) {
+ State.FreeSSERegs -= NumElts;
+
+ // Vectorcall passes HVAs directly and does not flatten them, but regcall
+ // does.
+ if (IsVectorCall)
+ return getDirectX86Hva();
+
+ if (Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ if (IsVectorCall && Ty->isBuiltinType())
+ return ABIArgInfo::getDirect();
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ if (isAggregateTypeForABI(Ty)) {
+ // Structures with flexible arrays are always indirect.
+ // FIXME: This should not be byval!
+ if (RT && RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectResult(Ty, true, State);
+
+ // Ignore empty structs/unions on non-Windows.
+ if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
+ return ABIArgInfo::getIgnore();
+
+ llvm::LLVMContext &LLVMContext = getVMContext();
+ llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
+ bool NeedsPadding = false;
+ bool InReg;
+ if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
+ unsigned SizeInRegs = (TI.Width + 31) / 32;
+ SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
+ llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
+ if (InReg)
+ return ABIArgInfo::getDirectInReg(Result);
+ else
+ return ABIArgInfo::getDirect(Result);
+ }
+ llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
+
+ // Pass over-aligned aggregates to non-variadic functions on Windows
+ // indirectly. This behavior was added in MSVC 2015. Use the required
+ // alignment from the record layout, since that may be less than the
+ // regular type alignment, and types with required alignment of less than 4
+ // bytes are not passed indirectly.
+ if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
+ unsigned AlignInBits = 0;
+ if (RT) {
+ const ASTRecordLayout &Layout =
+ getContext().getASTRecordLayout(RT->getDecl());
+ AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
+ } else if (TI.isAlignRequired()) {
+ AlignInBits = TI.Align;
+ }
+ if (AlignInBits > 32)
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ // Expand small (<= 128-bit) record types when we know that the stack layout
+ // of those arguments will match the struct. This is important because the
+ // LLVM backend isn't smart enough to remove byval, which inhibits many
+ // optimizations.
+ // Don't do this for the MCU if there are still free integer registers
+ // (see X86_64 ABI for full explanation).
+ if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
+ canExpandIndirectArgument(Ty))
+ return ABIArgInfo::getExpandWithPadding(
+ IsFastCall || IsVectorCall || IsRegCall, PaddingType);
+
+ return getIndirectResult(Ty, true, State);
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ // On Windows, vectors are passed directly if registers are available, or
+ // indirectly if not. This avoids the need to align argument memory. Pass
+ // user-defined vector types larger than 512 bits indirectly for simplicity.
+ if (IsWin32StructABI) {
+ if (TI.Width <= 512 && State.FreeSSERegs > 0) {
+ --State.FreeSSERegs;
+ return ABIArgInfo::getDirectInReg();
+ }
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ // On Darwin, some vectors are passed in memory, we handle this by passing
+ // it as an i8/i16/i32/i64.
+ if (IsDarwinVectorABI) {
+ if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
+ (TI.Width == 64 && VT->getNumElements() == 1))
+ return ABIArgInfo::getDirect(
+ llvm::IntegerType::get(getVMContext(), TI.Width));
+ }
+
+ if (IsX86_MMXType(CGT.ConvertType(Ty)))
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
+
+ return ABIArgInfo::getDirect();
+ }
+
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ bool InReg = shouldPrimitiveUseInReg(Ty, State);
+
+ if (isPromotableIntegerTypeForABI(Ty)) {
+ if (InReg)
+ return ABIArgInfo::getExtendInReg(Ty);
+ return ABIArgInfo::getExtend(Ty);
+ }
+
+ if (const auto *EIT = Ty->getAs<BitIntType>()) {
+ if (EIT->getNumBits() <= 64) {
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+ }
+ return getIndirectResult(Ty, /*ByVal=*/false, State);
+ }
+
+ if (InReg)
+ return ABIArgInfo::getDirectInReg();
+ return ABIArgInfo::getDirect();
+}
+
+void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ CCState State(FI);
+ if (IsMCUABI)
+ State.FreeRegs = 3;
+ else if (State.CC == llvm::CallingConv::X86_FastCall) {
+ State.FreeRegs = 2;
+ State.FreeSSERegs = 3;
+ } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
+ State.FreeRegs = 2;
+ State.FreeSSERegs = 6;
+ } else if (FI.getHasRegParm())
+ State.FreeRegs = FI.getRegParm();
+ else if (State.CC == llvm::CallingConv::X86_RegCall) {
+ State.FreeRegs = 5;
+ State.FreeSSERegs = 8;
+ } else if (IsWin32StructABI) {
+ // Since MSVC 2015, the first three SSE vectors have been passed in
+ // registers. The rest are passed indirectly.
+ State.FreeRegs = DefaultNumRegisterParameters;
+ State.FreeSSERegs = 3;
+ } else
+ State.FreeRegs = DefaultNumRegisterParameters;
+
+ if (!::classifyReturnType(getCXXABI(), FI, *this)) {
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
+ } else if (FI.getReturnInfo().isIndirect()) {
+ // The C++ ABI is not aware of register usage, so we have to check if the
+ // return value was sret and put it in a register ourselves if appropriate.
+ if (State.FreeRegs) {
+ --State.FreeRegs; // The sret parameter consumes a register.
+ if (!IsMCUABI)
+ FI.getReturnInfo().setInReg(true);
+ }
+ }
+
+ // The chain argument effectively gives us another free register.
+ if (FI.isChainCall())
+ ++State.FreeRegs;
+
+ // For vectorcall, do a first pass over the arguments, assigning FP and vector
+ // arguments to XMM registers as available.
+ if (State.CC == llvm::CallingConv::X86_VectorCall)
+ runVectorCallFirstPass(FI, State);
+
+ bool UsedInAlloca = false;
+ MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
+ for (unsigned I = 0, E = Args.size(); I < E; ++I) {
+ // Skip arguments that have already been assigned.
+ if (State.IsPreassigned.test(I))
+ continue;
+
+ Args[I].info =
+ classifyArgumentType(Args[I].type, State, I);
+ UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
+ }
+
+ // If we needed to use inalloca for any argument, do a second pass and rewrite
+ // all the memory arguments to use inalloca.
+ if (UsedInAlloca)
+ rewriteWithInAlloca(FI);
+}
+
+void
+X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
+ CharUnits &StackOffset, ABIArgInfo &Info,
+ QualType Type) const {
+ // Arguments are always 4-byte-aligned.
+ CharUnits WordSize = CharUnits::fromQuantity(4);
+ assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
+
+ // sret pointers and indirect things will require an extra pointer
+ // indirection, unless they are byval. Most things are byval, and will not
+ // require this indirection.
+ bool IsIndirect = false;
+ if (Info.isIndirect() && !Info.getIndirectByVal())
+ IsIndirect = true;
+ Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
+ llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
+ if (IsIndirect)
+ LLTy = llvm::PointerType::getUnqual(getVMContext());
+ FrameFields.push_back(LLTy);
+ StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
+
+ // Insert padding bytes to respect alignment.
+ CharUnits FieldEnd = StackOffset;
+ StackOffset = FieldEnd.alignTo(WordSize);
+ if (StackOffset != FieldEnd) {
+ CharUnits NumBytes = StackOffset - FieldEnd;
+ llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
+ Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
+ FrameFields.push_back(Ty);
+ }
+}
+
+static bool isArgInAlloca(const ABIArgInfo &Info) {
+ // Leave ignored and inreg arguments alone.
+ switch (Info.getKind()) {
+ case ABIArgInfo::InAlloca:
+ return true;
+ case ABIArgInfo::Ignore:
+ case ABIArgInfo::IndirectAliased:
+ return false;
+ case ABIArgInfo::Indirect:
+ case ABIArgInfo::Direct:
+ case ABIArgInfo::Extend:
+ return !Info.getInReg();
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::CoerceAndExpand:
+ // These are aggregate types which are never passed in registers when
+ // inalloca is involved.
+ return true;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
+ assert(IsWin32StructABI && "inalloca only supported on win32");
+
+ // Build a packed struct type for all of the arguments in memory.
+ SmallVector<llvm::Type *, 6> FrameFields;
+
+ // The stack alignment is always 4.
+ CharUnits StackAlign = CharUnits::fromQuantity(4);
+
+ CharUnits StackOffset;
+ CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
+
+ // Put 'this' into the struct before 'sret', if necessary.
+ bool IsThisCall =
+ FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
+ ABIArgInfo &Ret = FI.getReturnInfo();
+ if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
+ isArgInAlloca(I->info)) {
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ ++I;
+ }
+
+ // Put the sret parameter into the inalloca struct if it's in memory.
+ if (Ret.isIndirect() && !Ret.getInReg()) {
+ addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
+ // On Windows, the hidden sret parameter is always returned in eax.
+ Ret.setInAllocaSRet(IsWin32StructABI);
+ }
+
+ // Skip the 'this' parameter in ecx.
+ if (IsThisCall)
+ ++I;
+
+ // Put arguments passed in memory into the struct.
+ for (; I != E; ++I) {
+ if (isArgInAlloca(I->info))
+ addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
+ }
+
+ FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
+ /*isPacked=*/true),
+ StackAlign);
+}
+
+RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+
+ auto TypeInfo = getContext().getTypeInfoInChars(Ty);
+
+ CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
+ ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
+ // Empty records are ignored for parameter passing purposes.
+ if (AI.isIgnore())
+ return Slot.asRValue();
+
+ // x86-32 changes the alignment of certain arguments on the stack.
+ //
+ // Just messing with TypeInfo like this works because we never pass
+ // anything indirectly.
+ TypeInfo.Align = CharUnits::fromQuantity(
+ getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
+ CharUnits::fromQuantity(4),
+ /*AllowHigherAlign*/ true, Slot);
+}
+
+bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ const llvm::Triple &Triple, const CodeGenOptions &Opts) {
+ assert(Triple.getArch() == llvm::Triple::x86);
+
+ switch (Opts.getStructReturnConvention()) {
+ case CodeGenOptions::SRCK_Default:
+ break;
+ case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
+ return false;
+ case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
+ return true;
+ }
+
+ if (Triple.isOSDarwin() || Triple.isOSIAMCU())
+ return true;
+
+ switch (Triple.getOS()) {
+ case llvm::Triple::DragonFly:
+ case llvm::Triple::FreeBSD:
+ case llvm::Triple::OpenBSD:
+ case llvm::Triple::Win32:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) {
+ if (!FD->hasAttr<AnyX86InterruptAttr>())
+ return;
+
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->setCallingConv(llvm::CallingConv::X86_INTR);
+ if (FD->getNumParams() == 0)
+ return;
+
+ auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
+ llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
+ llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
+ Fn->getContext(), ByValTy);
+ Fn->addParamAttr(0, NewAttr);
+}
+
+void X86_32TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->addFnAttr("stackrealign");
+ }
+
+ addX86InterruptAttrs(FD, GV, CGM);
+ }
+}
+
+bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
+ CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const {
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
+
+ // 0-7 are the eight integer registers; the order is different
+ // on Darwin (for EH), but the range is the same.
+ // 8 is %eip.
+ AssignToArrayRange(Builder, Address, Four8, 0, 8);
+
+ if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
+ // 12-16 are st(0..4). Not sure why we stop at 4.
+ // These have size 16, which is sizeof(long double) on
+ // platforms with 8-byte alignment for that type.
+ llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
+ AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
+
+ } else {
+ // 9 is %eflags, which doesn't get a size on Darwin for some
+ // reason.
+ Builder.CreateAlignedStore(
+ Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
+ CharUnits::One());
+
+ // 11-16 are st(0..5). Not sure why we stop at 5.
+ // These have size 12, which is sizeof(long double) on
+ // platforms with 4-byte alignment for that type.
+ llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
+ AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86-64 ABI Implementation
+//===----------------------------------------------------------------------===//
+
+
+namespace {
+
+/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
+static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
+ switch (AVXLevel) {
+ case X86AVXABILevel::AVX512:
+ return 512;
+ case X86AVXABILevel::AVX:
+ return 256;
+ case X86AVXABILevel::None:
+ return 128;
+ }
+ llvm_unreachable("Unknown AVXLevel");
+}
+
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+ enum Class {
+ Integer = 0,
+ SSE,
+ SSEUp,
+ X87,
+ X87Up,
+ ComplexX87,
+ NoClass,
+ Memory
+ };
+
+ /// merge - Implement the X86_64 ABI merging algorithm.
+ ///
+ /// Merge an accumulating classification \arg Accum with a field
+ /// classification \arg Field.
+ ///
+ /// \param Accum - The accumulating classification. This should
+ /// always be either NoClass or the result of a previous merge
+ /// call. In addition, this should never be Memory (the caller
+ /// should just return Memory for the aggregate).
+ static Class merge(Class Accum, Class Field);
+
+ /// postMerge - Implement the X86_64 ABI post merging algorithm.
+ ///
+ /// Post merger cleanup, reduces a malformed Hi and Lo pair to
+ /// final MEMORY or SSE classes when necessary.
+ ///
+ /// \param AggregateSize - The size of the current aggregate in
+ /// the classification process.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the higher words of the containing object.
+ ///
+ void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+ /// classify - Determine the x86_64 register classes in which the
+ /// given type T should be passed.
+ ///
+ /// \param Lo - The classification for the parts of the type
+ /// residing in the low word of the containing object.
+ ///
+ /// \param Hi - The classification for the parts of the type
+ /// residing in the high word of the containing object.
+ ///
+ /// \param OffsetBase - The bit offset of this type in the
+ /// containing object. Some parameters are classified different
+ /// depending on whether they straddle an eightbyte boundary.
+ ///
+ /// \param isNamedArg - Whether the argument in question is a "named"
+ /// argument, as used in AMD64-ABI 3.5.7.
+ ///
+ /// \param IsRegCall - Whether the calling conversion is regcall.
+ ///
+ /// If a word is unused its result will be NoClass; if a type should
+ /// be passed in Memory then at least the classification of \arg Lo
+ /// will be Memory.
+ ///
+ /// The \arg Lo class will be NoClass iff the argument is ignored.
+ ///
+ /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+ /// also be ComplexX87.
+ void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+ bool isNamedArg, bool IsRegCall = false) const;
+
+ llvm::Type *GetByteVectorType(QualType Ty) const;
+ llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+ llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
+ unsigned IROffset, QualType SourceTy,
+ unsigned SourceOffset) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be returned in memory.
+ ABIArgInfo getIndirectReturnResult(QualType Ty) const;
+
+ /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+ /// such that the argument will be passed in memory.
+ ///
+ /// \param freeIntRegs - The number of free integer registers remaining
+ /// available.
+ ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
+
+ ABIArgInfo classifyReturnType(QualType RetTy) const;
+
+ ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
+ unsigned &neededInt, unsigned &neededSSE,
+ bool isNamedArg,
+ bool IsRegCall = false) const;
+
+ ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const;
+
+ ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const;
+
+ bool IsIllegalVectorType(QualType Ty) const;
+
+ /// The 0.98 ABI revision clarified a lot of ambiguities,
+ /// unfortunately in ways that were not always consistent with
+ /// certain previous compilers. In particular, platforms which
+ /// required strict binary compatibility with older versions of GCC
+ /// may need to exempt themselves.
+ bool honorsRevision0_98() const {
+ return !getTarget().getTriple().isOSDarwin();
+ }
+
+ /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
+ /// classify it as INTEGER (for compatibility with older clang compilers).
+ bool classifyIntegerMMXAsSSE() const {
+ // Clang <= 3.8 did not do this.
+ if (getContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver3_8)
+ return false;
+
+ const llvm::Triple &Triple = getTarget().getTriple();
+ if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
+ return false;
+ return true;
+ }
+
+ // GCC classifies vectors of __int128 as memory.
+ bool passInt128VectorsInMem() const {
+ // Clang <= 9.0 did not do this.
+ if (getContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver9)
+ return false;
+
+ const llvm::Triple &T = getTarget().getTriple();
+ return T.isOSLinux() || T.isOSNetBSD();
+ }
+
+ X86AVXABILevel AVXLevel;
+ // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
+ // 64-bit hardware.
+ bool Has64BitPointers;
+
+public:
+ X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+ : ABIInfo(CGT), AVXLevel(AVXLevel),
+ Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
+
+ bool isPassedUsingAVXType(QualType type) const {
+ unsigned neededInt, neededSSE;
+ // The freeIntRegs argument doesn't matter here.
+ ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
+ /*isNamedArg*/true);
+ if (info.isDirect()) {
+ llvm::Type *ty = info.getCoerceToType();
+ if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
+ return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
+ }
+ return false;
+ }
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+ RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ bool has64BitPointers() const {
+ return Has64BitPointers;
+ }
+};
+
+/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
+class WinX86_64ABIInfo : public ABIInfo {
+public:
+ WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+ : ABIInfo(CGT), AVXLevel(AVXLevel),
+ IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
+
+ void computeInfo(CGFunctionInfo &FI) const override;
+
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+
+ bool isHomogeneousAggregateBaseType(QualType Ty) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorTypeForVectorCall(getContext(), Ty);
+ }
+
+ bool isHomogeneousAggregateSmallEnough(const Type *Ty,
+ uint64_t NumMembers) const override {
+ // FIXME: Assumes vectorcall is in use.
+ return isX86VectorCallAggregateSmallEnough(NumMembers);
+ }
+
+private:
+ ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
+ bool IsVectorCall, bool IsRegCall) const;
+ ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
+ const ABIArgInfo &current) const;
+
+ X86AVXABILevel AVXLevel;
+
+ bool IsMingw64;
+};
+
+class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
+ : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
+ }
+
+ /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
+ /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
+ bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
+ StringRef Constraint,
+ llvm::Type* Ty) const override {
+ return X86AdjustInlineAsmType(CGF, Constraint, Ty);
+ }
+
+ bool isNoProtoCallVariadic(const CallArgList &args,
+ const FunctionNoProtoType *fnType) const override {
+ // The default CC on x86-64 sets %al to the number of SSA
+ // registers used, and GCC sets this when calling an unprototyped
+ // function, so we override the default behavior. However, don't do
+ // that when AVX types are involved: the ABI explicitly states it is
+ // undefined, and it doesn't work in practice because of how the ABI
+ // defines varargs anyway.
+ if (fnType->getCallConv() == CC_C) {
+ bool HasAVXType = false;
+ for (CallArgList::const_iterator
+ it = args.begin(), ie = args.end(); it != ie; ++it) {
+ if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
+ HasAVXType = true;
+ break;
+ }
+ }
+
+ if (!HasAVXType)
+ return true;
+ }
+
+ return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override {
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->addFnAttr("stackrealign");
+ }
+
+ addX86InterruptAttrs(FD, GV, CGM);
+ }
+ }
+
+ void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee, const CallArgList &Args,
+ QualType ReturnType) const override;
+};
+} // namespace
+
+static void initFeatureMaps(const ASTContext &Ctx,
+ llvm::StringMap<bool> &CallerMap,
+ const FunctionDecl *Caller,
+ llvm::StringMap<bool> &CalleeMap,
+ const FunctionDecl *Callee) {
+ if (CalleeMap.empty() && CallerMap.empty()) {
+ // The caller is potentially nullptr in the case where the call isn't in a
+ // function. In this case, the getFunctionFeatureMap ensures we just get
+ // the TU level setting (since it cannot be modified by 'target'..
+ Ctx.getFunctionFeatureMap(CallerMap, Caller);
+ Ctx.getFunctionFeatureMap(CalleeMap, Callee);
+ }
+}
+
+static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
+ SourceLocation CallLoc,
+ const llvm::StringMap<bool> &CallerMap,
+ const llvm::StringMap<bool> &CalleeMap,
+ QualType Ty, StringRef Feature,
+ bool IsArgument) {
+ bool CallerHasFeat = CallerMap.lookup(Feature);
+ bool CalleeHasFeat = CalleeMap.lookup(Feature);
+ if (!CallerHasFeat && !CalleeHasFeat)
+ return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
+ << IsArgument << Ty << Feature;
+
+ // Mixing calling conventions here is very clearly an error.
+ if (!CallerHasFeat || !CalleeHasFeat)
+ return Diag.Report(CallLoc, diag::err_avx_calling_convention)
+ << IsArgument << Ty << Feature;
+
+ // Else, both caller and callee have the required feature, so there is no need
+ // to diagnose.
+ return false;
+}
+
+static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
+ SourceLocation CallLoc,
+ const llvm::StringMap<bool> &CallerMap,
+ const llvm::StringMap<bool> &CalleeMap,
+ QualType Ty, bool IsArgument) {
+ bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
+ bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
+
+ // Forbid 512-bit or larger vector pass or return when we disabled ZMM
+ // instructions.
+ if (Caller256 || Callee256)
+ return Diag.Report(CallLoc, diag::err_avx_calling_convention)
+ << IsArgument << Ty << "evex512";
+
+ return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
+ "avx512f", IsArgument);
+}
+
+static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
+ SourceLocation CallLoc,
+ const llvm::StringMap<bool> &CallerMap,
+ const llvm::StringMap<bool> &CalleeMap, QualType Ty,
+ bool IsArgument) {
+ uint64_t Size = Ctx.getTypeSize(Ty);
+ if (Size > 256)
+ return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
+ IsArgument);
+
+ if (Size > 128)
+ return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
+ IsArgument);
+
+ return false;
+}
+
+void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
+ SourceLocation CallLoc,
+ const FunctionDecl *Caller,
+ const FunctionDecl *Callee,
+ const CallArgList &Args,
+ QualType ReturnType) const {
+ if (!Callee)
+ return;
+
+ llvm::StringMap<bool> CallerMap;
+ llvm::StringMap<bool> CalleeMap;
+ unsigned ArgIndex = 0;
+
+ // We need to loop through the actual call arguments rather than the
+ // function's parameters, in case this variadic.
+ for (const CallArg &Arg : Args) {
+ // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
+ // additionally changes how vectors >256 in size are passed. Like GCC, we
+ // warn when a function is called with an argument where this will change.
+ // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
+ // the caller and callee features are mismatched.
+ // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
+ // change its ABI with attribute-target after this call.
+ if (Arg.getType()->isVectorType() &&
+ CGM.getContext().getTypeSize(Arg.getType()) > 128) {
+ initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
+ QualType Ty = Arg.getType();
+ // The CallArg seems to have desugared the type already, so for clearer
+ // diagnostics, replace it with the type in the FunctionDecl if possible.
+ if (ArgIndex < Callee->getNumParams())
+ Ty = Callee->getParamDecl(ArgIndex)->getType();
+
+ if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
+ CalleeMap, Ty, /*IsArgument*/ true))
+ return;
+ }
+ ++ArgIndex;
+ }
+
+ // Check return always, as we don't have a good way of knowing in codegen
+ // whether this value is used, tail-called, etc.
+ if (Callee->getReturnType()->isVectorType() &&
+ CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
+ initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
+ checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
+ CalleeMap, Callee->getReturnType(),
+ /*IsArgument*/ false);
+ }
+}
+
+std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
+ // If the argument does not end in .lib, automatically add the suffix.
+ // If the argument contains a space, enclose it in quotes.
+ // This matches the behavior of MSVC.
+ bool Quote = Lib.contains(' ');
+ std::string ArgStr = Quote ? "\"" : "";
+ ArgStr += Lib;
+ if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
+ ArgStr += ".lib";
+ ArgStr += Quote ? "\"" : "";
+ return ArgStr;
+}
+
+namespace {
+class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
+public:
+ WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
+ unsigned NumRegisterParameters)
+ : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
+ Win32StructABI, NumRegisterParameters, false) {}
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+} // namespace
+
+void WinX86_32TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (GV->isDeclaration())
+ return;
+ addStackProbeTargetAttributes(D, GV, CGM);
+}
+
+namespace {
+class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
+public:
+ WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
+ X86AVXABILevel AVXLevel)
+ : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
+ SwiftInfo =
+ std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
+ }
+
+ void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
+ CodeGen::CodeGenModule &CGM) const override;
+
+ int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
+ return 7;
+ }
+
+ bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
+ llvm::Value *Address) const override {
+ llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
+
+ // 0-15 are the 16 integer registers.
+ // 16 is %rip.
+ AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
+ return false;
+ }
+
+ void getDependentLibraryOption(llvm::StringRef Lib,
+ llvm::SmallString<24> &Opt) const override {
+ Opt = "/DEFAULTLIB:";
+ Opt += qualifyWindowsLibrary(Lib);
+ }
+
+ void getDetectMismatchOption(llvm::StringRef Name,
+ llvm::StringRef Value,
+ llvm::SmallString<32> &Opt) const override {
+ Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
+ }
+};
+} // namespace
+
+void WinX86_64TargetCodeGenInfo::setTargetAttributes(
+ const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
+ TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
+ if (GV->isDeclaration())
+ return;
+ if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
+ if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
+ llvm::Function *Fn = cast<llvm::Function>(GV);
+ Fn->addFnAttr("stackrealign");
+ }
+
+ addX86InterruptAttrs(FD, GV, CGM);
+ }
+
+ addStackProbeTargetAttributes(D, GV, CGM);
+}
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+ Class &Hi) const {
+ // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+ //
+ // (a) If one of the classes is Memory, the whole argument is passed in
+ // memory.
+ //
+ // (b) If X87UP is not preceded by X87, the whole argument is passed in
+ // memory.
+ //
+ // (c) If the size of the aggregate exceeds two eightbytes and the first
+ // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+ // argument is passed in memory. NOTE: This is necessary to keep the
+ // ABI working for processors that don't support the __m256 type.
+ //
+ // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+ //
+ // Some of these are enforced by the merging logic. Others can arise
+ // only with unions; for example:
+ // union { _Complex double; unsigned; }
+ //
+ // Note that clauses (b) and (c) were added in 0.98.
+ //
+ if (Hi == Memory)
+ Lo = Memory;
+ if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
+ Lo = Memory;
+ if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+ Lo = Memory;
+ if (Hi == SSEUp && Lo != SSE)
+ Hi = SSE;
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+ // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+ // classified recursively so that always two fields are
+ // considered. The resulting class is calculated according to
+ // the classes of the fields in the eightbyte:
+ //
+ // (a) If both classes are equal, this is the resulting class.
+ //
+ // (b) If one of the classes is NO_CLASS, the resulting class is
+ // the other class.
+ //
+ // (c) If one of the classes is MEMORY, the result is the MEMORY
+ // class.
+ //
+ // (d) If one of the classes is INTEGER, the result is the
+ // INTEGER.
+ //
+ // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+ // MEMORY is used as class.
+ //
+ // (f) Otherwise class SSE is used.
+
+ // Accum should never be memory (we should have returned) or
+ // ComplexX87 (because this cannot be passed in a structure).
+ assert((Accum != Memory && Accum != ComplexX87) &&
+ "Invalid accumulated classification during merge.");
+ if (Accum == Field || Field == NoClass)
+ return Accum;
+ if (Field == Memory)
+ return Memory;
+ if (Accum == NoClass)
+ return Field;
+ if (Accum == Integer || Field == Integer)
+ return Integer;
+ if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+ Accum == X87 || Accum == X87Up)
+ return Memory;
+ return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
+ Class &Hi, bool isNamedArg, bool IsRegCall) const {
+ // FIXME: This code can be simplified by introducing a simple value class for
+ // Class pairs with appropriate constructor methods for the various
+ // situations.
+
+ // FIXME: Some of the split computations are wrong; unaligned vectors
+ // shouldn't be passed in registers for example, so there is no chance they
+ // can straddle an eightbyte. Verify & simplify.
+
+ Lo = Hi = NoClass;
+
+ Class &Current = OffsetBase < 64 ? Lo : Hi;
+ Current = Memory;
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ BuiltinType::Kind k = BT->getKind();
+
+ if (k == BuiltinType::Void) {
+ Current = NoClass;
+ } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+ Lo = Integer;
+ Hi = Integer;
+ } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+ Current = Integer;
+ } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
+ k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
+ Current = SSE;
+ } else if (k == BuiltinType::Float128) {
+ Lo = SSE;
+ Hi = SSEUp;
+ } else if (k == BuiltinType::LongDouble) {
+ const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+ if (LDF == &llvm::APFloat::IEEEquad()) {
+ Lo = SSE;
+ Hi = SSEUp;
+ } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
+ Lo = X87;
+ Hi = X87Up;
+ } else if (LDF == &llvm::APFloat::IEEEdouble()) {
+ Current = SSE;
+ } else
+ llvm_unreachable("unexpected long double representation!");
+ }
+ // FIXME: _Decimal32 and _Decimal64 are SSE.
+ // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+ return;
+ }
+
+ if (const EnumType *ET = Ty->getAs<EnumType>()) {
+ // Classify the underlying integer type.
+ classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
+ return;
+ }
+
+ if (Ty->hasPointerRepresentation()) {
+ Current = Integer;
+ return;
+ }
+
+ if (Ty->isMemberPointerType()) {
+ if (Ty->isMemberFunctionPointerType()) {
+ if (Has64BitPointers) {
+ // If Has64BitPointers, this is an {i64, i64}, so classify both
+ // Lo and Hi now.
+ Lo = Hi = Integer;
+ } else {
+ // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
+ // straddles an eightbyte boundary, Hi should be classified as well.
+ uint64_t EB_FuncPtr = (OffsetBase) / 64;
+ uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
+ if (EB_FuncPtr != EB_ThisAdj) {
+ Lo = Hi = Integer;
+ } else {
+ Current = Integer;
+ }
+ }
+ } else {
+ Current = Integer;
+ }
+ return;
+ }
+
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VT);
+ if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
+ // gcc passes the following as integer:
+ // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
+ // 2 bytes - <2 x char>, <1 x short>
+ // 1 byte - <1 x char>
+ Current = Integer;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ uint64_t EB_Lo = (OffsetBase) / 64;
+ uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
+ if (EB_Lo != EB_Hi)
+ Hi = Lo;
+ } else if (Size == 64) {
+ QualType ElementType = VT->getElementType();
+
+ // gcc passes <1 x double> in memory. :(
+ if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
+ return;
+
+ // gcc passes <1 x long long> as SSE but clang used to unconditionally
+ // pass them as integer. For platforms where clang is the de facto
+ // platform compiler, we must continue to use integer.
+ if (!classifyIntegerMMXAsSSE() &&
+ (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
+ Current = Integer;
+ else
+ Current = SSE;
+
+ // If this type crosses an eightbyte boundary, it should be
+ // split.
+ if (OffsetBase && OffsetBase != 64)
+ Hi = Lo;
+ } else if (Size == 128 ||
+ (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
+ QualType ElementType = VT->getElementType();
+
+ // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
+ if (passInt128VectorsInMem() && Size != 128 &&
+ (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
+ ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
+ return;
+
+ // Arguments of 256-bits are split into four eightbyte chunks. The
+ // least significant one belongs to class SSE and all the others to class
+ // SSEUP. The original Lo and Hi design considers that types can't be
+ // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+ // This design isn't correct for 256-bits, but since there're no cases
+ // where the upper parts would need to be inspected, avoid adding
+ // complexity and just consider Hi to match the 64-256 part.
+ //
+ // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+ // registers if they are "named", i.e. not part of the "..." of a
+ // variadic function.
+ //
+ // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
+ // split into eight eightbyte chunks, one SSE and seven SSEUP.
+ Lo = SSE;
+ Hi = SSEUp;
+ }
+ return;
+ }
+
+ if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
+ QualType ET = getContext().getCanonicalType(CT->getElementType());
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+ if (ET->isIntegralOrEnumerationType()) {
+ if (Size <= 64)
+ Current = Integer;
+ else if (Size <= 128)
+ Lo = Hi = Integer;
+ } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
+ ET->isBFloat16Type()) {
+ Current = SSE;
+ } else if (ET == getContext().DoubleTy) {
+ Lo = Hi = SSE;
+ } else if (ET == getContext().LongDoubleTy) {
+ const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+ if (LDF == &llvm::APFloat::IEEEquad())
+ Current = Memory;
+ else if (LDF == &llvm::APFloat::x87DoubleExtended())
+ Current = ComplexX87;
+ else if (LDF == &llvm::APFloat::IEEEdouble())
+ Lo = Hi = SSE;
+ else
+ llvm_unreachable("unexpected long double representation!");
+ }
+
+ // If this complex type crosses an eightbyte boundary then it
+ // should be split.
+ uint64_t EB_Real = (OffsetBase) / 64;
+ uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
+ if (Hi == NoClass && EB_Real != EB_Imag)
+ Hi = Lo;
+
+ return;
+ }
+
+ if (const auto *EITy = Ty->getAs<BitIntType>()) {
+ if (EITy->getNumBits() <= 64)
+ Current = Integer;
+ else if (EITy->getNumBits() <= 128)
+ Lo = Hi = Integer;
+ // Larger values need to get passed in memory.
+ return;
+ }
+
+ if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
+ // Arrays are treated like structures.
+
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than eight eightbytes, ..., it has class MEMORY.
+ // regcall ABI doesn't have limitation to an object. The only limitation
+ // is the free registers, which will be checked in computeInfo.
+ if (!IsRegCall && Size > 512)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+ // fields, it has class MEMORY.
+ //
+ // Only need to check alignment of array base.
+ if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
+ return;
+
+ // Otherwise implement simplified merge. We could be smarter about
+ // this, but it isn't worth it and would be harder to verify.
+ Current = NoClass;
+ uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
+ uint64_t ArraySize = AT->getZExtSize();
+
+ // The only case a 256-bit wide vector could be used is when the array
+ // contains a single 256-bit element. Since Lo and Hi logic isn't extended
+ // to work for sizes wider than 128, early check and fallback to memory.
+ //
+ if (Size > 128 &&
+ (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
+ return;
+
+ for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+ Class FieldLo, FieldHi;
+ classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+ return;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+ // than eight eightbytes, ..., it has class MEMORY.
+ if (Size > 512)
+ return;
+
+ // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
+ // copy constructor or a non-trivial destructor, it is passed by invisible
+ // reference.
+ if (getRecordArgABI(RT, getCXXABI()))
+ return;
+
+ const RecordDecl *RD = RT->getDecl();
+
+ // Assume variable sized types are passed in memory.
+ if (RD->hasFlexibleArrayMember())
+ return;
+
+ const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
+
+ // Reset Lo class, this will be recomputed.
+ Current = NoClass;
+
+ // If this is a C++ record, classify the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const auto *Base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
+ // single eightbyte, each is classified separately. Each eightbyte gets
+ // initialized to class NO_CLASS.
+ Class FieldLo, FieldHi;
+ uint64_t Offset =
+ OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
+ classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory) {
+ postMerge(Size, Lo, Hi);
+ return;
+ }
+ }
+ }
+
+ // Classify the fields one at a time, merging the results.
+ unsigned idx = 0;
+ bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
+ LangOptions::ClangABI::Ver11 ||
+ getContext().getTargetInfo().getTriple().isPS();
+ bool IsUnion = RT->isUnionType() && !UseClang11Compat;
+
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ bool BitField = i->isBitField();
+
+ // Ignore padding bit-fields.
+ if (BitField && i->isUnnamedBitField())
+ continue;
+
+ // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
+ // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
+ //
+ // The only case a 256-bit or a 512-bit wide vector could be used is when
+ // the struct contains a single 256-bit or 512-bit element. Early check
+ // and fallback to memory.
+ //
+ // FIXME: Extended the Lo and Hi logic properly to work for size wider
+ // than 128.
+ if (Size > 128 &&
+ ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
+ Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
+ Lo = Memory;
+ postMerge(Size, Lo, Hi);
+ return;
+ }
+
+ bool IsInMemory =
+ Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
+ // Note, skip this test for bit-fields, see below.
+ if (!BitField && IsInMemory) {
+ Lo = Memory;
+ postMerge(Size, Lo, Hi);
+ return;
+ }
+
+ // Classify this field.
+ //
+ // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+ // exceeds a single eightbyte, each is classified
+ // separately. Each eightbyte gets initialized to class
+ // NO_CLASS.
+ Class FieldLo, FieldHi;
+
+ // Bit-fields require special handling, they do not force the
+ // structure to be passed in memory even if unaligned, and
+ // therefore they can straddle an eightbyte.
+ if (BitField) {
+ assert(!i->isUnnamedBitField());
+ uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+ uint64_t Size = i->getBitWidthValue(getContext());
+
+ uint64_t EB_Lo = Offset / 64;
+ uint64_t EB_Hi = (Offset + Size - 1) / 64;
+
+ if (EB_Lo) {
+ assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+ FieldLo = NoClass;
+ FieldHi = Integer;
+ } else {
+ FieldLo = Integer;
+ FieldHi = EB_Hi ? Integer : NoClass;
+ }
+ } else
+ classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
+ Lo = merge(Lo, FieldLo);
+ Hi = merge(Hi, FieldHi);
+ if (Lo == Memory || Hi == Memory)
+ break;
+ }
+
+ postMerge(Size, Lo, Hi);
+ }
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ if (!isAggregateTypeForABI(Ty)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isBitIntType())
+ return getNaturalAlignIndirect(Ty);
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ return getNaturalAlignIndirect(Ty);
+}
+
+bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
+ if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
+ uint64_t Size = getContext().getTypeSize(VecTy);
+ unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
+ if (Size <= 64 || Size > LargestVector)
+ return true;
+ QualType EltTy = VecTy->getElementType();
+ if (passInt128VectorsInMem() &&
+ (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
+ EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
+ return true;
+ }
+
+ return false;
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+ unsigned freeIntRegs) const {
+ // If this is a scalar LLVM value then assume LLVM will pass it in the right
+ // place naturally.
+ //
+ // This assumption is optimistic, as there could be free registers available
+ // when we need to pass this argument in memory, and LLVM could try to pass
+ // the argument in the free register. This does not seem to happen currently,
+ // but this code would be much safer if we could mark the argument with
+ // 'onstack'. See PR12193.
+ if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
+ !Ty->isBitIntType()) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
+ : ABIArgInfo::getDirect());
+ }
+
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+
+ // Compute the byval alignment. We specify the alignment of the byval in all
+ // cases so that the mid-level optimizer knows the alignment of the byval.
+ unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
+
+ // Attempt to avoid passing indirect results using byval when possible. This
+ // is important for good codegen.
+ //
+ // We do this by coercing the value into a scalar type which the backend can
+ // handle naturally (i.e., without using byval).
+ //
+ // For simplicity, we currently only do this when we have exhausted all of the
+ // free integer registers. Doing this when there are free integer registers
+ // would require more care, as we would have to ensure that the coerced value
+ // did not claim the unused register. That would require either reording the
+ // arguments to the function (so that any subsequent inreg values came first),
+ // or only doing this optimization when there were no following arguments that
+ // might be inreg.
+ //
+ // We currently expect it to be rare (particularly in well written code) for
+ // arguments to be passed on the stack when there are still free integer
+ // registers available (this would typically imply large structs being passed
+ // by value), so this seems like a fair tradeoff for now.
+ //
+ // We can revisit this if the backend grows support for 'onstack' parameter
+ // attributes. See PR12193.
+ if (freeIntRegs == 0) {
+ uint64_t Size = getContext().getTypeSize(Ty);
+
+ // If this type fits in an eightbyte, coerce it into the matching integral
+ // type, which will end up on the stack (with alignment 8).
+ if (Align == 8 && Size <= 64)
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
+ Size));
+ }
+
+ return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
+}
+
+/// The ABI specifies that a value should be passed in a full vector XMM/YMM
+/// register. Pick an LLVM IR type that will be passed as a vector register.
+llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
+ // Wrapper structs/arrays that only contain vectors are passed just like
+ // vectors; strip them off if present.
+ if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
+ Ty = QualType(InnerTy, 0);
+
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ if (isa<llvm::VectorType>(IRType)) {
+ // Don't pass vXi128 vectors in their native type, the backend can't
+ // legalize them.
+ if (passInt128VectorsInMem() &&
+ cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
+ // Use a vXi64 vector.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
+ Size / 64);
+ }
+
+ return IRType;
+ }
+
+ if (IRType->getTypeID() == llvm::Type::FP128TyID)
+ return IRType;
+
+ // We couldn't find the preferred IR vector type for 'Ty'.
+ uint64_t Size = getContext().getTypeSize(Ty);
+ assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
+
+
+ // Return a LLVM IR vector type based on the size of 'Ty'.
+ return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
+ Size / 64);
+}
+
+/// BitsContainNoUserData - Return true if the specified [start,end) bit range
+/// is known to either be off the end of the specified type or being in
+/// alignment padding. The user type specified is known to be at most 128 bits
+/// in size, and have passed through X86_64ABIInfo::classify with a successful
+/// classification that put one of the two halves in the INTEGER class.
+///
+/// It is conservatively correct to return false.
+static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
+ unsigned EndBit, ASTContext &Context) {
+ // If the bytes being queried are off the end of the type, there is no user
+ // data hiding here. This handles analysis of builtins, vectors and other
+ // types that don't contain interesting padding.
+ unsigned TySize = (unsigned)Context.getTypeSize(Ty);
+ if (TySize <= StartBit)
+ return true;
+
+ if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+ unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
+ unsigned NumElts = (unsigned)AT->getZExtSize();
+
+ // Check each element to see if the element overlaps with the queried range.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If the element is after the span we care about, then we're done..
+ unsigned EltOffset = i*EltSize;
+ if (EltOffset >= EndBit) break;
+
+ unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
+ if (!BitsContainNoUserData(AT->getElementType(), EltStart,
+ EndBit-EltOffset, Context))
+ return false;
+ }
+ // If it overlaps no elements, then it is safe to process as padding.
+ return true;
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // If this is a C++ record, check the bases first.
+ if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
+ for (const auto &I : CXXRD->bases()) {
+ assert(!I.isVirtual() && !I.getType()->isDependentType() &&
+ "Unexpected base class!");
+ const auto *Base =
+ cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
+
+ // If the base is after the span we care about, ignore it.
+ unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
+ if (BaseOffset >= EndBit) continue;
+
+ unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
+ if (!BitsContainNoUserData(I.getType(), BaseStart,
+ EndBit-BaseOffset, Context))
+ return false;
+ }
+ }
+
+ // Verify that no field has data that overlaps the region of interest. Yes
+ // this could be sped up a lot by being smarter about queried fields,
+ // however we're only looking at structs up to 16 bytes, so we don't care
+ // much.
+ unsigned idx = 0;
+ for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
+ i != e; ++i, ++idx) {
+ unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
+
+ // If we found a field after the region we care about, then we're done.
+ if (FieldOffset >= EndBit) break;
+
+ unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
+ if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
+ Context))
+ return false;
+ }
+
+ // If nothing in this record overlapped the area of interest, then we're
+ // clean.
+ return true;
+ }
+
+ return false;
+}
+
+/// getFPTypeAtOffset - Return a floating point type at the specified offset.
+static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ const llvm::DataLayout &TD) {
+ if (IROffset == 0 && IRType->isFloatingPointTy())
+ return IRType;
+
+ // If this is a struct, recurse into the field at the specified offset.
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ if (!STy->getNumContainedTypes())
+ return nullptr;
+
+ const llvm::StructLayout *SL = TD.getStructLayout(STy);
+ unsigned Elt = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(Elt);
+ return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
+ }
+
+ // If this is an array, recurse into the field at the specified offset.
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = TD.getTypeAllocSize(EltTy);
+ IROffset -= IROffset / EltSize * EltSize;
+ return getFPTypeAtOffset(EltTy, IROffset, TD);
+ }
+
+ return nullptr;
+}
+
+/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
+/// low 8 bytes of an XMM register, corresponding to the SSE class.
+llvm::Type *X86_64ABIInfo::
+GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ const llvm::DataLayout &TD = getDataLayout();
+ unsigned SourceSize =
+ (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
+ llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
+ if (!T0 || T0->isDoubleTy())
+ return llvm::Type::getDoubleTy(getVMContext());
+
+ // Get the adjacent FP type.
+ llvm::Type *T1 = nullptr;
+ unsigned T0Size = TD.getTypeAllocSize(T0);
+ if (SourceSize > T0Size)
+ T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
+ if (T1 == nullptr) {
+ // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
+ // to its alignment.
+ if (T0->is16bitFPTy() && SourceSize > 4)
+ T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
+ // If we can't get a second FP type, return a simple half or float.
+ // avx512fp16-abi.c:pr51813_2 shows it works to return float for
+ // {float, i8} too.
+ if (T1 == nullptr)
+ return T0;
+ }
+
+ if (T0->isFloatTy() && T1->isFloatTy())
+ return llvm::FixedVectorType::get(T0, 2);
+
+ if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
+ llvm::Type *T2 = nullptr;
+ if (SourceSize > 4)
+ T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
+ if (T2 == nullptr)
+ return llvm::FixedVectorType::get(T0, 2);
+ return llvm::FixedVectorType::get(T0, 4);
+ }
+
+ if (T0->is16bitFPTy() || T1->is16bitFPTy())
+ return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
+
+ return llvm::Type::getDoubleTy(getVMContext());
+}
+
+
+/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
+/// an 8-byte GPR. This means that we either have a scalar or we are talking
+/// about the high or low part of an up-to-16-byte struct. This routine picks
+/// the best LLVM IR type to represent this, which may be i64 or may be anything
+/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
+/// etc).
+///
+/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
+/// the source type. IROffset is an offset in bytes into the LLVM IR type that
+/// the 8-byte value references. PrefType may be null.
+///
+/// SourceTy is the source-level type for the entire argument. SourceOffset is
+/// an offset into this that we're processing (which is always either 0 or 8).
+///
+llvm::Type *X86_64ABIInfo::
+GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
+ QualType SourceTy, unsigned SourceOffset) const {
+ // If we're dealing with an un-offset LLVM IR type, then it means that we're
+ // returning an 8-byte unit starting with it. See if we can safely use it.
+ if (IROffset == 0) {
+ // Pointers and int64's always fill the 8-byte unit.
+ if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
+ IRType->isIntegerTy(64))
+ return IRType;
+
+ // If we have a 1/2/4-byte integer, we can use it only if the rest of the
+ // goodness in the source type is just tail padding. This is allowed to
+ // kick in for struct {double,int} on the int, but not on
+ // struct{double,int,int} because we wouldn't return the second int. We
+ // have to do this analysis on the source type because we can't depend on
+ // unions being lowered a specific way etc.
+ if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
+ IRType->isIntegerTy(32) ||
+ (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
+ unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
+ cast<llvm::IntegerType>(IRType)->getBitWidth();
+
+ if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
+ SourceOffset*8+64, getContext()))
+ return IRType;
+ }
+ }
+
+ if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
+ // If this is a struct, recurse into the field at the specified offset.
+ const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
+ if (IROffset < SL->getSizeInBytes()) {
+ unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
+ IROffset -= SL->getElementOffset(FieldIdx);
+
+ return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
+ SourceTy, SourceOffset);
+ }
+ }
+
+ if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
+ llvm::Type *EltTy = ATy->getElementType();
+ unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
+ unsigned EltOffset = IROffset/EltSize*EltSize;
+ return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
+ SourceOffset);
+ }
+
+ // Okay, we don't have any better idea of what to pass, so we pass this in an
+ // integer register that isn't too big to fit the rest of the struct.
+ unsigned TySizeInBytes =
+ (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
+
+ assert(TySizeInBytes != SourceOffset && "Empty field?");
+
+ // It is always safe to classify this as an integer type up to i64 that
+ // isn't larger than the structure.
+ return llvm::IntegerType::get(getVMContext(),
+ std::min(TySizeInBytes-SourceOffset, 8U)*8);
+}
+
+
+/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
+/// be used as elements of a two register pair to pass or return, return a
+/// first class aggregate to represent them. For example, if the low part of
+/// a by-value argument should be passed as i32* and the high part as float,
+/// return {i32*, float}.
+static llvm::Type *
+GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
+ const llvm::DataLayout &TD) {
+ // In order to correctly satisfy the ABI, we need to the high part to start
+ // at offset 8. If the high and low parts we inferred are both 4-byte types
+ // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
+ // the second element at offset 8. Check for this:
+ unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
+ llvm::Align HiAlign = TD.getABITypeAlign(Hi);
+ unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
+ assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
+
+ // To handle this, we have to increase the size of the low part so that the
+ // second element will start at an 8 byte offset. We can't increase the size
+ // of the second element because it might make us access off the end of the
+ // struct.
+ if (HiStart != 8) {
+ // There are usually two sorts of types the ABI generation code can produce
+ // for the low part of a pair that aren't 8 bytes in size: half, float or
+ // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
+ // NaCl).
+ // Promote these to a larger type.
+ if (Lo->isHalfTy() || Lo->isFloatTy())
+ Lo = llvm::Type::getDoubleTy(Lo->getContext());
+ else {
+ assert((Lo->isIntegerTy() || Lo->isPointerTy())
+ && "Invalid/unknown lo type");
+ Lo = llvm::Type::getInt64Ty(Lo->getContext());
+ }
+ }
+
+ llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
+
+ // Verify that the second element is at an 8-byte offset.
+ assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
+ "Invalid x86-64 argument pair!");
+ return Result;
+}
+
+ABIArgInfo X86_64ABIInfo::
+classifyReturnType(QualType RetTy) const {
+ // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+ // classification algorithm.
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
+
+ // Check some invariants.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+ // hidden argument.
+ case Memory:
+ return getIndirectReturnResult(RetTy);
+
+ // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+ // available register of the sequence %rax, %rdx is used.
+ case Integer:
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
+ RetTy = EnumTy->getDecl()->getIntegerType();
+
+ if (RetTy->isIntegralOrEnumerationType() &&
+ isPromotableIntegerTypeForABI(RetTy))
+ return ABIArgInfo::getExtend(RetTy);
+ }
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+ // available SSE register of the sequence %xmm0, %xmm1 is used.
+ case SSE:
+ ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+ // returned on the X87 stack in %st0 as 80-bit x87 number.
+ case X87:
+ ResType = llvm::Type::getX86_FP80Ty(getVMContext());
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+ // part of the value is returned in %st0 and the imaginary part in
+ // %st1.
+ case ComplexX87:
+ assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+ ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
+ llvm::Type::getX86_FP80Ty(getVMContext()));
+ break;
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously and X87 should
+ // never occur as a hi class.
+ case Memory:
+ case X87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case ComplexX87: // Previously handled.
+ case NoClass:
+ break;
+
+ case Integer:
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+ case SSE:
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+ // is passed in the next available eightbyte chunk if the last used
+ // vector register.
+ //
+ // SSEUP should always be preceded by SSE, just widen.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification.");
+ ResType = GetByteVectorType(RetTy);
+ break;
+
+ // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+ // returned together with the previous X87 value in %st0.
+ case X87Up:
+ // If X87Up is preceded by X87, we don't need to do
+ // anything. However, in some cases with unions it may not be
+ // preceded by X87. In such situations we follow gcc and pass the
+ // extra bits in an SSE reg.
+ if (Lo != X87) {
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
+ if (Lo == NoClass) // Return HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ }
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
+ unsigned &neededInt, unsigned &neededSSE,
+ bool isNamedArg, bool IsRegCall) const {
+ Ty = useFirstFieldIfTransparentUnion(Ty);
+
+ X86_64ABIInfo::Class Lo, Hi;
+ classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
+
+ // Check some invariants.
+ // FIXME: Enforce these by construction.
+ assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+ assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+ neededInt = 0;
+ neededSSE = 0;
+ llvm::Type *ResType = nullptr;
+ switch (Lo) {
+ case NoClass:
+ if (Hi == NoClass)
+ return ABIArgInfo::getIgnore();
+ // If the low part is just padding, it takes no register, leave ResType
+ // null.
+ assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
+ "Unknown missing lo part");
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+ // on the stack.
+ case Memory:
+
+ // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+ // COMPLEX_X87, it is passed in memory.
+ case X87:
+ case ComplexX87:
+ if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
+ ++neededInt;
+ return getIndirectResult(Ty, freeIntRegs);
+
+ case SSEUp:
+ case X87Up:
+ llvm_unreachable("Invalid classification for lo word.");
+
+ // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+ // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+ // and %r9 is used.
+ case Integer:
+ ++neededInt;
+
+ // Pick an 8-byte type based on the preferred type.
+ ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
+
+ // If we have a sign or zero extended integer, make sure to return Extend
+ // so that the parameter gets the right LLVM IR attributes.
+ if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
+ // Treat an enum type as its underlying type.
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ if (Ty->isIntegralOrEnumerationType() &&
+ isPromotableIntegerTypeForABI(Ty))
+ return ABIArgInfo::getExtend(Ty);
+ }
+
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+ // available SSE register is used, the registers are taken in the
+ // order from %xmm0 to %xmm7.
+ case SSE: {
+ llvm::Type *IRType = CGT.ConvertType(Ty);
+ ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
+ ++neededSSE;
+ break;
+ }
+ }
+
+ llvm::Type *HighPart = nullptr;
+ switch (Hi) {
+ // Memory was handled previously, ComplexX87 and X87 should
+ // never occur as hi classes, and X87Up must be preceded by X87,
+ // which is passed in memory.
+ case Memory:
+ case X87:
+ case ComplexX87:
+ llvm_unreachable("Invalid classification for hi word.");
+
+ case NoClass: break;
+
+ case Integer:
+ ++neededInt;
+ // Pick an 8-byte type based on the preferred type.
+ HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // X87Up generally doesn't occur here (long double is passed in
+ // memory), except in situations involving unions.
+ case X87Up:
+ case SSE:
+ ++neededSSE;
+ HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
+
+ if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
+ return ABIArgInfo::getDirect(HighPart, 8);
+ break;
+
+ // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+ // eightbyte is passed in the upper half of the last used SSE
+ // register. This only happens when 128-bit vectors are passed.
+ case SSEUp:
+ assert(Lo == SSE && "Unexpected SSEUp classification");
+ ResType = GetByteVectorType(Ty);
+ break;
+ }
+
+ // If a high part was specified, merge it together with the low part. It is
+ // known to pass in the high eightbyte of the result. We do this by forming a
+ // first class struct aggregate with the high and low part: {low, high}
+ if (HighPart)
+ ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
+
+ return ABIArgInfo::getDirect(ResType);
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const {
+ auto RT = Ty->getAs<RecordType>();
+ assert(RT && "classifyRegCallStructType only valid with struct types");
+
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getIndirectReturnResult(Ty);
+
+ // Sum up bases
+ if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+ if (CXXRD->isDynamicClass()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+
+ for (const auto &I : CXXRD->bases())
+ if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
+ MaxVectorWidth)
+ .isIndirect()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+ }
+
+ // Sum up members
+ for (const auto *FD : RT->getDecl()->fields()) {
+ QualType MTy = FD->getType();
+ if (MTy->isRecordType() && !MTy->isUnionType()) {
+ if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
+ MaxVectorWidth)
+ .isIndirect()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+ } else {
+ unsigned LocalNeededInt, LocalNeededSSE;
+ if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
+ true, true)
+ .isIndirect()) {
+ NeededInt = NeededSSE = 0;
+ return getIndirectReturnResult(Ty);
+ }
+ if (const auto *AT = getContext().getAsConstantArrayType(MTy))
+ MTy = AT->getElementType();
+ if (const auto *VT = MTy->getAs<VectorType>())
+ if (getContext().getTypeSize(VT) > MaxVectorWidth)
+ MaxVectorWidth = getContext().getTypeSize(VT);
+ NeededInt += LocalNeededInt;
+ NeededSSE += LocalNeededSSE;
+ }
+ }
+
+ return ABIArgInfo::getDirect();
+}
+
+ABIArgInfo
+X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
+ unsigned &NeededSSE,
+ unsigned &MaxVectorWidth) const {
+
+ NeededInt = 0;
+ NeededSSE = 0;
+ MaxVectorWidth = 0;
+
+ return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
+ MaxVectorWidth);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+
+ const unsigned CallingConv = FI.getCallingConvention();
+ // It is possible to force Win64 calling convention on any x86_64 target by
+ // using __attribute__((ms_abi)). In such case to correctly emit Win64
+ // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
+ if (CallingConv == llvm::CallingConv::Win64) {
+ WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
+ Win64ABIInfo.computeInfo(FI);
+ return;
+ }
+
+ bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
+
+ // Keep track of the number of assigned registers.
+ unsigned FreeIntRegs = IsRegCall ? 11 : 6;
+ unsigned FreeSSERegs = IsRegCall ? 16 : 8;
+ unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
+
+ if (!::classifyReturnType(getCXXABI(), FI, *this)) {
+ if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
+ !FI.getReturnType()->getTypePtr()->isUnionType()) {
+ FI.getReturnInfo() = classifyRegCallStructType(
+ FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
+ if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
+ FreeIntRegs -= NeededInt;
+ FreeSSERegs -= NeededSSE;
+ } else {
+ FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
+ }
+ } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
+ getContext().getCanonicalType(FI.getReturnType()
+ ->getAs<ComplexType>()
+ ->getElementType()) ==
+ getContext().LongDoubleTy)
+ // Complex Long Double Type is passed in Memory when Regcall
+ // calling convention is used.
+ FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
+ else
+ FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
+ }
+
+ // If the return value is indirect, then the hidden argument is consuming one
+ // integer register.
+ if (FI.getReturnInfo().isIndirect())
+ --FreeIntRegs;
+ else if (NeededSSE && MaxVectorWidth > 0)
+ FI.setMaxVectorWidth(MaxVectorWidth);
+
+ // The chain argument effectively gives us another free register.
+ if (FI.isChainCall())
+ ++FreeIntRegs;
+
+ unsigned NumRequiredArgs = FI.getNumRequiredArgs();
+ // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+ // get assigned (in left-to-right order) for passing as follows...
+ unsigned ArgNo = 0;
+ for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+ it != ie; ++it, ++ArgNo) {
+ bool IsNamedArg = ArgNo < NumRequiredArgs;
+
+ if (IsRegCall && it->type->isStructureOrClassType())
+ it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
+ MaxVectorWidth);
+ else
+ it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
+ NeededSSE, IsNamedArg);
+
+ // AMD64-ABI 3.2.3p3: If there are no registers available for any
+ // eightbyte of an argument, the whole argument is passed on the
+ // stack. If registers have already been assigned for some
+ // eightbytes of such an argument, the assignments get reverted.
+ if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
+ FreeIntRegs -= NeededInt;
+ FreeSSERegs -= NeededSSE;
+ if (MaxVectorWidth > FI.getMaxVectorWidth())
+ FI.setMaxVectorWidth(MaxVectorWidth);
+ } else {
+ it->info = getIndirectResult(it->type, FreeIntRegs);
+ }
+ }
+}
+
+static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
+ Address VAListAddr, QualType Ty) {
+ Address overflow_arg_area_p =
+ CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+ llvm::Value *overflow_arg_area =
+ CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+ // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+ // byte boundary if alignment needed by type exceeds 8 byte boundary.
+ // It isn't stated explicitly in the standard, but in practice we use
+ // alignment greater than 16 where necessary.
+ CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
+ if (Align > CharUnits::fromQuantity(8)) {
+ overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
+ Align);
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *Res = overflow_arg_area;
+
+ // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+ // l->overflow_arg_area + sizeof(type).
+ // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+ // an 8 byte boundary.
+
+ uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+ llvm::Value *Offset =
+ llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
+ overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
+ Offset, "overflow_arg_area.next");
+ CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+ // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+ return Address(Res, LTy, Align);
+}
+
+RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // Assume that va_list type is correct; should be pointer to LLVM type:
+ // struct {
+ // i32 gp_offset;
+ // i32 fp_offset;
+ // i8* overflow_arg_area;
+ // i8* reg_save_area;
+ // };
+ unsigned neededInt, neededSSE;
+
+ Ty = getContext().getCanonicalType(Ty);
+ ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
+ /*isNamedArg*/false);
+
+ // Empty records are ignored for parameter passing purposes.
+ if (AI.isIgnore())
+ return Slot.asRValue();
+
+ // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+ // in the registers. If not go to step 7.
+ if (!neededInt && !neededSSE)
+ return CGF.EmitLoadOfAnyValue(
+ CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
+ Slot);
+
+ // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+ // general purpose registers needed to pass type and num_fp to hold
+ // the number of floating point registers needed.
+
+ // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+ // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+ // l->fp_offset > 304 - num_fp * 16 go to step 7.
+ //
+ // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+ // register save space).
+
+ llvm::Value *InRegs = nullptr;
+ Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
+ llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
+ if (neededInt) {
+ gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+ gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+ InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
+ InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
+ }
+
+ if (neededSSE) {
+ fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+ fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+ llvm::Value *FitsInFP =
+ llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
+ FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
+ InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+ }
+
+ llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+ llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+ CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+ // Emit code to load the value if it was passed in registers.
+
+ CGF.EmitBlock(InRegBlock);
+
+ // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+ // an offset of l->gp_offset and/or l->fp_offset. This may require
+ // copying to a temporary location in case the parameter is passed
+ // in different register classes or requires an alignment greater
+ // than 8 for general purpose registers and 16 for XMM registers.
+ //
+ // FIXME: This really results in shameful code when we end up needing to
+ // collect arguments from different places; often what should result in a
+ // simple assembling of a structure from scattered addresses has many more
+ // loads than necessary. Can we clean this up?
+ llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+ llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
+ CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
+
+ Address RegAddr = Address::invalid();
+ if (neededInt && neededSSE) {
+ // FIXME: Cleanup.
+ assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
+ llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+ Address Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = Tmp.withElementType(ST);
+ assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+ llvm::Type *TyLo = ST->getElementType(0);
+ llvm::Type *TyHi = ST->getElementType(1);
+ assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
+ "Unexpected ABI info for mixed regs");
+ llvm::Value *GPAddr =
+ CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
+ llvm::Value *FPAddr =
+ CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
+ llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
+ llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
+
+ // Copy the first element.
+ // FIXME: Our choice of alignment here and below is probably pessimistic.
+ llvm::Value *V = CGF.Builder.CreateAlignedLoad(
+ TyLo, RegLoAddr,
+ CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+
+ // Copy the second element.
+ V = CGF.Builder.CreateAlignedLoad(
+ TyHi, RegHiAddr,
+ CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = Tmp.withElementType(LTy);
+ } else if (neededInt) {
+ RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
+ LTy, CharUnits::fromQuantity(8));
+
+ // Copy to a temporary if necessary to ensure the appropriate alignment.
+ auto TInfo = getContext().getTypeInfoInChars(Ty);
+ uint64_t TySize = TInfo.Width.getQuantity();
+ CharUnits TyAlign = TInfo.Align;
+
+ // Copy into a temporary if the type is more aligned than the
+ // register save area.
+ if (TyAlign.getQuantity() > 8) {
+ Address Tmp = CGF.CreateMemTemp(Ty);
+ CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
+ RegAddr = Tmp;
+ }
+
+ } else if (neededSSE == 1) {
+ RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
+ LTy, CharUnits::fromQuantity(16));
+ } else {
+ assert(neededSSE == 2 && "Invalid number of needed registers!");
+ // SSE registers are spaced 16 bytes apart in the register save
+ // area, we need to collect the two eightbytes together.
+ // The ABI isn't explicit about this, but it seems reasonable
+ // to assume that the slots are 16-byte aligned, since the stack is
+ // naturally 16-byte aligned and the prologue is expected to store
+ // all the SSE registers to the RSA.
+ Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
+ fp_offset),
+ CGF.Int8Ty, CharUnits::fromQuantity(16));
+ Address RegAddrHi =
+ CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
+ CharUnits::fromQuantity(16));
+ llvm::Type *ST = AI.canHaveCoerceToType()
+ ? AI.getCoerceToType()
+ : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
+ llvm::Value *V;
+ Address Tmp = CGF.CreateMemTemp(Ty);
+ Tmp = Tmp.withElementType(ST);
+ V = CGF.Builder.CreateLoad(
+ RegAddrLo.withElementType(ST->getStructElementType(0)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+ V = CGF.Builder.CreateLoad(
+ RegAddrHi.withElementType(ST->getStructElementType(1)));
+ CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+ RegAddr = Tmp.withElementType(LTy);
+ }
+
+ // AMD64-ABI 3.5.7p5: Step 5. Set:
+ // l->gp_offset = l->gp_offset + num_gp * 8
+ // l->fp_offset = l->fp_offset + num_fp * 16.
+ if (neededInt) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+ gp_offset_p);
+ }
+ if (neededSSE) {
+ llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
+ CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+ fp_offset_p);
+ }
+ CGF.EmitBranch(ContBlock);
+
+ // Emit code to load the value if it was passed in memory.
+
+ CGF.EmitBlock(InMemBlock);
+ Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
+
+ // Return the appropriate result.
+
+ CGF.EmitBlock(ContBlock);
+ Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
+ "vaarg.addr");
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
+}
+
+RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ uint64_t Width = getContext().getTypeSize(Ty);
+ bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ CGF.getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(8),
+ /*allowHigherAlign*/ false, Slot);
+}
+
+ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
+ QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+
+ if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
+ isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ return getDirectX86Hva();
+ }
+ return current;
+}
+
+ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
+ bool IsReturnType, bool IsVectorCall,
+ bool IsRegCall) const {
+
+ if (Ty->isVoidType())
+ return ABIArgInfo::getIgnore();
+
+ if (const EnumType *EnumTy = Ty->getAs<EnumType>())
+ Ty = EnumTy->getDecl()->getIntegerType();
+
+ TypeInfo Info = getContext().getTypeInfo(Ty);
+ uint64_t Width = Info.Width;
+ CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
+
+ const RecordType *RT = Ty->getAs<RecordType>();
+ if (RT) {
+ if (!IsReturnType) {
+ if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
+ return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
+ }
+
+ if (RT->getDecl()->hasFlexibleArrayMember())
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ }
+
+ const Type *Base = nullptr;
+ uint64_t NumElts = 0;
+ // vectorcall adds the concept of a homogenous vector aggregate, similar to
+ // other targets.
+ if ((IsVectorCall || IsRegCall) &&
+ isHomogeneousAggregate(Ty, Base, NumElts)) {
+ if (IsRegCall) {
+ if (FreeSSERegs >= NumElts) {
+ FreeSSERegs -= NumElts;
+ if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getExpand();
+ }
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ } else if (IsVectorCall) {
+ if (FreeSSERegs >= NumElts &&
+ (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
+ FreeSSERegs -= NumElts;
+ return ABIArgInfo::getDirect();
+ } else if (IsReturnType) {
+ return ABIArgInfo::getExpand();
+ } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
+ // HVAs are delayed and reclassified in the 2nd step.
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+ }
+ }
+
+ if (Ty->isMemberPointerType()) {
+ // If the member pointer is represented by an LLVM int or ptr, pass it
+ // directly.
+ llvm::Type *LLTy = CGT.ConvertType(Ty);
+ if (LLTy->isPointerTy() || LLTy->isIntegerTy())
+ return ABIArgInfo::getDirect();
+ }
+
+ if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ if (Width > 64 || !llvm::isPowerOf2_64(Width))
+ return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
+
+ // Otherwise, coerce it to a small integer.
+ return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
+ }
+
+ if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
+ switch (BT->getKind()) {
+ case BuiltinType::Bool:
+ // Bool type is always extended to the ABI, other builtin types are not
+ // extended.
+ return ABIArgInfo::getExtend(Ty);
+
+ case BuiltinType::LongDouble:
+ // Mingw64 GCC uses the old 80 bit extended precision floating point
+ // unit. It passes them indirectly through memory.
+ if (IsMingw64) {
+ const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
+ if (LDF == &llvm::APFloat::x87DoubleExtended())
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+ break;
+
+ case BuiltinType::Int128:
+ case BuiltinType::UInt128:
+ // If it's a parameter type, the normal ABI rule is that arguments larger
+ // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
+ // even though it isn't particularly efficient.
+ if (!IsReturnType)
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+
+ // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
+ // Clang matches them for compatibility.
+ return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
+ llvm::Type::getInt64Ty(getVMContext()), 2));
+
+ default:
+ break;
+ }
+ }
+
+ if (Ty->isBitIntType()) {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
+ // or 8 bytes anyway as long is it fits in them, so we don't have to check
+ // the power of 2.
+ if (Width <= 64)
+ return ABIArgInfo::getDirect();
+ return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
+ }
+
+ return ABIArgInfo::getDirect();
+}
+
+void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
+ const unsigned CC = FI.getCallingConvention();
+ bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
+ bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
+
+ // If __attribute__((sysv_abi)) is in use, use the SysV argument
+ // classification rules.
+ if (CC == llvm::CallingConv::X86_64_SysV) {
+ X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
+ SysVABIInfo.computeInfo(FI);
+ return;
+ }
+
+ unsigned FreeSSERegs = 0;
+ if (IsVectorCall) {
+ // We can use up to 4 SSE return registers with vectorcall.
+ FreeSSERegs = 4;
+ } else if (IsRegCall) {
+ // RegCall gives us 16 SSE registers.
+ FreeSSERegs = 16;
+ }
+
+ if (!getCXXABI().classifyReturnType(FI))
+ FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
+ IsVectorCall, IsRegCall);
+
+ if (IsVectorCall) {
+ // We can use up to 6 SSE register parameters with vectorcall.
+ FreeSSERegs = 6;
+ } else if (IsRegCall) {
+ // RegCall gives us 16 SSE registers, we can reuse the return registers.
+ FreeSSERegs = 16;
+ }
+
+ unsigned ArgNum = 0;
+ unsigned ZeroSSERegs = 0;
+ for (auto &I : FI.arguments()) {
+ // Vectorcall in x64 only permits the first 6 arguments to be passed as
+ // XMM/YMM registers. After the sixth argument, pretend no vector
+ // registers are left.
+ unsigned *MaybeFreeSSERegs =
+ (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
+ I.info =
+ classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
+ ++ArgNum;
+ }
+
+ if (IsVectorCall) {
+ // For vectorcall, assign aggregate HVAs to any free vector registers in a
+ // second pass.
+ for (auto &I : FI.arguments())
+ I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
+ }
+}
+
+RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
+ // not 1, 2, 4, or 8 bytes, must be passed by reference."
+ uint64_t Width = getContext().getTypeSize(Ty);
+ bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
+
+ return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
+ CGF.getContext().getTypeInfoInChars(Ty),
+ CharUnits::fromQuantity(8),
+ /*allowHigherAlign*/ false, Slot);
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
+ CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
+ unsigned NumRegisterParameters, bool SoftFloatABI) {
+ bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ CGM.getTriple(), CGM.getCodeGenOpts());
+ return std::make_unique<X86_32TargetCodeGenInfo>(
+ CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+ NumRegisterParameters, SoftFloatABI);
+}
+
+std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
+ CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
+ unsigned NumRegisterParameters) {
+ bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
+ CGM.getTriple(), CGM.getCodeGenOpts());
+ return std::make_unique<WinX86_32TargetCodeGenInfo>(
+ CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
+ NumRegisterParameters);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
+ X86AVXABILevel AVXLevel) {
+ return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
+ X86AVXABILevel AVXLevel) {
+ return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
+}
diff --git a/contrib/llvm-project/clang/lib/CodeGen/Targets/XCore.cpp b/contrib/llvm-project/clang/lib/CodeGen/Targets/XCore.cpp
new file mode 100644
index 000000000000..f3e241171b87
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/Targets/XCore.cpp
@@ -0,0 +1,662 @@
+//===- XCore.cpp ----------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfoImpl.h"
+#include "TargetInfo.h"
+
+using namespace clang;
+using namespace clang::CodeGen;
+
+//===----------------------------------------------------------------------===//
+// XCore ABI Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// A SmallStringEnc instance is used to build up the TypeString by passing
+/// it by reference between functions that append to it.
+typedef llvm::SmallString<128> SmallStringEnc;
+
+/// TypeStringCache caches the meta encodings of Types.
+///
+/// The reason for caching TypeStrings is two fold:
+/// 1. To cache a type's encoding for later uses;
+/// 2. As a means to break recursive member type inclusion.
+///
+/// A cache Entry can have a Status of:
+/// NonRecursive: The type encoding is not recursive;
+/// Recursive: The type encoding is recursive;
+/// Incomplete: An incomplete TypeString;
+/// IncompleteUsed: An incomplete TypeString that has been used in a
+/// Recursive type encoding.
+///
+/// A NonRecursive entry will have all of its sub-members expanded as fully
+/// as possible. Whilst it may contain types which are recursive, the type
+/// itself is not recursive and thus its encoding may be safely used whenever
+/// the type is encountered.
+///
+/// A Recursive entry will have all of its sub-members expanded as fully as
+/// possible. The type itself is recursive and it may contain other types which
+/// are recursive. The Recursive encoding must not be used during the expansion
+/// of a recursive type's recursive branch. For simplicity the code uses
+/// IncompleteCount to reject all usage of Recursive encodings for member types.
+///
+/// An Incomplete entry is always a RecordType and only encodes its
+/// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
+/// are placed into the cache during type expansion as a means to identify and
+/// handle recursive inclusion of types as sub-members. If there is recursion
+/// the entry becomes IncompleteUsed.
+///
+/// During the expansion of a RecordType's members:
+///
+/// If the cache contains a NonRecursive encoding for the member type, the
+/// cached encoding is used;
+///
+/// If the cache contains a Recursive encoding for the member type, the
+/// cached encoding is 'Swapped' out, as it may be incorrect, and...
+///
+/// If the member is a RecordType, an Incomplete encoding is placed into the
+/// cache to break potential recursive inclusion of itself as a sub-member;
+///
+/// Once a member RecordType has been expanded, its temporary incomplete
+/// entry is removed from the cache. If a Recursive encoding was swapped out
+/// it is swapped back in;
+///
+/// If an incomplete entry is used to expand a sub-member, the incomplete
+/// entry is marked as IncompleteUsed. The cache keeps count of how many
+/// IncompleteUsed entries it currently contains in IncompleteUsedCount;
+///
+/// If a member's encoding is found to be a NonRecursive or Recursive viz:
+/// IncompleteUsedCount==0, the member's encoding is added to the cache.
+/// Else the member is part of a recursive type and thus the recursion has
+/// been exited too soon for the encoding to be correct for the member.
+///
+class TypeStringCache {
+ enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
+ struct Entry {
+ std::string Str; // The encoded TypeString for the type.
+ enum Status State; // Information about the encoding in 'Str'.
+ std::string Swapped; // A temporary place holder for a Recursive encoding
+ // during the expansion of RecordType's members.
+ };
+ std::map<const IdentifierInfo *, struct Entry> Map;
+ unsigned IncompleteCount; // Number of Incomplete entries in the Map.
+ unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
+public:
+ TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
+ void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
+ bool removeIncomplete(const IdentifierInfo *ID);
+ void addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive);
+ StringRef lookupStr(const IdentifierInfo *ID);
+};
+
+/// TypeString encodings for enum & union fields must be order.
+/// FieldEncoding is a helper for this ordering process.
+class FieldEncoding {
+ bool HasName;
+ std::string Enc;
+public:
+ FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
+ StringRef str() { return Enc; }
+ bool operator<(const FieldEncoding &rhs) const {
+ if (HasName != rhs.HasName) return HasName;
+ return Enc < rhs.Enc;
+ }
+};
+
+class XCoreABIInfo : public DefaultABIInfo {
+public:
+ XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
+ RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
+ AggValueSlot Slot) const override;
+};
+
+class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
+ mutable TypeStringCache TSC;
+ void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
+ const CodeGen::CodeGenModule &M) const;
+
+public:
+ XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
+ : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
+ void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
+ const llvm::MapVector<GlobalDecl, StringRef>
+ &MangledDeclNames) const override;
+};
+
+} // End anonymous namespace.
+
+// TODO: this implementation is likely now redundant with the default
+// EmitVAArg.
+RValue XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
+ QualType Ty, AggValueSlot Slot) const {
+ CGBuilderTy &Builder = CGF.Builder;
+
+ // Get the VAList.
+ CharUnits SlotSize = CharUnits::fromQuantity(4);
+ Address AP = Address(Builder.CreateLoad(VAListAddr),
+ getVAListElementType(CGF), SlotSize);
+
+ // Handle the argument.
+ ABIArgInfo AI = classifyArgumentType(Ty);
+ CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
+ llvm::Type *ArgTy = CGT.ConvertType(Ty);
+ if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
+ AI.setCoerceToType(ArgTy);
+ llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
+
+ Address Val = Address::invalid();
+ CharUnits ArgSize = CharUnits::Zero();
+ switch (AI.getKind()) {
+ case ABIArgInfo::Expand:
+ case ABIArgInfo::CoerceAndExpand:
+ case ABIArgInfo::InAlloca:
+ llvm_unreachable("Unsupported ABI kind for va_arg");
+ case ABIArgInfo::Ignore:
+ Val = Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeAlign);
+ ArgSize = CharUnits::Zero();
+ break;
+ case ABIArgInfo::Extend:
+ case ABIArgInfo::Direct:
+ Val = AP.withElementType(ArgTy);
+ ArgSize = CharUnits::fromQuantity(
+ getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
+ ArgSize = ArgSize.alignTo(SlotSize);
+ break;
+ case ABIArgInfo::Indirect:
+ case ABIArgInfo::IndirectAliased:
+ Val = AP.withElementType(ArgPtrTy);
+ Val = Address(Builder.CreateLoad(Val), ArgTy, TypeAlign);
+ ArgSize = SlotSize;
+ break;
+ }
+
+ // Increment the VAList.
+ if (!ArgSize.isZero()) {
+ Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
+ Builder.CreateStore(APN.emitRawPointer(CGF), VAListAddr);
+ }
+
+ return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(Val, Ty), Slot);
+}
+
+/// During the expansion of a RecordType, an incomplete TypeString is placed
+/// into the cache as a means to identify and break recursion.
+/// If there is a Recursive encoding in the cache, it is swapped out and will
+/// be reinserted by removeIncomplete().
+/// All other types of encoding should have been used rather than arriving here.
+void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
+ std::string StubEnc) {
+ if (!ID)
+ return;
+ Entry &E = Map[ID];
+ assert( (E.Str.empty() || E.State == Recursive) &&
+ "Incorrectly use of addIncomplete");
+ assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
+ E.Swapped.swap(E.Str); // swap out the Recursive
+ E.Str.swap(StubEnc);
+ E.State = Incomplete;
+ ++IncompleteCount;
+}
+
+/// Once the RecordType has been expanded, the temporary incomplete TypeString
+/// must be removed from the cache.
+/// If a Recursive was swapped out by addIncomplete(), it will be replaced.
+/// Returns true if the RecordType was defined recursively.
+bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
+ if (!ID)
+ return false;
+ auto I = Map.find(ID);
+ assert(I != Map.end() && "Entry not present");
+ Entry &E = I->second;
+ assert( (E.State == Incomplete ||
+ E.State == IncompleteUsed) &&
+ "Entry must be an incomplete type");
+ bool IsRecursive = false;
+ if (E.State == IncompleteUsed) {
+ // We made use of our Incomplete encoding, thus we are recursive.
+ IsRecursive = true;
+ --IncompleteUsedCount;
+ }
+ if (E.Swapped.empty())
+ Map.erase(I);
+ else {
+ // Swap the Recursive back.
+ E.Swapped.swap(E.Str);
+ E.Swapped.clear();
+ E.State = Recursive;
+ }
+ --IncompleteCount;
+ return IsRecursive;
+}
+
+/// Add the encoded TypeString to the cache only if it is NonRecursive or
+/// Recursive (viz: all sub-members were expanded as fully as possible).
+void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
+ bool IsRecursive) {
+ if (!ID || IncompleteUsedCount)
+ return; // No key or it is an incomplete sub-type so don't add.
+ Entry &E = Map[ID];
+ if (IsRecursive && !E.Str.empty()) {
+ assert(E.State==Recursive && E.Str.size() == Str.size() &&
+ "This is not the same Recursive entry");
+ // The parent container was not recursive after all, so we could have used
+ // this Recursive sub-member entry after all, but we assumed the worse when
+ // we started viz: IncompleteCount!=0.
+ return;
+ }
+ assert(E.Str.empty() && "Entry already present");
+ E.Str = Str.str();
+ E.State = IsRecursive? Recursive : NonRecursive;
+}
+
+/// Return a cached TypeString encoding for the ID. If there isn't one, or we
+/// are recursively expanding a type (IncompleteCount != 0) and the cached
+/// encoding is Recursive, return an empty StringRef.
+StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
+ if (!ID)
+ return StringRef(); // We have no key.
+ auto I = Map.find(ID);
+ if (I == Map.end())
+ return StringRef(); // We have no encoding.
+ Entry &E = I->second;
+ if (E.State == Recursive && IncompleteCount)
+ return StringRef(); // We don't use Recursive encodings for member types.
+
+ if (E.State == Incomplete) {
+ // The incomplete type is being used to break out of recursion.
+ E.State = IncompleteUsed;
+ ++IncompleteUsedCount;
+ }
+ return E.Str;
+}
+
+/// The XCore ABI includes a type information section that communicates symbol
+/// type information to the linker. The linker uses this information to verify
+/// safety/correctness of things such as array bound and pointers et al.
+/// The ABI only requires C (and XC) language modules to emit TypeStrings.
+/// This type information (TypeString) is emitted into meta data for all global
+/// symbols: definitions, declarations, functions & variables.
+///
+/// The TypeString carries type, qualifier, name, size & value details.
+/// Please see 'Tools Development Guide' section 2.16.2 for format details:
+/// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
+/// The output is tested by test/CodeGen/xcore-stringtype.c.
+///
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC);
+
+/// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
+void XCoreTargetCodeGenInfo::emitTargetMD(
+ const Decl *D, llvm::GlobalValue *GV,
+ const CodeGen::CodeGenModule &CGM) const {
+ SmallStringEnc Enc;
+ if (getTypeString(Enc, D, CGM, TSC)) {
+ llvm::LLVMContext &Ctx = CGM.getModule().getContext();
+ llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
+ llvm::MDString::get(Ctx, Enc.str())};
+ llvm::NamedMDNode *MD =
+ CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+ }
+}
+
+void XCoreTargetCodeGenInfo::emitTargetMetadata(
+ CodeGen::CodeGenModule &CGM,
+ const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
+ // Warning, new MangledDeclNames may be appended within this loop.
+ // We rely on MapVector insertions adding new elements to the end
+ // of the container.
+ for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
+ auto Val = *(MangledDeclNames.begin() + I);
+ llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
+ if (GV) {
+ const Decl *D = Val.first.getDecl()->getMostRecentDecl();
+ emitTargetMD(D, GV, CGM);
+ }
+ }
+}
+
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC);
+
+/// Helper function for appendRecordType().
+/// Builds a SmallVector containing the encoded field types in declaration
+/// order.
+static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
+ const RecordDecl *RD,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ for (const auto *Field : RD->fields()) {
+ SmallStringEnc Enc;
+ Enc += "m(";
+ Enc += Field->getName();
+ Enc += "){";
+ if (Field->isBitField()) {
+ Enc += "b(";
+ llvm::raw_svector_ostream OS(Enc);
+ OS << Field->getBitWidthValue(CGM.getContext());
+ Enc += ':';
+ }
+ if (!appendType(Enc, Field->getType(), CGM, TSC))
+ return false;
+ if (Field->isBitField())
+ Enc += ')';
+ Enc += '}';
+ FE.emplace_back(!Field->getName().empty(), Enc);
+ }
+ return true;
+}
+
+/// Appends structure and union types to Enc and adds encoding to cache.
+/// Recursively calls appendType (via extractFieldType) for each field.
+/// Union types have their fields ordered according to the ABI.
+static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ // Start to emit an incomplete TypeString.
+ size_t Start = Enc.size();
+ Enc += (RT->isUnionType()? 'u' : 's');
+ Enc += '(';
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded fields and order as necessary.
+ bool IsRecursive = false;
+ const RecordDecl *RD = RT->getDecl()->getDefinition();
+ if (RD && !RD->field_empty()) {
+ // An incomplete TypeString stub is placed in the cache for this RecordType
+ // so that recursive calls to this RecordType will use it whilst building a
+ // complete TypeString for this RecordType.
+ SmallVector<FieldEncoding, 16> FE;
+ std::string StubEnc(Enc.substr(Start).str());
+ StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString.
+ TSC.addIncomplete(ID, std::move(StubEnc));
+ if (!extractFieldType(FE, RD, CGM, TSC)) {
+ (void) TSC.removeIncomplete(ID);
+ return false;
+ }
+ IsRecursive = TSC.removeIncomplete(ID);
+ // The ABI requires unions to be sorted but not structures.
+ // See FieldEncoding::operator< for sort algorithm.
+ if (RT->isUnionType())
+ llvm::sort(FE);
+ // We can now complete the TypeString.
+ unsigned E = FE.size();
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
+ return true;
+}
+
+/// Appends enum types to Enc and adds the encoding to the cache.
+static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
+ TypeStringCache &TSC,
+ const IdentifierInfo *ID) {
+ // Append the cached TypeString if we have one.
+ StringRef TypeString = TSC.lookupStr(ID);
+ if (!TypeString.empty()) {
+ Enc += TypeString;
+ return true;
+ }
+
+ size_t Start = Enc.size();
+ Enc += "e(";
+ if (ID)
+ Enc += ID->getName();
+ Enc += "){";
+
+ // We collect all encoded enumerations and order them alphanumerically.
+ if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
+ SmallVector<FieldEncoding, 16> FE;
+ for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
+ ++I) {
+ SmallStringEnc EnumEnc;
+ EnumEnc += "m(";
+ EnumEnc += I->getName();
+ EnumEnc += "){";
+ I->getInitVal().toString(EnumEnc);
+ EnumEnc += '}';
+ FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
+ }
+ llvm::sort(FE);
+ unsigned E = FE.size();
+ for (unsigned I = 0; I != E; ++I) {
+ if (I)
+ Enc += ',';
+ Enc += FE[I].str();
+ }
+ }
+ Enc += '}';
+ TSC.addIfComplete(ID, Enc.substr(Start), false);
+ return true;
+}
+
+/// Appends type's qualifier to Enc.
+/// This is done prior to appending the type's encoding.
+static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
+ // Qualifiers are emitted in alphabetical order.
+ static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
+ int Lookup = 0;
+ if (QT.isConstQualified())
+ Lookup += 1<<0;
+ if (QT.isRestrictQualified())
+ Lookup += 1<<1;
+ if (QT.isVolatileQualified())
+ Lookup += 1<<2;
+ Enc += Table[Lookup];
+}
+
+/// Appends built-in types to Enc.
+static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
+ const char *EncType;
+ switch (BT->getKind()) {
+ case BuiltinType::Void:
+ EncType = "0";
+ break;
+ case BuiltinType::Bool:
+ EncType = "b";
+ break;
+ case BuiltinType::Char_U:
+ EncType = "uc";
+ break;
+ case BuiltinType::UChar:
+ EncType = "uc";
+ break;
+ case BuiltinType::SChar:
+ EncType = "sc";
+ break;
+ case BuiltinType::UShort:
+ EncType = "us";
+ break;
+ case BuiltinType::Short:
+ EncType = "ss";
+ break;
+ case BuiltinType::UInt:
+ EncType = "ui";
+ break;
+ case BuiltinType::Int:
+ EncType = "si";
+ break;
+ case BuiltinType::ULong:
+ EncType = "ul";
+ break;
+ case BuiltinType::Long:
+ EncType = "sl";
+ break;
+ case BuiltinType::ULongLong:
+ EncType = "ull";
+ break;
+ case BuiltinType::LongLong:
+ EncType = "sll";
+ break;
+ case BuiltinType::Float:
+ EncType = "ft";
+ break;
+ case BuiltinType::Double:
+ EncType = "d";
+ break;
+ case BuiltinType::LongDouble:
+ EncType = "ld";
+ break;
+ default:
+ return false;
+ }
+ Enc += EncType;
+ return true;
+}
+
+/// Appends a pointer encoding to Enc before calling appendType for the pointee.
+static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "p(";
+ if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends array encoding to Enc before calling appendType for the element.
+static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
+ const ArrayType *AT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC, StringRef NoSizeEnc) {
+ if (AT->getSizeModifier() != ArraySizeModifier::Normal)
+ return false;
+ Enc += "a(";
+ if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+ CAT->getSize().toStringUnsigned(Enc);
+ else
+ Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
+ Enc += ':';
+ // The Qualifiers should be attached to the type rather than the array.
+ appendQualifier(Enc, QT);
+ if (!appendType(Enc, AT->getElementType(), CGM, TSC))
+ return false;
+ Enc += ')';
+ return true;
+}
+
+/// Appends a function encoding to Enc, calling appendType for the return type
+/// and the arguments.
+static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ Enc += "f{";
+ if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
+ return false;
+ Enc += "}(";
+ if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
+ // N.B. we are only interested in the adjusted param types.
+ auto I = FPT->param_type_begin();
+ auto E = FPT->param_type_end();
+ if (I != E) {
+ do {
+ if (!appendType(Enc, *I, CGM, TSC))
+ return false;
+ ++I;
+ if (I != E)
+ Enc += ',';
+ } while (I != E);
+ if (FPT->isVariadic())
+ Enc += ",va";
+ } else {
+ if (FPT->isVariadic())
+ Enc += "va";
+ else
+ Enc += '0';
+ }
+ }
+ Enc += ')';
+ return true;
+}
+
+/// Handles the type's qualifier before dispatching a call to handle specific
+/// type encodings.
+static bool appendType(SmallStringEnc &Enc, QualType QType,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+
+ QualType QT = QType.getCanonicalType();
+
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
+ // The Qualifiers should be attached to the type rather than the array.
+ // Thus we don't call appendQualifier() here.
+ return appendArrayType(Enc, QT, AT, CGM, TSC, "");
+
+ appendQualifier(Enc, QT);
+
+ if (const BuiltinType *BT = QT->getAs<BuiltinType>())
+ return appendBuiltinType(Enc, BT);
+
+ if (const PointerType *PT = QT->getAs<PointerType>())
+ return appendPointerType(Enc, PT, CGM, TSC);
+
+ if (const EnumType *ET = QT->getAs<EnumType>())
+ return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsStructureType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const RecordType *RT = QT->getAsUnionType())
+ return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
+
+ if (const FunctionType *FT = QT->getAs<FunctionType>())
+ return appendFunctionType(Enc, FT, CGM, TSC);
+
+ return false;
+}
+
+static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
+ const CodeGen::CodeGenModule &CGM,
+ TypeStringCache &TSC) {
+ if (!D)
+ return false;
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ return appendType(Enc, FD->getType(), CGM, TSC);
+ }
+
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->getLanguageLinkage() != CLanguageLinkage)
+ return false;
+ QualType QT = VD->getType().getCanonicalType();
+ if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
+ // Global ArrayTypes are given a size of '*' if the size is unknown.
+ // The Qualifiers should be attached to the type rather than the array.
+ // Thus we don't call appendQualifier() here.
+ return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
+ }
+ return appendType(Enc, QT, CGM, TSC);
+ }
+ return false;
+}
+
+std::unique_ptr<TargetCodeGenInfo>
+CodeGen::createXCoreTargetCodeGenInfo(CodeGenModule &CGM) {
+ return std::make_unique<XCoreTargetCodeGenInfo>(CGM.getTypes());
+}